期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Review of blue perovskite light emitting diodes with optimization strategies for perovskite film and device structure 被引量:6
1
作者 Zongtao Li Kai Cao +3 位作者 Jiasheng Li Yong Tang Xinrui Ding Binhai Yu 《Opto-Electronic Advances》 SCIE 2021年第2期19-47,共29页
Perovskite light emitting diodes(PeLEDs)have attracted considerable research attention because of their external quantum efficiency(EQE)of>20%and have potential scope for further improvement.However,compared to red... Perovskite light emitting diodes(PeLEDs)have attracted considerable research attention because of their external quantum efficiency(EQE)of>20%and have potential scope for further improvement.However,compared to red and green PeLEDs,blue PeLEDs have not been extensively investigated,which limits their commercial applications in the fields of luminance and full-color displays.In this review,blue-PeLED-related research is categorized by the composition of perovskite.The main challenges and corresponding optimization strategies for perovskite films are summarized.Next,the novel strategies for the design of device structures of blue PeLEDs are reviewed from the perspective of transport layers and interfacial layers.Accordingly,future directions for blue PeLEDs are discussed.This review can be a guideline for optimizing perovskite film and device structure of blue PeLEDs,thereby enhancing their development and application scope. 展开更多
关键词 perovskite light emitting diodes perovskite film device structure blue LEDs
下载PDF
High-Efficiency Green Phosphorescent Organic Light-Emitting Diode Based on Simplified Device Structures
2
作者 张宏梅 王丹蓓 +1 位作者 曾文进 闫敏楠 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第9期140-144,共5页
A high-efficiency green phosphorescent organic light emitting diode with a simplified structure is achieved that is free of a hole transport layer. The design of this kind of device structure not only saves the consum... A high-efficiency green phosphorescent organic light emitting diode with a simplified structure is achieved that is free of a hole transport layer. The design of this kind of device structure not only saves the consumption of organic materials but also greatly reduces the structural heterogeneities and effectively facilitates the charge injection into the emissive layer. The resulting green phosphorescent organic light-emitting diodes (PHOLEDs) exhibit higher electroluminescent efficiency. The maximum external quantum efficiency and current efficiency reach 23.7% and 88 cd/A, respectively. Moreover the device demonstrates satisfactory stability, keeping 23.7% and 88cd/A, 22% and 82cd/A, respectively, at a luminance of 100 and 1000cd/m2. The working mechanism for achieving high efficiency based on such a simple device structure is discussed correspondingly. The improved charge carrier injection and transport balance are proved to prominently contribute to achieve the high efficiency and great stability at high luminance in the green PHOLEDs. 展开更多
关键词 HTL NPB High-Efficiency Green Phosphorescent Organic Light-Emitting Diode Based on Simplified device Structures OLEDS PEDOT
下载PDF
Finite Element Analysis on the Pre-load Structures of the Central Solenoid for the HT-7U Device
3
作者 曹云露 吴维越 +1 位作者 翁佩德 武松涛 《Plasma Science and Technology》 SCIE EI CAS CSCD 2001年第3期813-820,共8页
The central solenoid is an important part of the HT-7U device. In this paper, the computational analysis of the stress and the displacement on the pre-load structures of the central solenoid have been made by the fin... The central solenoid is an important part of the HT-7U device. In this paper, the computational analysis of the stress and the displacement on the pre-load structures of the central solenoid have been made by the finite element analysis system COSMOS/M2.0 under room and/or operating temperature. According to the analytical results, the clip aprons and compression plates are all satisfied with safety design criteria. 展开更多
关键词 Finite Element Analysis on the Pre-load Structures of the Central Solenoid for the HT-7U device HT LOAD
下载PDF
Analysis of Mechanically Tunable Frequency Selective Surfaces 被引量:6
4
作者 Zhang, Wenxun Song, Hongxin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1997年第4期7-16,共10页
The frequency selective surface (FSS) has been widely applied by means of its spatial frequency-filter characteristic, but it is always designed and used as a device with fixed frequency response. In order to tune the... The frequency selective surface (FSS) has been widely applied by means of its spatial frequency-filter characteristic, but it is always designed and used as a device with fixed frequency response. In order to tune the resonant frequency and switch the frequency channel, a scheme of mechanically tunable FSS is theoretically analyzed by using the method of Floquet's vector modes expansion and fields matching. A double-layer tunable FSS with dipole element can perform a dynamic range of resonant frequency covering whole X-band. 展开更多
关键词 Antenna accessories Electric filters Electromagnetic field theory Electromagnetic wave polarization Electromagnetic wave reflection Frequency response Mathematical models Natural frequencies Semiconductor device structures
下载PDF
Recent development and progress of structural energy devices 被引量:2
