We propose a novel computational framework that is capable of employing different time integration algorithms and different space discretized methods such as the Finite Element Method,particle methods,and other spatia...We propose a novel computational framework that is capable of employing different time integration algorithms and different space discretized methods such as the Finite Element Method,particle methods,and other spatial methods on a single body sub-dividedintomultiple subdomains.This is in conjunctionwithimplementing thewell known Generalized Single Step Single Solve(GS4)family of algorithms which encompass the entire scope of Linear Multistep algorithms that have been developed over the past 50 years or so and are second order accurate into the Differential Algebraic Equation framework.In the current state of technology,the coupling of altogether different time integration algorithms has been limited to the same family of algorithms such as theNewmarkmethods and the coupling of different algorithms usually has resulted in reduced accuracy in one or more variables including the Lagrange multiplier.However,the robustness and versatility of the GS4 with its ability to accurately account for the numerical shifts in various time schemes it encompasses,overcomes such barriers and allows a wide variety of arbitrary implicit-implicit,implicit-explicit,and explicit-explicit pairing of the various time schemes while maintaining the second order accuracy in time for not only all primary variables such as displacement,velocity and acceleration but also the Lagrange multipliers used for coupling the subdomains.By selecting an appropriate spatialmethod and time scheme on the area with localized phenomena contrary to utilizing a single process on the entire body,the proposed work has the potential to better capture the physics of a given simulation.The method is validated by solving 2D problems for the linear second order systems with various combination of spatial methods and time schemes with great flexibility.The accuracy and efficacy of the present work have not yet been seen in the current field,and it has shown significant promise in its capabilities and effectiveness for general linear dynamics through numerical examples.展开更多
Spot weld models are widely used in finite element analysis(FEA) of automotive body in white(BIW) to predict static,dynamic,durability and other characteristics of automotive BIW.However,few researches are done on...Spot weld models are widely used in finite element analysis(FEA) of automotive body in white(BIW) to predict static,dynamic,durability and other characteristics of automotive BIW.However,few researches are done on evaluation of the validity of these spot weld models in structural dynamic analysis of BIW.To evaluate the validity and accuracy of spot weld models in structural dynamic analysis of BIW,two object functions,error function and deviation function,are introduced innovatively.Modal analysis of Two-panel and Double-hat structures,which are the dominated structures in BIW,is conducted,and the values of these two object functions are obtained.Based on the values of object functions,the validity of these spot weld models are evaluated.It is found that the area contact method(ACM2) and weld element connection(CWELD) can give more precise prediction in modal analysis of these two classical structures,thus are more applicable to structural dynamic analysis of automotive BIW.Modal analysis of a classical BIW is performed,which further confirms this evaluation.The error function and deviation function proposed in this research can give guidance on the adaptability of spot weld models in structural dynamic analysis of BIW.And this evaluation method can also be adopted in evaluation of other finite element models in static,dynamic and other kinds of analysis for automotive structures.展开更多
The photophysics of 3-dimethylamino-2-methyl-propenal (DMAMP) after excitation to the S2 (ππ^*) electronic state was studied using the resonance Raman spectroscopy and complete active space self-consistent fiel...The photophysics of 3-dimethylamino-2-methyl-propenal (DMAMP) after excitation to the S2 (ππ^*) electronic state was studied using the resonance Raman spectroscopy and complete active space self-consistent field method calculations. The transition barriers of the ground state tautomerization reactions between DMAMP and its three isomers were determined at B3LYP/6-311++G(d,p) level of theory. The vibrational spectra were assigned. The A- band resonance Raman spectra were obtained in acetonitrile with excitation wavelengths in resonance with the first intense absorption band to probe the structural dynamics of DMAMP. The B3LYP-TD computation was carried out to determine the relative A-band resonance Raman intensities of the fundamental modes, and the result indicated that the vibronic-coupling existed in Franck-Condon region. Complete active space self-consistent field (CASSCF) calculations were carried out to determine the excitation energies of the lower-lying singlet and triplet excited states, the conical intersection points and the intersystem crossing points. The A-band short-time structural dynamics and the corresponding decay dynamics of DMAMP were obtained by analysis of the resonance Raman intensity pattern and CASSCF computations. It was found that a sudden de-conjugation between C1=O6 and C2=C3 occurred at the Franck-Condon region of the S2(ππ^*) state, while the enhancement of the conjugation interaction between C3 and N(CH3)2, and between C1 and C2 evolutions shortly after the wavepacket leaves away the Pranck-Condon region via the excited state charge redistribution. The de-conjugation interaction between C1=O6 and C2=C3 made the rotation of C3=N(CH3)2 group around the C2-C3 bond much easier, while the enhanced conjugation between C1 and C2, and between C3 and N(CH3)2 made the rotation around the C1-C2 bond and C3-N5 more difficult. It was revealed that the initial structural dynamics of DMAMP was predominantly towards the CI-I(S2/S0) point, while the opportunities towards either CI-2(S2/S0) or CI-3(S2/S0) point were negligible. Two decay channels of DMAMP from S2,FC(ππ^*) to So or Tl,min via various CIs and ISCs were proposed.展开更多
