期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
Nonlinear Time History Analysis for the Different Column Orientations under Seismic Wave Synthetic Approach
1
作者 Mo Shi Peng Wang +1 位作者 Xiaoyan Xu Yeol Choi 《World Journal of Engineering and Technology》 2024年第3期587-616,共30页
The significant impact of earthquakes on human lives and the built environment underscores the extensive human and economic losses caused by structural collapses. Over the years, researchers have focused on improving ... The significant impact of earthquakes on human lives and the built environment underscores the extensive human and economic losses caused by structural collapses. Over the years, researchers have focused on improving seismic design to mitigate earthquake-induced damages and enhance structural performance. In this study, a specific reinforced concrete (RC) frame structure at Kyungpook National University, designed for educational purposes, is analyzed as a representative case. Utilizing SAP 2000, the research conducts a nonlinear time history analysis to assess the structural performance under seismic conditions. The primary objective is to evaluate the influence of different column section designs, while maintaining identical column section areas, on structural behavior. The study employs two distinct seismic waves from Abeno (ABN) and Takatori (TKT) for the analysis, comparing the structural performance under varying seismic conditions. Key aspects examined include displacement, base shear force, base moment, joint radians, and layer displacement angle. This research is anticipated to serve as a valuable reference for seismic restraint reinforcement work on RC buildings, enriching the methods used for evaluating structures through nonlinear time history analysis based on the synthetic seismic wave approach. 展开更多
关键词 Nonlinear Time History Analysis Nonlinear Dynamic Analysis Seismic Wave Synthetic Seismic Restraint RC Frame Structure Column Orientation
下载PDF
Influence of the column-to-beam flexural strength ratio on the failure mode of beam-column connections in RC frames 被引量:1
2
作者 Gong Maosheng Zuo Zhanxuan +2 位作者 Sun Jing He Riteng Zhao Yinan 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2021年第2期441-452,共12页
The column-to-beam flexural strength ratio(CBFSR)has been used in many seismic codes to achieve the strong column-weak beam(SCWB)failure mode in reinforced concrete(RC)frames,in which plastic hinges appear earlier in ... The column-to-beam flexural strength ratio(CBFSR)has been used in many seismic codes to achieve the strong column-weak beam(SCWB)failure mode in reinforced concrete(RC)frames,in which plastic hinges appear earlier in beams than in columns.However,seismic investigations show that the required limit of CBFSR in seismic codes usually cannot achieve the SCWB failure mode under strong earthquakes.This study investigates the failure modes of RC frames with different CBFSRs.Nine typical three-story RC frame models with different CBFSRs are designed in accordance with Chinese seismic codes.The seismic responses and failure modes of the frames are investigated through time-history analyses using 100 ground motion records.The results show that the required limit of the CBFSR that guarantees the SCWB failure mode depends on the beam-column connection type and the seismic intensity,and different types of beam-column connections exhibit different failure modes even though they are designed with the same CBFSR.Recommended CBFSRs are proposed for achieving the designed SCWB failure mode for different types of connections in RC frames under different seismic intensities.These results may provide some reference for further revisions of the SCWB design criterion in Chinese seismic codes. 展开更多
关键词 strong column-weak beam column-to-beam flexural strength ratio reinforced concrete frame structure beam-column connection failure mode
下载PDF
METHOD BASED ON DUAL-QUADRATIC PROGRAMMING FOR FRAME STRUCTURAL OPTIMIZATION WITH LARGE SCALE
3
作者 隋允康 杜家政 郭英乔 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第3期383-391,共9页
The optimality criteria (OC) method and mathematical programming (MP) were combined to found the sectional optimization model of frame structures. Different methods were adopted to deal with the different constrai... The optimality criteria (OC) method and mathematical programming (MP) were combined to found the sectional optimization model of frame structures. Different methods were adopted to deal with the different constraints. The stress constraints as local constraints were approached by zero-order approximation and transformed into movable sectional lower limits with the full stress criterion. The displacement constraints as global constraints were transformed into explicit expressions with the unit virtual load method. Thus an approximate explicit model for