5
作者 Yong Liu Zhongxun Yu +5 位作者 Jia Chen Chenxi Li Zhengjie Zhang Xiaoyu Yan Xinhua Liu Shichun Yang 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第4期1817-1830,共14页
In order to fully replace the traditional fossil energy supply system, the efficiency of electrochemical energy conversion and storage of new energy technology needs to be continuously improved to enhance its market c... In order to fully replace the traditional fossil energy supply system, the efficiency of electrochemical energy conversion and storage of new energy technology needs to be continuously improved to enhance its market competitiveness. The structural design of energy devices can achieve satisfactory energy conversion and storage performance. To achieve lightweight design, improve mechanical support, enhance electrochemical performance, and adapt to the special shape of the device, the structural energy devices develop very quickly. To help researchers analyze the development and get clear on developing trend,this review is prepared. This review summarizes the latest developments in structural energy devices, including special attention to fuel cells, lithium-ion batteries, lithium metal batteries, and supercapacitors.Finally, the existing problems of structural energy devices are discussed, and the current challenges and future opportunities are summarized and prospected. Structural energy devices can undoubtedly overcome the performance bottlenecks of traditional energy devices, break the limitations of existing materials and structures, and provide a guidance for the development of equipment with high performance,light weight and low cost in the future. 展开更多
关键词 structural energy devices Fuel cells Lithium-ion batteries Lithium metal batteries SUPERCAPACITORS
原文传递
Periodic structural defects in Bragg gratings and their application in multiwavelength devices 被引量:1
6
作者 Rulei Xiao Yuechun Shi +3 位作者 Renjia Guo Ting Chen Lijun Hao Xiangfei Chen 《Photonics Research》 SCIE EI 2016年第2期35-40,共6页
In this paper, we present the finding that periodic structural defects(PSDs) along a Bragg grating can shift the Bragg wavelength. This effect is theoretically analyzed and confirmed by numerical calculation. We find ... In this paper, we present the finding that periodic structural defects(PSDs) along a Bragg grating can shift the Bragg wavelength. This effect is theoretically analyzed and confirmed by numerical calculation. We find that the Bragg wavelength shift is determined by the defect size and the period of the defects. The Bragg wavelength can be well tuned by properly designing the PSDs, and this may provide an alternative method to fabricate grating-based multiwavelength devices, including optical filter arrays and laser arrays. In regards to wavelength precision, the proposed method has an advantage over the traditional methods, where the Bragg wavelengths are changed directly by changing the grating period. In addition, the proposed method can maintain grating strength when tuning the wavelength since only the period of defects is changed. This will be a benefit for devices such as arrays. 展开更多
关键词 Periodic structural defects in Bragg gratings and their application in multiwavelength devices RGS
原文传递
A Novel Ce3+/Tb3+ Codoped Phosphate Glass as Down-Shifting Materials for Enhancing Efficiency of Solar Cells
7
作者 何冬兵 于春雷 +2 位作者 程继盟 李顺光 胡丽丽 《Chinese Physics Letters》 SCIE CAS CSCD 2010年第11期103-106,共4页
For the purpose of improving conversion efficiency of solar cells by applying the effect of the wavelength conversion of rare earth ions, photo-luminescence and excitation spectrums of Ce3+-Tb3+ doped phosphate glas... For the purpose of improving conversion efficiency of solar cells by applying the effect of the wavelength conversion of rare earth ions, photo-luminescence and excitation spectrums of Ce3+-Tb3+ doped phosphate glass are investigated. Results show that incorporating Ce3+ ions to Tb3+-doped phosphate glass can greatly increase the absorption coefficient in the range 300-400 nm and then the energy transfer (ET) from Ce3+ to Tb3+ occurs. In addition, increasing Tb3+ concentration in Ce3+/Tb3+ co-doped phosphate glass can greatly enhance the ET efficiency and 545 nm emission intensity. This shows that Ce3+/Tb3+ co-doped phosphate glass would be a promising down-shifting material for enhancing the efficiency of solar cells. 展开更多
关键词 Condensed matter: electrical magnetic and optical Electronics and devices Condensed matter: structural mechanical & thermal
下载PDF
Structure optimization of organic light-emitting devices 被引量:1
8
作者 王洪 于军胜 +2 位作者 李璐 唐晓庆 蒋亚东 《Optoelectronics Letters》 EI 2009年第2期93-96,共4页
A triple layer organic light-emitting diode (OLED) with two heterostructure of indium-tin oxide (ITO)/N,N’-diphenyl-N, N’-bis(1-naphthyl) (1,1’-biphenyl)-4,4’-diamine (NPB)/2,9-dimethyl-4,7-diphenyl-1,10-phenanthr... A triple layer organic light-emitting diode (OLED) with two heterostructure of indium-tin oxide (ITO)/N,N’-diphenyl-N, N’-bis(1-naphthyl) (1,1’-biphenyl)-4,4’-diamine (NPB)/2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP)/ 8-Hydrox- yquinoline aluminum (Alq3)/Mg:Ag has been fabricated by using the vacuum deposition method. The influence of different film thickness of BCP layer on the performance of the OLEDs has been investigated. The results show that when the thickness of the BCP layer film gradually ranges from 0.1-4.0 nm, the electroluminescence (EL) spectra of the OLEDs shift from green to greenish-blue to blue, and the BCP layer acts as the role for the recombination region of charge carriers related to EL spectrum, which enhances the brightness and power efficiency. The power efficiency of the OLEDs reaches to as high as 7.3 lm/W. 展开更多