The precise time step integration method proposed for linear time-invariant homogeneous dynamic systems can provide precise numerical results that approach an exact solution at the integration points. However, difficu...The precise time step integration method proposed for linear time-invariant homogeneous dynamic systems can provide precise numerical results that approach an exact solution at the integration points. However, difficulty arises when the algorithm is used for non-homogeneous dynamic systems, due to the inverse matrix calculation and the simulation accuracy of the applied loading. By combining the Gaussian quadrature method and state space theory with the calculation technique of matrix exponential function in the precise time step integration method, a new modified precise time step integration method (e.g., an algorithm with an arbitrary order of accuracy) is proposed. In the new method, no inverse matrix calculation or simulation of the applied loading is needed, and the computing efficiency is improved. In particular, the proposed method is independent of the quality of the matrix H. If the matrix H is singular or nearly singular, the advantage of the method is remarkable. The numerical stability of the proposed algorithm is discussed and a numerical example is given to demonstrate the validity and efficiency of the algorithm.展开更多
The excited state structural dynamics of phenyl absorbing S2(A'), S3(A'), and S6(A') states were troseopy and complete active space self-consistent and the UV absorption bands were assigned on azide (PhN3) ...The excited state structural dynamics of phenyl absorbing S2(A'), S3(A'), and S6(A') states were troseopy and complete active space self-consistent and the UV absorption bands were assigned on azide (PhN3) after excitation to the light studied using the resonance Raman specfield calculations. The vibrational spectra the basis of the Fourier transform (FT)- Raman, FT-infrared measurements, the density-functional theory computations and the normal mode analysis. The A-, B-, and C-bands resonance Raman spectra in cyclohex- ane, acetonitrile, and methanol solvents were, respectively, obtained at 273.9, 252.7, 245.9, 228.7, 223.1, and 208.8 nm excitation wavelengths to probe the corresponding structural dynamics of PhN3. The results indicated that the structural dynamics in the S2 (A'), S3(A'), and S6(A') states were significantly different. The crossing points of the potential energy surfaces, S2S1(1) and S2S1(2), were predicted to play a key role in the low-lying excited state decay dynamics, in accordance with Kasha's rule, and NT=N8 dissociation. Two decay channels initiated from the Franck-Condon region of the S2(A') state were predicted: the radiative S2,min→S0 radiative decay and the S2→S1 internal conversion through the crossing points S2S1 (1)/S2S1(2).展开更多
A diagonal or lumped mass matrix is of great value for time-domain analysis of structural dynamic and wave propagation problems,as the computational efforts can be greatly reduced in the process of mass matrix inversi...A diagonal or lumped mass matrix is of great value for time-domain analysis of structural dynamic and wave propagation problems,as the computational efforts can be greatly reduced in the process of mass matrix inversion.In this study,the nodal quadrature method is employed to construct a lumped mass matrix for the Chebyshev spectral element method(CSEM).A Gauss-Lobatto type quadrature,based on Gauss-Lobatto-Chebyshev points with a weighting function of unity,is thus derived.With the aid of this quadrature,the CSEM can take advantage of explicit time-marching schemes and provide an efficient new tool for solving structural dynamic problems.Several types of lumped mass Chebyshev spectral elements are designed,including rod,beam and plate elements.The performance of the developed method is examined via some numerical examples of natural vibration and elastic wave propagation,accompanied by their comparison to that of traditional consistent-mass CSEM or the classical finite element method(FEM).Numerical results indicate that the proposed method displays comparable accuracy as its consistent-mass counterpart,and is more accurate than classical FEM.For the simulation of elastic wave propagation in structures induced by high-frequency loading,this method achieves satisfactory performance in accuracy and efficiency.展开更多
The sensitivity calculating formulas in structural dynamics was developed by utilizing the mathematical theorem and new definitions of sensitivities. So the singularity problem of sensitivity with repeated eigenvalues...The sensitivity calculating formulas in structural dynamics was developed by utilizing the mathematical theorem and new definitions of sensitivities. So the singularity problem of sensitivity with repeated eigenvalues is solved completely. To improve the computational efficiency, the reduction system is obtained based on Lanczos vectors. After incorporating the mathematical theory with the Lanczos algorithm, the approximate sensitivity solution can be obtained. A numerical example is presented to illustrate the performance of the method.展开更多
The precise integration method proposed for linear time-invariant homogeneous dynamic systems can provide accurate numerical results that approach an exact solution at integration points. However, difficulties arise w...The precise integration method proposed for linear time-invariant homogeneous dynamic systems can provide accurate numerical results that approach an exact solution at integration points. However, difficulties arise when the algorithm is used for non-homogeneous dynamic systems due to the inverse matrix calculation required. In this paper, the structural dynamic equalibrium equations are converted into a special form, the inverse matrix calculation is replaced by the Crout decomposition method to solve the dynamic equilibrium equations, and the precise integration method without the inverse matrix calculation is obtained. The new algorithm enhances the present precise integration method by improving both the computational accuracy and efficiency. Two numerical examples are given to demonstrate the validity and efficiency of the proposed algorithm.展开更多
A global interpolating meshless shape function based on the generalized moving least-square (GMLS) is formulated by the transformation technique. Both the shape function and its derivatives meet the Kronecker delta ...A global interpolating meshless shape function based on the generalized moving least-square (GMLS) is formulated by the transformation technique. Both the shape function and its derivatives meet the Kronecker delta function property. With the interpolating GMLS (IGMLS) shape function, an improved element-free Galerkin (EFG) method is proposed for the structural dynamic analysis. Compared with the conven- tional EFG method, the obvious advantage of the proposed method is that the essential boundary conditions including both displacements and derivatives can be imposed by the straightforward way. Meanwhile, it can greatly improve the ill-condition feature of the standard GMLS approximation, and provide good accuracy at low cost. The dynamic analyses of the Euler beam and Kirchhoff plate are performed to demonstrate the feasi- bility and effectiveness of the improved method. The comparison between the numerical results of the conventional method and the improved method shows that the proposed method has better stability, higher accuracy, and less time consumption.展开更多