the sectional optimization of frame structures was built with stress and displacement constraints. To improve the resolution efficiency, the dual-quadratic programming was adopted to transform the original optimization model into a dual problem according to the dual theory and solved iteratively in its dual space. A method called approximate scaling step was adopted to reduce computations and smooth the iterative process. Negative constraints were deleted to reduce the size of the optimization model. With MSC/Nastran software as structural solver and MSC/Patran software as developing platform, the sectional optimization software of frame structures was accomplished, considering stress and displacement constraints. The examples show that the efficiency and accuracy are improved. 展开更多
关键词 frame structures sectional optimization dual-quadratic programming approximate scaling step deletion of negative constraints
下载PDF
Research on Seismic Design of High-Rise Buildings Based on Framed-Shear Structural System
4
作者 Wei Wang 《Frontiers Research of Architecture and Engineering》 2020年第3期87-90,共4页
Under the rapidly advancing economic trends,people’s requirements for the functionality and architectural artistry of high-rise structures are constantly increasing,and in order to meet such modern requirements,it is... Under the rapidly advancing economic trends,people’s requirements for the functionality and architectural artistry of high-rise structures are constantly increasing,and in order to meet such modern requirements,it is necessary to diversify the functions of high-rise buildings and complicate the building form.At present,the main structural systems of high-rise buildings are:frame structure,shear wall structure,frame shear structure,and tube structure.Different structural systems determine the size of the load-bearing capacity,lateral stiffness,and seismic performance,as well as the amount of material used and the cost.This project is mainly concerned with the seismic design of frame shear structural systems,which are widely used today. 展开更多
关键词 Frame shear wall structure Displacement-based seismic design Shear deformation
下载PDF
Experimental and Numerical Study on Progressive Collapse Analysis of a Glulam Frame Structure:I.Side Column Exposed to Fire
5
作者 Xiaowu Cheng Xinyan Tao Lu Wang 《Journal of Renewable Materials》 SCIE EI 2023年第2期905-920,共16页
This paper presents experimental and numerical investigations on progressive collapse behavior of a two-story glulam frame when the side column is exposed to ISO834 standard fire.The collapse mechanism initiated by fi... This paper presents experimental and numerical investigations on progressive collapse behavior of a two-story glulam frame when the side column is exposed to ISO834 standard fire.The collapse mechanism initiated by fire is identified.The experimental results show that the progressive collapse of a glulam frame could be described for three stages,namely bending effect stage,catenary effect stage and failure stage,respectively.These stages are discussed in detail to understand the structural behavior before and during collapse.It is demonstrated that the entire frame slopes towards the side of the heated column,and the“overturning”collapse occurs eventually.The catenary effect of beams is the main reason for the progressive collapse of the frame.In addition,a finite element model of a glulam frame is established to simulate the progressive collapse behavior.The effects of axial loads on the columns are summarized.The numerical simulation results agree well with the experimental results,which could verify the effectiveness and practicability of finite element simulation.Furthermore,the progressive collapse resistance of the frame in practical design were proposed. 展开更多
关键词 COLLAPSE glulam frame structure FIRE failure mechanisms
下载PDF
Selection and modification of ground motion records using Newmark-Hall spectrum as target spectrum for long-period structures
6
作者 Fu Jianyu Wang Dongsheng +1 位作者 Zhang Rui Chen Xiaoyu 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第1期117-134,共18页
Input ground motions have significant impacts on the uncertainty of structural responses in time-history analysis.In this study,records were selected and scaled for the evaluation of mean structural responses accordin... Input ground motions have significant impacts on the uncertainty of structural responses in time-history analysis.In this study,records were selected and scaled for the evaluation of mean structural responses according to the target spectrum.The Newmark-Hall spectrum is closely related to seismic response of short,medium and long-period structures,so it was taken as the target spectrum here.The nonlinear time-history analyses of 9-story and 20-story steel moment-resisting frame structures were carried out as examples.They