关键词 BCP OLEDS Structure optimization of organic light-emitting devices
原文传递
A titanium dioxide nanorod array as a high-affinity nano-bio interface of a microfluidic device for efficient capture of circulating tumor cells 被引量:3
9
作者 Jichuan Qiu Kun Zhao +7 位作者 Linlin Li Xin Yu Weibo Guo Shu Wang Xiaodi Zhang Caofeng Pan Zhong Lin Wang Hong Liu 《Nano Research》 SCIE EI CAS CSCD 2017年第3期776-784,共9页
Nanomaterials show promising opportunities to address clinical problems (such as insufficient capture of circulating tumor cells; CTCs) via the high surface area-to-volume ratio and high affinity for biological cell... Nanomaterials show promising opportunities to address clinical problems (such as insufficient capture of circulating tumor cells; CTCs) via the high surface area-to-volume ratio and high affinity for biological cells. However, how to apply these nanomaterials as a nano-bio interface in a microfluidic device for efficient CTC capture with high specificity remains a challenge. In the present work, we first found that a titanium dioxide (TiO2) nanorod array that can be conveniently prepared on multiple kinds of substrates has high affinity for tumor cells. Then, the TiO2 nanorod array was vertically grown on the surface of a microchannel with hexagonally patterned Si micropillars via a hydrothermal reaction, forming a new kind of a micro-nano 3D hierarchically structured microfluidic device. The vertically grown TiO2 nanorod array was used as a sensitive nano-bio interface of this 3D hierarchically structured microfluidic device, which showed high efficiency of CTC capture (76.7% ± 7.1%) in an artificial whole-blood sample. 展开更多
关键词 TiO2 nanorod array circulating tumor cell microfluidic device nano-bio interface 3D hierarchical structure
原文传递
Research on the temperature characteristic of Love wave device with structure of multi-waveguides used for gas sensor
10
作者 WANG Wen HOU Jiaoli +2 位作者 SHAO Xiuting LIU Minghua HE Shitang 《Chinese Journal of Acoustics》 2013年第4期345-356,共12页
This paper aimed at extracting optimal structural parameters for Love wave device with structure of multi-waveguides to improve its temperature stability. The theoretical model dealing with the Love wave propagation i... This paper aimed at extracting optimal structural parameters for Love wave device with structure of multi-waveguides to improve its temperature stability. The theoretical model dealing with the Love wave propagation in multi-waveguides was established first, the dispersion characteristic is depicted by the acoustic propagation theory of stratified media and boundary conditions. Combing with the dispersion characteristics and Tomar's method, the optimal structural parameters for the Love wave device with zero temperature coefficient were extracted, and confirmed by the following experimental results. Excellent temperature coefficient of the Love wave device with SU-8/SiO2 on ST-90°X quartz substrate was evaluated experimentally as only 2.16 ppm/℃, which agrees well with the calculated results. The optimized Love wave device is very promising in gas sensing application. 展开更多
关键词 wave Research on the temperature characteristic of Love wave device with structure of multi-waveguides used for gas sensor exp SiC
原文传递
Superelastic wire-shaped supercapacitor sustaining 850% tensile strain based on carbon nanotube@graphene fiber 被引量:7
11
作者 Huimin Wang Chunya Wang +6 位作者 Muqiang Jian Qi Wang Kailun Xia Zhe Yin Mingchao Zhang Xiaoping Liang Yingying Zhang 《Nano Research》 SCIE EI CAS CSCD 2018年第5期2347-2356,共10页
Stretchable and flexible supercapacitors are highly desired due to their many potential applications in wearable devices. However, it is challenging to fabricate supercapacitors that can withstand large tensile strain... Stretchable and flexible supercapacitors are highly desired due to their many potential applications in wearable devices. However, it is challenging to fabricate supercapacitors that can withstand large tensile strain while maintaining high performance. Herein, we report an ultra-stretchable wire-shaped supercapacitor based on carbon nanotube@graphene@MnO2 fibers wound around a superelastic core fiber. The supercapacitor can sustain tensile strain up to 850%, which is the highest value reported for this type of device to date, while maintaining stable electrochemical performance. The energy density of the supercapacitor is 3.37 mWh·cm^-3 at a power density of 54.0 mW·cm^-3. The results show that 82% of the specific capacitance is retained after 1,000 stretch-release cycles with strains of 700%, demonstrating the superior durability of the elastic supercapacitor and showcasing its potential application in ultra-stretchable flexible electronics. 展开更多
关键词 ultra-stretchable supercapacitor carbon nanotube fiber helix structure flexible energy device bionic
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部