The computation of the representative ground motions,to be used as input for the dynamic analyses of a struc- ture at a particular site,can be approached by several methods.The choice of the approach depends on two fa...The computation of the representative ground motions,to be used as input for the dynamic analyses of a struc- ture at a particular site,can be approached by several methods.The choice of the approach depends on two factors:the da- ta available and the type of problem to be solved.This paper reports the experience of the authors in approaching a specific case study:the Southern Memnon Colossus,located in Luxor,Egypt.The results are of interest when the hazard analysis estimation in developing countries and the safeguard of cultural heritage are concerned.Monuments have to be treated as important structures,due to their historical and economical value.Hence,standard procedures of probabilistic seismic haz- ard analysis for the seismic classification of common buildings have to be disregarded.On the other hand,the consequences of the collapse of a monument are not comparable to those related to structures such as nuclear power plants and large dams, for which the deterministic seismic hazard analysis provides a straightforward framework for evaluation of the worst case ground motions.An'intermediate'approach,which requites a lower amount of input data with respect to the deterministic one,is adopted.Its stochastic component can eapture significant eharacteristics of earthquakes,primarily the frequency contents which depend on the magnitude(often referred to as the earthquake scaling law).展开更多
Hydrogels show versatile properties and are of great interest in the fields of bioelectronics and tissue engineering.Understanding the dynamics of the water molecules trapped in the three-dimensional polymeric network...Hydrogels show versatile properties and are of great interest in the fields of bioelectronics and tissue engineering.Understanding the dynamics of the water molecules trapped in the three-dimensional polymeric networks of the hydrogels is crucial to elucidate their mechanical and swelling properties at the molecular level.In this report,the poly(DMAEMA-co-AA)hydrogels were synthesized and characterized by the macroscopic swelling measurements under different pH conditions.Furthermore,the microscopic structural dynamics of pH stimulus-responsive hydrogels were studied using FTIR and ultrafast IR spectroscopies from the viewpoint of the SCN-anionic solute as the local vibrational reporter.Ultrafast IR spectroscopic measurements showed the time constants of the vibrational population decay of SCN-were increased from 14±1 ps to 20±1 ps when the pH of the hydrogels varied from2.0 to 12.0.Rotational anisotropy measurements further revealed that the rotation of SCNanionic probe was restricted by the three-dimensional network formed in the hydrogels and the rotation of SCN-anionic probe cannot decay to zero especially at the pH of 7.0.These results are expected to provide a molecular-level understanding of the microscopic structure of the cross-linked polymeric network in the pH stimulus-responsive hydrogels.展开更多
A newly-developed numerical algorithm, which is called the new Generalized-α (G-α) method, is presented for solving structural dynamics problems with nonlinear stiffness. The traditional G-α method has undesired ...A newly-developed numerical algorithm, which is called the new Generalized-α (G-α) method, is presented for solving structural dynamics problems with nonlinear stiffness. The traditional G-α method has undesired overshoot properties as for a class of α-method. In the present work, seven independent parameters are introduced into the single-step three-stage algorithmic formulations and the nonlinear internal force at every time interval is approximated by means of the generalized trapezoidal rule, and then the algorithm is implemented based on the finite difference theory. An analysis on the stability, accuracy, energy and overshoot properties of the proposed scheme is performed in the nonlinear regime. The values or the ranges of values of the seven independent parameters are determined in the analysis process. The computational results obtained by the new algorithm show that the displacement accuracy is of order two, and the acceleration can also be improved to a second order accuracy by a suitable choice of parameters. Obviously, the present algorithm is zero- stable, and the energy conservation or energy decay can be realized in the high-frequency range, which can be regarded as stable in an energy sense. The algorithmic overshoot can be completely avoided by using the new algorithm without any constraints with respect to the damping force and initial conditions.展开更多
The structural dynamics problems,such as structural design,parameter identification and model correction,are considered as a kind of the inverse generalized eigenvalue problems mathematically.The inverse eigenvalue pr...The structural dynamics problems,such as structural design,parameter identification and model correction,are considered as a kind of the inverse generalized eigenvalue problems mathematically.The inverse eigenvalue problems are nonlinear.In general,they could be transformed into nonlinear equations to solve.The structural dynamics inverse problems were treated as quasi multiplicative inverse eigenalue problems which were solved by homotopy method for nonlinear equations.This method had no requirements for initial value essentially because of the homotopy path to solution.Numerical examples were presented to illustrate the homotopy method.展开更多
In order to achieve highly accurate and efficient numerical calculations of structural dynamics, time collocation method is presented. For a given time interval, the numerical solution of the method is approximated by...In order to achieve highly accurate and efficient numerical calculations of structural dynamics, time collocation method is presented. For a given time interval, the numerical solution of the method is approximated by a polynomial. The polynomial coefficients are evaluated by solving algebraic equation. Once the polynomial coefficients are evaluated, the numerical solutions at any time in the interval can be easily calculated. New formulae are derived for the polynomial coefficients,which are more practical and succinct than those previously given. Two structural dynamic equations are calculated by the proposed method. The numerical solutions are compared with the traditional fourth-order Runge-Kutta method. The results show that the method proposed is highly accurate and computationally efficient. In addition, an important advantage of the method is the simplicity in software programming.展开更多