represent medium and long-period buildings,respectively.Three target spectra with risk of 50%,10%and 2%probabilities for exceedance in 50 years were calculated by the average Newmark-Hall spectrum method for three ground motion sets developed in the SAC Steel Project.The predicted structural mean responses of these Newmark-Hall spectra were compared with those calculated by the average spectral acceleration method for the same record set.It is found that both methods have similar accuracy for estimating the structural mean response.However,the method proposed herein is more effective in reducing the variability of the structural responses.Also,the proposed method is more advantageous for the time-history analysis of long-period structures or structures with more severe nonlinear responses under strong seismic excitations. 展开更多
关键词 time-history analysis selection and modification of ground motions target spectrum Newmark-Hall spectrum steel moment resisting frame structure
下载PDF
Response Spectrum Analysis of 7-story Assembled Frame Structure with Energy Dissipation System
7
作者 Jin Zhao Yi Wang Zhengwei Ma 《Structural Durability & Health Monitoring》 EI 2023年第2期159-173,共15页
Viscoelastic damper is an effective passive damping device,which can reduce the seismic response of the structure by increasing the damping and dissipating the vibration energy of structures.It has a wide application ... Viscoelastic damper is an effective passive damping device,which can reduce the seismic response of the structure by increasing the damping and dissipating the vibration energy of structures.It has a wide application prospect in actual structural vibration control because of simple device and economical material.In view of the poor seismic behaviors of assembled frame structure connections,various energy dissipation devices are proposed to improve the seismic performance.The finite element numerical analysis method is adopted to analyze relevant energy dissipation structural parameters.The response spectrum of a 7-story assembled frame structure combined the ordinary steel support,ordinary viscoelastic damper,and viscoelastic damper with displacement amplification device is analyzed.The analysis results show that the mechanical behavior of assembled frame structure with ordinary steel supports are not significantly different from those without energy dissipation devices.The assembled frame structure with viscoelastic damper has better seismic performance and energy dissipation,especially for the viscoelastic damper with displacement amplification devices.The maximum value of inter-story displacement angle decreases by 32.24%;the maximum floor displacement decreases by 31.91%,and the base shear decreases by 13.62%compared with the assembled frame structures without energy dissipation devices.The results show that the seismic fortification ability of the structure is significantly improved,and the overall structure is more uniformly stressed.The damping structure with viscoelastic damper mainly reduces the dynamic response of the structure by increasing the damping coefficient,rather than by changing the natural vibration period of the structure.This paper provides an effective theoretical basis and reference for improving the energy dissipation system and the seismic performance of assembled frame structures. 展开更多
关键词 Assembled frame structure energy dissipation devices response spectrum analysis viscoelastic damper
下载PDF
Discussion on Construction Technology and Welding Deformation of High-Rise Steel Frame Structure
8
作者 Sijin He Xinzhong Leng 《Journal of World Architecture》 2023年第5期23-28,共6页
Because of urbanization,land resources in China’s cities has become increasingly scarce.Therefore,modern buildings are becoming taller,making high-rise steel frame structures the new favorite of the construction indu... Because of urbanization,land resources in China’s cities has become increasingly scarce.Therefore,modern buildings are becoming taller,making high-rise steel frame structures the new favorite of the construction industry.However,the construction of high-rise steel frame structures requires advanced technology.If the construction technology is effectively implemented and the welding techniques of the construction personnel align with the requirements for high-rise steel frame structures,it can help mitigate deformations in the steel structure,thus preserving the overall construction quality of high-rise steel frame structures.To enhance the applicability of steel frame structures in high-rise buildings,this paper focuses on analyzing the optimization path for the construction process of high-rise steel frame structures.It introduces a tailored approach to control welding-induced deformations in steel frame structures,aiming to make a valuable contribution to the advancement of China’s construction industry. 展开更多