In this article,an effective technique is developed to efficiently obtain the output responses of parameterized structural dynamic problems.This technique is based on the conception of reduced basis method and the usa...In this article,an effective technique is developed to efficiently obtain the output responses of parameterized structural dynamic problems.This technique is based on the conception of reduced basis method and the usage of linear interpolation principle.The original problem is projected onto the reduced basis space by linear interpolation projection,and subsequently an associated interpolation matrix is generated.To ensure the largest nonsingularity,the interpolation matrix needs to go through a timenode choosing process,which is developed by applying the angle of vector spaces.As a part of this technique,error estimation is recommended for achieving the computational error bound.To ensure the successful performance of this technique,the offline-online computational procedures are conducted in practical engineering.Two numerical examples demonstrate the accuracy and efficiency of the presented method.展开更多
The paper is to introduce a computational methodology that is based on ordinary differential equations (ODE) solver for the structural systems adopted by a super tall building in its preliminary design stage so as t...The paper is to introduce a computational methodology that is based on ordinary differential equations (ODE) solver for the structural systems adopted by a super tall building in its preliminary design stage so as to facilitate the designers to adjust the dynamic properties of the adopted structural system. The construction of the study is composed by following aspects. The first aspect is the modelling of a structural system. As a typical example, a mega frame-core-tube structural system adopted by some famous super tall buildings such as Taipei 101 building, Shanghai World financial center, is employed to demonstrate the modelling of a computational model. The second aspect is the establishment of motion equations constituted by a group of ordinary differential equations for the analyses of free vibration and resonant response. The solutions of the motion equations (that constitutes the third aspect) resorted to ODE-solver technique. Finally, some valuable conclusions are summarized.展开更多
Rolling stock manufacturers are finding structural solutions to reduce power required by the vehicles,and the lightweight design of the car body represents a possible solution.Optimization processes and innovative mat...Rolling stock manufacturers are finding structural solutions to reduce power required by the vehicles,and the lightweight design of the car body represents a possible solution.Optimization processes and innovative materials can be combined in order to achieve this goal.In this framework,we propose the redesign and optimization process of the car body roof for a light rail vehicle,introducing a sandwich structure.Bonded joint was used as a fastening system.The project was carried out on a single car of a modern tram platform.This preliminary numerical work was developed in two main steps:redesign of the car body structure and optimization of the innovated system.Objective of the process was the mass reduction of the whole metallic structure,while the constraint condition was imposed on the first frequency of vibration of the system.The effect of introducing a sandwich panel within the roof assembly was evaluated,focusing on the mechanical and dynamic performances of the whole car body.A mass saving of 63%on the optimized components was achieved,corresponding to a 7.6%if compared to the complete car body shell.In addition,a positive increasing of 17.7%on the first frequency of vibration was observed.Encouraging results have been achieved in terms of weight reduction and mechanical behaviour of the innovated car body.展开更多
The rapid development of modern science,technology,and industrialization has promoted the birth of more large and complex engineering structures.When the finite element(FE)method is used for dynamic analysis of these ...The rapid development of modern science,technology,and industrialization has promoted the birth of more large and complex engineering structures.When the finite element(FE)method is used for dynamic analysis of these structures,such as high-rise buildings,aircraft,and ships,the structural FE models often contain millions of degrees of freedom.This will lead to great hardware and computing costs,which is often unacceptable in the engineering field.Therefore,many FE model reduction technologies have been developed,among which dynamic condensation and component mode synthesis are the most widely used methods.This paper reviews the historical processes and general theoretical framework of these two main categories of FE model reduction technologies and briefly summarizes the latest applications of these methods in the engineering field.Current bottlenecks in dynamic condensation and component mode synthesis methods,as well as solutions found in literature,are also briefly discussed.Finally,this paper gives a conclusion and brief prospects for future research.This review aims to comprehensively introduce the two most widely used methods of FE model reduction technologies and hopes to provide suggestions and guidance for developing new model reduction technologies.展开更多
This paper introduces a new version of the open-source educational software, LESM (Linear Elements Structure Model), developed in MATLAB for structural analysis of one-dimensional models such as frames, trusses, and g...This paper introduces a new version of the open-source educational software, LESM (Linear Elements Structure Model), developed in MATLAB for structural analysis of one-dimensional models such as frames, trusses, and grillages. The updated program includes dynamic analysis, which incorporates inertial and damping effects, time-dependent load conditions, and a transient solver with multiple time integration schemes. The software assumes small displacements and linear-elastic material behavior. The paper briefly explains the theoretical basis for these developments and the reorganization of the source code using Object-Oriented Programming (OOP). The updated Graphical User Interface (GUI) allows interactive use of dynamic analysis features and displays new results such as animations, envelope diagrams of internal forces, phase portraits, and the response of degrees-of-freedom in time and frequency domain. The new version was used in a structural dynamics course, and new assignments were elaborated to improve students’ understanding of the subject.展开更多
Estimation of the dynamic stress in structures,such as beams and plates,has previously been made using the relationship between stress and velocity spatial maxima based on far-field assumptions.This paper presents a m...Estimation of the dynamic stress in structures,such as beams and plates,has previously been made using the relationship between stress and velocity spatial maxima based on far-field assumptions.This paper presents a method for the estimation of dynamic stress in a beam using Euler–Bernoulli beam theory,where deflection data from a grid of measurement points on the surface of the beam is used to estimate the dynamic bending stress in the structure.The limitations of the method are investigated via response data provided by a numerical model of a freefree beam.A nondimensional wavenumber analysis is used to determine the number of points required for an accurate estimate of stress.Beams with a range of material and geometric parameters are modeled in order to explore the limits of the estimation method,and parameters representative of several real-world materials are used to assess the suitability of the method for practical applications.展开更多
文摘We propose a novel computational framework that is capable of employing different time integration algorithms and different space discretized methods such as the Finite Element Method,particle methods,and other spatial methods on a single body sub-dividedintomultiple subdomains.This is in conjunctionwithimplementing thewell known Generalized Single Step Single Solve(GS4)family of algorithms which encompass the entire scope of Linear Multistep algorithms that have been developed over the past 50 years or so and are second order accurate into the Differential Algebraic Equation framework.In the current state of technology,the coupling of altogether different time integration algorithms has been limited to the same family of algorithms such as theNewmarkmethods and the coupling of different algorithms usually has resulted in reduced accuracy in one or more variables including the Lagrange multiplier.However,the robustness and versatility of the GS4 with its ability to accurately account for the numerical shifts in various time schemes it encompasses,overcomes such barriers and allows a wide variety of arbitrary implicit-implicit,implicit-explicit,and explicit-explicit pairing of the various time schemes while maintaining the second order accuracy in time for not only all primary variables such as displacement,velocity and acceleration but also the Lagrange multipliers used for coupling the subdomains.By selecting an appropriate spatialmethod and time scheme on the area with localized phenomena contrary to utilizing a single process on the entire body,the proposed work has the potential to better capture the physics of a given simulation.The method is validated by solving 2D problems for the linear second order systems with various combination of spatial methods and time schemes with great flexibility.The accuracy and efficacy of the present work have not yet been seen in the current field,and it has shown significant promise in its capabilities and effectiveness for general linear dynamics through numerical examples.
基金supported by National Natural Science Foundation of China(Grant No.10772060)Heilongjiang Provincial Natural Science Foundation with Excellent Young Investigators of China(GrantNo.JC2006-13)
文摘Spot weld models are widely used in finite element analysis(FEA) of automotive body in white(BIW) to predict static,dynamic,durability and other characteristics of automotive BIW.However,few researches are done on evaluation of the validity of these spot weld models in structural dynamic analysis of BIW.To evaluate the validity and accuracy of spot weld models in structural dynamic analysis of BIW,two object functions,error function and deviation function,are introduced innovatively.Modal analysis of Two-panel and Double-hat structures,which are the dominated structures in BIW,is conducted,and the values of these two object functions are obtained.Based on the values of object functions,the validity of these spot weld models are evaluated.It is found that the area contact method(ACM2) and weld element connection(CWELD) can give more precise prediction in modal analysis of these two classical structures,thus are more applicable to structural dynamic analysis of automotive BIW.Modal analysis of a classical BIW is performed,which further confirms this evaluation.The error function and deviation function proposed in this research can give guidance on the adaptability of spot weld models in structural dynamic analysis of BIW.And this evaluation method can also be adopted in evaluation of other finite element models in static,dynamic and other kinds of analysis for automotive structures.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.21033002 and No.21202032) and the National Basic Research Program of China (No.2013CB834604).
文摘The photophysics of 3-dimethylamino-2-methyl-propenal (DMAMP) after excitation to the S2 (ππ^*) electronic state was studied using the resonance Raman spectroscopy and complete active space self-consistent field method calculations. The transition barriers of the ground state tautomerization reactions between DMAMP and its three isomers were determined at B3LYP/6-311++G(d,p) level of theory. The vibrational spectra were assigned. The A- band resonance Raman spectra were obtained in acetonitrile with excitation wavelengths in resonance with the first intense absorption band to probe the structural dynamics of DMAMP. The B3LYP-TD computation was carried out to determine the relative A-band resonance Raman intensities of the fundamental modes, and the result indicated that the vibronic-coupling existed in Franck-Condon region. Complete active space self-consistent field (CASSCF) calculations were carried out to determine the excitation energies of the lower-lying singlet and triplet excited states, the conical intersection points and the intersystem crossing points. The A-band short-time structural dynamics and the corresponding decay dynamics of DMAMP were obtained by analysis of the resonance Raman intensity pattern and CASSCF computations. It was found that a sudden de-conjugation between C1=O6 and C2=C3 occurred at the Franck-Condon region of the S2(ππ^*) state, while the enhancement of the conjugation interaction between C3 and N(CH3)2, and between C1 and C2 evolutions shortly after the wavepacket leaves away the Pranck-Condon region via the excited state charge redistribution. The de-conjugation interaction between C1=O6 and C2=C3 made the rotation of C3=N(CH3)2 group around the C2-C3 bond much easier, while the enhanced conjugation between C1 and C2, and between C3 and N(CH3)2 made the rotation around the C1-C2 bond and C3-N5 more difficult. It was revealed that the initial structural dynamics of DMAMP was predominantly towards the CI-I(S2/S0) point, while the opportunities towards either CI-2(S2/S0) or CI-3(S2/S0) point were negligible. Two decay channels of DMAMP from S2,FC(ππ^*) to So or Tl,min via various CIs and ISCs were proposed.