关键词 High-rise steel frame structure Construction technology Welding deformation structural stability
下载PDF
MODAL PARAMETERS EXTRACTION WITH CROSS CORRELATION FUNCTION AND CROSS POWER SPECTRUM UNDER UNKNOWN EXCITATION 被引量:1
9
作者 郑敏 申凡 +1 位作者 陈怀海 鲍明 《Chinese Journal of Aeronautics》 SCIE EI CSCD 2000年第1期19-23,共5页
In most of real operational conditions only response data are measurable while the actual excitations are unknown, so modal parameter must be extracted only from responses. This paper gives a theoretical formulation f... In most of real operational conditions only response data are measurable while the actual excitations are unknown, so modal parameter must be extracted only from responses. This paper gives a theoretical formulation for the cross-correlation functions and cross-power spectra between the outputs under the assumption of white-noise excitation. It widens the field of modal analysis under ambient excitation because many classical methods by impulse response functions or frequency response functions can be used easily for modal analysis under unknown excitation. The Polyreference Complex Exponential method and Eigensystem Realization Algorithm using cross-correlation functions in time domain and Orthogonal Polynomial method using cross-power spectra in frequency domain are applied to a steel frame to extract modal parameters under operational conditions. The modal properties of the steel frame from these three methods are compared with those from frequency response functions analysis. The results show that the modal analysis method using cross-correlation functions or cross-power spectra presented in this paper can extract modal parameters efficiently under unknown excitation. 展开更多
关键词 Algorithms Correlation methods Dynamic response Eigenvalues and eigenfunctions Frequency domain analysis Functions Modal analysis Parameter estimation structural frames Time domain analysis Vibrations (mechanical) White noise
下载PDF
Modeling and inferring 2.1D sketch with mixed Markov random field
10
作者 Anlong Ming Yu Zhou Tianfu Wu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第2期361-373,共13页
This paper presents a method of computing a 2.1D sketch (i.e., layered image representation) from a single image with mixed Markov random field (MRF) under the Bayesian framework. Our model consists of three layers: t... This paper presents a method of computing a 2.1D sketch (i.e., layered image representation) from a single image with mixed Markov random field (MRF) under the Bayesian framework. Our model consists of three layers: the input image layer, the graphical representation layer of the computed 2D atomic regions and 3-degree junctions (such as T or arrow junctions), and the 2.1D sketch layer. There are two types of vertices in the graphical representation of the 2D entities: (i) regions, which act as the vertices found in traditional MRF, and (ii) address variables assigned to the terminators decomposed from the 3-degree junctions, which are a new type of vertices for the mixed MRF. We formulate the inference problem as computing the 2.1D sketch from the 2D graphical representation under the Bayesian framework, which consists of two components: (i) region layering/coloring based on the Swendsen-Wang cuts algorithm, which infers partial occluding order of regions, and (ii) address variable assignments based on Gibbs sampling, which completes the open bonds of the terminators of the 3-degree junctions. The proposed method is tested on the D-Order dataset, the Berkeley segmentation dataset and the Stanford 3D dataset. The experimental results show the efficiency and robustness of our approach. © 2017 Beijing Institute of Aerospace Information. 展开更多
关键词 Graphic methods Image segmentation Inference engines Markov processes structural frames
下载PDF
Independent continuous mapping for topological optimization of frame structures 被引量:10
11
作者 Yunkang Sui Jiazheng Du Yingqiao Guo 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第6期611-619,共9页
Based on the Independent Continuous Mapping method (ICM), a topological optimization model with continuous topological variables is built by introducing three filter functions for element weight, element allowable s... Based on the Independent Continuous Mapping method (ICM), a topological optimization model with continuous topological variables is built by introducing three filter functions for element weight, element allowable stress and element stiffness, which transform the 0-1 type discrete topological variables into continuous topological variables between 0 and 1. Two methods for the filter functions are adopted to avoid the structural singularity and recover falsely deleted elements: the weak material element method and the tiny section element method. Three criteria (no structural singularity, no violated constraints and no change of structural weight) are introduced to judge iteration convergence. These criteria allow finding an appropriate threshold by adjusting a discount factor in the iteration procedure. To improve the efficiency, the original optimization model is transformed into a dual problem according to the dual theory and solved in its dual space. By using MSC/Nastran as the structural solver and MSC/Patran as the developing platform, a topological optimization software of frame structures is accomplished. Numerical examples show that the ICM method is very efficient for the topological optimization of frame structures. 展开更多