基金financial support from Hunan Provincial Natura1 Science Foundation of China,Grant Number:02JJY2085,for this study
文摘The precise time step integration method proposed for linear time-invariant homogeneous dynamic systems can provide precise numerical results that approach an exact solution at the integration points. However, difficulty arises when the algorithm is used for non-homogeneous dynamic systems, due to the inverse matrix calculation and the simulation accuracy of the applied loading. By combining the Gaussian quadrature method and state space theory with the calculation technique of matrix exponential function in the precise time step integration method, a new modified precise time step integration method (e.g., an algorithm with an arbitrary order of accuracy) is proposed. In the new method, no inverse matrix calculation or simulation of the applied loading is needed, and the computing efficiency is improved. In particular, the proposed method is independent of the quality of the matrix H. If the matrix H is singular or nearly singular, the advantage of the method is remarkable. The numerical stability of the proposed algorithm is discussed and a numerical example is given to demonstrate the validity and efficiency of the algorithm.
基金This work is supported by the National Natural Science Foundation of China (No.21473163, No.21033002, No.21202032) and the National Basic Research Program of China (No.2013CB834604).
文摘The excited state structural dynamics of phenyl absorbing S2(A'), S3(A'), and S6(A') states were troseopy and complete active space self-consistent and the UV absorption bands were assigned on azide (PhN3) after excitation to the light studied using the resonance Raman specfield calculations. The vibrational spectra the basis of the Fourier transform (FT)- Raman, FT-infrared measurements, the density-functional theory computations and the normal mode analysis. The A-, B-, and C-bands resonance Raman spectra in cyclohex- ane, acetonitrile, and methanol solvents were, respectively, obtained at 273.9, 252.7, 245.9, 228.7, 223.1, and 208.8 nm excitation wavelengths to probe the corresponding structural dynamics of PhN3. The results indicated that the structural dynamics in the S2 (A'), S3(A'), and S6(A') states were significantly different. The crossing points of the potential energy surfaces, S2S1(1) and S2S1(2), were predicted to play a key role in the low-lying excited state decay dynamics, in accordance with Kasha's rule, and NT=N8 dissociation. Two decay channels initiated from the Franck-Condon region of the S2(A') state were predicted: the radiative S2,min→S0 radiative decay and the S2→S1 internal conversion through the crossing points S2S1 (1)/S2S1(2).
基金Supported by:Joint Research Fund for Earthquake Science,launched by the National Natural Science Foundation of China and the China Earthquake Administration under Grant No.U2039208。
文摘A diagonal or lumped mass matrix is of great value for time-domain analysis of structural dynamic and wave propagation problems,as the computational efforts can be greatly reduced in the process of mass matrix inversion.In this study,the nodal quadrature method is employed to construct a lumped mass matrix for the Chebyshev spectral element method(CSEM).A Gauss-Lobatto type quadrature,based on Gauss-Lobatto-Chebyshev points with a weighting function of unity,is thus derived.With the aid of this quadrature,the CSEM can take advantage of explicit time-marching schemes and provide an efficient new tool for solving structural dynamic problems.Several types of lumped mass Chebyshev spectral elements are designed,including rod,beam and plate elements.The performance of the developed method is examined via some numerical examples of natural vibration and elastic wave propagation,accompanied by their comparison to that of traditional consistent-mass CSEM or the classical finite element method(FEM).Numerical results indicate that the proposed method displays comparable accuracy as its consistent-mass counterpart,and is more accurate than classical FEM.For the simulation of elastic wave propagation in structures induced by high-frequency loading,this method achieves satisfactory performance in accuracy and efficiency.
文摘The sensitivity calculating formulas in structural dynamics was developed by utilizing the mathematical theorem and new definitions of sensitivities. So the singularity problem of sensitivity with repeated eigenvalues is solved completely. To improve the computational efficiency, the reduction system is obtained based on Lanczos vectors. After incorporating the mathematical theory with the Lanczos algorithm, the approximate sensitivity solution can be obtained. A numerical example is presented to illustrate the performance of the method.
文摘The precise integration method proposed for linear time-invariant homogeneous dynamic systems can provide accurate numerical results that approach an exact solution at integration points. However, difficulties arise when the algorithm is used for non-homogeneous dynamic systems due to the inverse matrix calculation required. In this paper, the structural dynamic equalibrium equations are converted into a special form, the inverse matrix calculation is replaced by the Crout decomposition method to solve the dynamic equilibrium equations, and the precise integration method without the inverse matrix calculation is obtained. The new algorithm enhances the present precise integration method by improving both the computational accuracy and efficiency. Two numerical examples are given to demonstrate the validity and efficiency of the proposed algorithm.
基金Project supported by the National Natural Science Foundation of China(No.11176035)
文摘A global interpolating meshless shape function based on the generalized moving least-square (GMLS) is formulated by the transformation technique. Both the shape function and its derivatives meet the Kronecker delta function property. With the interpolating GMLS (IGMLS) shape function, an improved element-free Galerkin (EFG) method is proposed for the structural dynamic analysis. Compared with the conven- tional EFG method, the obvious advantage of the proposed method is that the essential boundary conditions including both displacements and derivatives can be imposed by the straightforward way. Meanwhile, it can greatly improve the ill-condition feature of the standard GMLS approximation, and provide good accuracy at low cost. The dynamic analyses of the Euler beam and Kirchhoff plate are performed to demonstrate the feasi- bility and effectiveness of the improved method. The comparison between the numerical results of the conventional method and the improved method shows that the proposed method has better stability, higher accuracy, and less time consumption.
文摘The computation of the representative ground motions,to be used as input for the dynamic analyses of a struc- ture at a particular site,can be approached by several methods.The choice of the approach depends on two factors:the da- ta available and the type of problem to be solved.This paper reports the experience of the authors in approaching a specific case study:the Southern Memnon Colossus,located in Luxor,Egypt.The results are of interest when the hazard analysis estimation in developing countries and the safeguard of cultural heritage are concerned.Monuments have to be treated as important structures,due to their historical and economical value.Hence,standard procedures of probabilistic seismic haz- ard analysis for the seismic classification of common buildings have to be disregarded.On the other hand,the consequences of the collapse of a monument are not comparable to those related to structures such as nuclear power plants and large dams, for which the deterministic seismic hazard analysis provides a straightforward framework for evaluation of the worst case ground motions.An'intermediate'approach,which requites a lower amount of input data with respect to the deterministic one,is adopted.Its stochastic component can eapture significant eharacteristics of earthquakes,primarily the frequency contents which depend on the magnitude(often referred to as the earthquake scaling law).
基金supported by the National Natural Science Foundation of China(No.21873062)the Fundamental Research Funds for the Central Universities(GK202001009)+2 种基金the Natural Science Basis Research Plan in Shaanxi Province of China(No.2020JM-295)the 111 Project(B14041)Program for Changjiang Scholars and the Innovative Research Team in University(IRT-14R33)。
文摘Hydrogels show versatile properties and are of great interest in the fields of bioelectronics and tissue engineering.Understanding the dynamics of the water molecules trapped in the three-dimensional polymeric networks of the hydrogels is crucial to elucidate their mechanical and swelling properties at the molecular level.In this report,the poly(DMAEMA-co-AA)hydrogels were synthesized and characterized by the macroscopic swelling measurements under different pH conditions.Furthermore,the microscopic structural dynamics of pH stimulus-responsive hydrogels were studied using FTIR and ultrafast IR spectroscopies from the viewpoint of the SCN-anionic solute as the local vibrational reporter.Ultrafast IR spectroscopic measurements showed the time constants of the vibrational population decay of SCN-were increased from 14±1 ps to 20±1 ps when the pH of the hydrogels varied from2.0 to 12.0.Rotational anisotropy measurements further revealed that the rotation of SCNanionic probe was restricted by the three-dimensional network formed in the hydrogels and the rotation of SCN-anionic probe cannot decay to zero especially at the pH of 7.0.These results are expected to provide a molecular-level understanding of the microscopic structure of the cross-linked polymeric network in the pH stimulus-responsive hydrogels.
文摘A newly-developed numerical algorithm, which is called the new Generalized-α (G-α) method, is presented for solving structural dynamics problems with nonlinear stiffness. The traditional G-α method has undesired overshoot properties as for a class of α-method. In the present work, seven independent parameters are introduced into the single-step three-stage algorithmic formulations and the nonlinear internal force at every time interval is approximated by means of the generalized trapezoidal rule, and then the algorithm is implemented based on the finite difference theory. An analysis on the stability, accuracy, energy and overshoot properties of the proposed scheme is performed in the nonlinear regime. The values or the ranges of values of the seven independent parameters are determined in the analysis process. The computational results obtained by the new algorithm show that the displacement accuracy is of order two, and the acceleration can also be improved to a second order accuracy by a suitable choice of parameters. Obviously, the present algorithm is zero- stable, and the energy conservation or energy decay can be realized in the high-frequency range, which can be regarded as stable in an energy sense. The algorithmic overshoot can be completely avoided by using the new algorithm without any constraints with respect to the damping force and initial conditions.
文摘The structural dynamics problems,such as structural design,parameter identification and model correction,are considered as a kind of the inverse generalized eigenvalue problems mathematically.The inverse eigenvalue problems are nonlinear.In general,they could be transformed into nonlinear equations to solve.The structural dynamics inverse problems were treated as quasi multiplicative inverse eigenalue problems which were solved by homotopy method for nonlinear equations.This method had no requirements for initial value essentially because of the homotopy path to solution.Numerical examples were presented to illustrate the homotopy method.
基金Supported by Liu Hui Applied Mathematics Center of Nankai University-Tianjin University( No. H10124).
文摘In order to achieve highly accurate and efficient numerical calculations of structural dynamics, time collocation method is presented. For a given time interval, the numerical solution of the method is approximated by a polynomial. The polynomial coefficients are evaluated by solving algebraic equation. Once the polynomial coefficients are evaluated, the numerical solutions at any time in the interval can be easily calculated. New formulae are derived for the polynomial coefficients,which are more practical and succinct than those previously given. Two structural dynamic equations are calculated by the proposed method. The numerical solutions are compared with the traditional fourth-order Runge-Kutta method. The results show that the method proposed is highly accurate and computationally efficient. In addition, an important advantage of the method is the simplicity in software programming.