关键词 Frame structures Topological optimization ICM method Filter functions Element elimination
下载PDF
Evaluation of collapse resistance of RC frame structures for Chinese schools in seismic design categories B and C 被引量:8
12
作者 Tang Baoxin Lu Xinzheng +1 位作者 Ye Lieping Shi Wei 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2011年第3期369-377,共9页
According to the Code for Seismic Design of Buildings (GB50011-2001), ten typical reinforced concrete (RC) frame structures, used as school classroom buildings, are designed with different seismic fortification in... According to the Code for Seismic Design of Buildings (GB50011-2001), ten typical reinforced concrete (RC) frame structures, used as school classroom buildings, are designed with different seismic fortification intensities (SFIs) (SFI=6 to 8.5) and different seismic design categories (SDCs) (SDC=B and C). The collapse resistance of the frames with SDC=B and C in terms of collapse fragility curves are quantitatively evaluated and compared via incremental dynamic analysis (IDA). The results show that the collapse resistance of structures should be evaluated based on both the absolute seismic resistance and the corresponding design seismic intensity. For the frames with SFI from 6 to 7.5, because they have relatively low absolute seismic resistance, their collapse resistance is insufficient even when their corresponding SDCs are upgraded from B to C. Thus, further measures are needed to enhance these structures, and some suggestions are proposed. 展开更多
关键词 RC frame structures collapse resistance fragility curves seismic fortification intensity incremental dynamic analysis mega-earthquake
下载PDF
Investigation on seismic response of a three-stage soil slope supported by anchor frame structure 被引量:5
13
作者 LIN Yu-liang LI Ying-xin +1 位作者 ZHAO Lian-heng YANG T Y 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第4期1290-1305,共16页
Based on a typical prototype of a soil slope in engineering practice, a numerical model of a three-stage soil slope supported by the anchor frame structure was established by means of FLAC3D code. The dynamic response... Based on a typical prototype of a soil slope in engineering practice, a numerical model of a three-stage soil slope supported by the anchor frame structure was established by means of FLAC3D code. The dynamic responses of three-stage soil slope and frame structure were studied by performing a series of bidirectional Wenchuan motions in terms of the failure mode of three-stage structure, the acceleration of soil slope, the displacement of frame structure, and the anchor stress of frame structure. The response accelerations in both horizontal and vertical directions are the most largely amplified at the slope top of each stage subjected to different shaking cases. The platforms among the stages reduce the amplification effect of response acceleration. The residual displacement of frame structure increases significantly as the intensity of shaking case increases. The frame structure at each stage presents a combined displacement mode consisting of a translation and a rotation around the vertex. The anchor stress of frame structure is mainly increased by the first intense pulse of Wenchuan seismic wave, and it is sensitive to the intensity of shaking case. The anchor stress of frame structure at the first stage is the most considerably enlarged by earthquake loading. 展开更多
关键词 three-stage soil slope anchor frame structure ACCELERATION DISPLACEMENT anchor stress
下载PDF
Self-centering seismic retrofit scheme for reinforced concrete frame structures:SDOF system study 被引量:4
14
作者 Yunfeng Zhang and Xiaobin Hu Department of Civil and Environmental Engineering,University of Maryland,College Park,MD 20742,USA 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第2期271-283,共13页