基金supported by the National Natural Science Foundation of China (10802028)the Major State Basic Research Development Program of China (2010CB832705)the National Science Fund for Distinguished Young Scholars (10725208)
文摘In this article,an effective technique is developed to efficiently obtain the output responses of parameterized structural dynamic problems.This technique is based on the conception of reduced basis method and the usage of linear interpolation principle.The original problem is projected onto the reduced basis space by linear interpolation projection,and subsequently an associated interpolation matrix is generated.To ensure the largest nonsingularity,the interpolation matrix needs to go through a timenode choosing process,which is developed by applying the angle of vector spaces.As a part of this technique,error estimation is recommended for achieving the computational error bound.To ensure the successful performance of this technique,the offline-online computational procedures are conducted in practical engineering.Two numerical examples demonstrate the accuracy and efficiency of the presented method.
基金Acknowledgment The research work was financially supported both by the Natural Science Foundation of China (51178164) and the Priority Discipline Foundation of Henan Province (507909).
文摘The paper is to introduce a computational methodology that is based on ordinary differential equations (ODE) solver for the structural systems adopted by a super tall building in its preliminary design stage so as to facilitate the designers to adjust the dynamic properties of the adopted structural system. The construction of the study is composed by following aspects. The first aspect is the modelling of a structural system. As a typical example, a mega frame-core-tube structural system adopted by some famous super tall buildings such as Taipei 101 building, Shanghai World financial center, is employed to demonstrate the modelling of a computational model. The second aspect is the establishment of motion equations constituted by a group of ordinary differential equations for the analyses of free vibration and resonant response. The solutions of the motion equations (that constitutes the third aspect) resorted to ODE-solver technique. Finally, some valuable conclusions are summarized.
文摘Rolling stock manufacturers are finding structural solutions to reduce power required by the vehicles,and the lightweight design of the car body represents a possible solution.Optimization processes and innovative materials can be combined in order to achieve this goal.In this framework,we propose the redesign and optimization process of the car body roof for a light rail vehicle,introducing a sandwich structure.Bonded joint was used as a fastening system.The project was carried out on a single car of a modern tram platform.This preliminary numerical work was developed in two main steps:redesign of the car body structure and optimization of the innovated system.Objective of the process was the mass reduction of the whole metallic structure,while the constraint condition was imposed on the first frequency of vibration of the system.The effect of introducing a sandwich panel within the roof assembly was evaluated,focusing on the mechanical and dynamic performances of the whole car body.A mass saving of 63%on the optimized components was achieved,corresponding to a 7.6%if compared to the complete car body shell.In addition,a positive increasing of 17.7%on the first frequency of vibration was observed.Encouraging results have been achieved in terms of weight reduction and mechanical behaviour of the innovated car body.
基金supported by grants from the National Natural Science Foundation of China(Grant No.11802069)China Postdoctoral Science Foundation(No.3236310534)Heilongjiang Provincial Postdoctoral Science Foun-dation(No.002020830603).
文摘The rapid development of modern science,technology,and industrialization has promoted the birth of more large and complex engineering structures.When the finite element(FE)method is used for dynamic analysis of these structures,such as high-rise buildings,aircraft,and ships,the structural FE models often contain millions of degrees of freedom.This will lead to great hardware and computing costs,which is often unacceptable in the engineering field.Therefore,many FE model reduction technologies have been developed,among which dynamic condensation and component mode synthesis are the most widely used methods.This paper reviews the historical processes and general theoretical framework of these two main categories of FE model reduction technologies and briefly summarizes the latest applications of these methods in the engineering field.Current bottlenecks in dynamic condensation and component mode synthesis methods,as well as solutions found in literature,are also briefly discussed.Finally,this paper gives a conclusion and brief prospects for future research.This review aims to comprehensively introduce the two most widely used methods of FE model reduction technologies and hopes to provide suggestions and guidance for developing new model reduction technologies.
文摘This paper introduces a new version of the open-source educational software, LESM (Linear Elements Structure Model), developed in MATLAB for structural analysis of one-dimensional models such as frames, trusses, and grillages. The updated program includes dynamic analysis, which incorporates inertial and damping effects, time-dependent load conditions, and a transient solver with multiple time integration schemes. The software assumes small displacements and linear-elastic material behavior. The paper briefly explains the theoretical basis for these developments and the reorganization of the source code using Object-Oriented Programming (OOP). The updated Graphical User Interface (GUI) allows interactive use of dynamic analysis features and displays new results such as animations, envelope diagrams of internal forces, phase portraits, and the response of degrees-of-freedom in time and frequency domain. The new version was used in a structural dynamics course, and new assignments were elaborated to improve students’ understanding of the subject.
文摘Estimation of the dynamic stress in structures,such as beams and plates,has previously been made using the relationship between stress and velocity spatial maxima based on far-field assumptions.This paper presents a method for the estimation of dynamic stress in a beam using Euler–Bernoulli beam theory,where deflection data from a grid of measurement points on the surface of the beam is used to estimate the dynamic bending stress in the structure.The limitations of the method are investigated via response data provided by a numerical model of a freefree beam.A nondimensional wavenumber analysis is used to determine the number of points required for an accurate estimate of stress.Beams with a range of material and geometric parameters are modeled in order to explore the limits of the estimation method,and parameters representative of several real-world materials are used to assess the suitability of the method for practical applications.