This paper presents the results of a parametric study of self-centering seismic retrofit schemes for reinforced concrete (RC) frame buildings. The self-centering retrofit system features flag-shaped hysteresis and min... This paper presents the results of a parametric study of self-centering seismic retrofit schemes for reinforced concrete (RC) frame buildings. The self-centering retrofit system features flag-shaped hysteresis and minimal residual deformation. For comparison purpose,an alternate seismic retrofit scheme that uses a bilinear-hysteresis retrofit system such as buckling-restrained braces (BRB) is also considered in this paper. The parametric study was carried out in a single-degree-of-freedom (SDOF) system framework since a multi-story building structure may be idealized as an equivalent SDOF system and investigation of the performance of this equivalent SDOF system can provide insight into the seismic response of the multi-story building. A peak-oriented hysteresis model which can consider the strength and stiffness degradation is used to describe the hysteretic behavior of RC structures. The parametric study involves two key parameters -the strength ratio and elastic stiffness ratio between the seismic retrofit system and the original RC frame. An ensemble of 172 earthquake ground motion records scaled to the design basis earthquake in California with a probability of exceedance of 10% in 50 years was constructed for the simulation-based parametric study. The effectiveness of the two seismic retrofit schemes considered in this study is evaluated in terms of peak displacement ratio,peak acceleration ratio,energy dissipation demand ratio and residual displacement ratio between the SDOF systems with and without retrofit. It is found from this parametric study that RC structures retrofitted with the self-centering retrofit scheme (SCRS) can achieve a seismic performance level comparable to the bilinear-hysteresis retrofit scheme (BHRS) in terms of peak displacement and energy dissipation demand ratio while having negligible residual displacement after earthquake. 展开更多
关键词 EARTHQUAKE reinforced concrete frame structure nonlinear analysis SDOF system seismic retrofit SELF-CENTERING
下载PDF
Numerical Simulation of Dynamic Response and Collapse for Steel Frame Structures Subjected to Blast Load 被引量:4
15
作者 张秀华 段忠东 张春巍 《Transactions of Tianjin University》 EI CAS 2008年第B10期523-529,共7页
The progressive collapse of steel frame structures under the blast load was investigated using LS-DYNA. The multi-material Eulerian and Lagrangian coupling algorithm was adopted. A flu-id-structure coupling finite ele... The progressive collapse of steel frame structures under the blast load was investigated using LS-DYNA. The multi-material Eulerian and Lagrangian coupling algorithm was adopted. A flu-id-structure coupling finite element model was established which consists of Lagrange element for simulating steel frame structures and concrete ground, multiple ALE element for simulating air and TNT explosive material. Numerical simulations of the blast pressure wave propagation, struc-tural dynamic responses and deformation, and progressive collapse of a five-story steel frame structure in the event of an explosion near above ground were performed. The numerical analysis showed that the Lagrangian and Eulerian coupling algorithm gave good simulations of the shock wave propagation in the mediums and blast load effects on the structure. The columns subjected to blast load may collapse by shear yielding rather than by flexural deformation. The columns and joints of steel beam to column in the front steel frame structure generated enormous plastic defor-mation subjected to intensive blast waves, and columns lost carrying capacity, subsequently lead-ing to the collapse of the whole structure. The approach coupling influence between struc-tural deformation and fluid load well simulated the progressive collapse process of structures, and provided an effective tool for analyzing the collapse mechanism of the steel frame structure under blast load. 展开更多
关键词 blast load progressive collapse steel frame structures numerical simulation finite element
下载PDF
ANALYSIS OF MATERIAL MECHANICAL PROPERTIES FOR SINGLE-WALLED CARBON NANOTUBES 被引量:6
16
作者 FuYiming XuXiaoxian 《Acta Mechanica Solida Sinica》 SCIE EI 2005年第1期46-51,共6页
Abstract The carbon-carbon bond between two nearest-neighboring atoms is mod- eled as a beam and the single-walled carbon nanotubes are treated as the space frame structures in order to analyze the mechanical properti... Abstract The carbon-carbon bond between two nearest-neighboring atoms is mod- eled as a beam and the single-walled carbon nanotubes are treated as the space frame structures in order to analyze the mechanical properties of carbon nanotubes. Based on the theory of Tersof- Brenner force feld, the energy relationships between the carbon-carbon bond and the beam model are obtained, and the stifness parameters of the beam are determined. By applying the present model, the Young’s moduli of the single-walled carbon nanotubes with diferent tube diameters are determined. And the present results are compared with available data. 展开更多
关键词 single-walled carbon nanotube (carbon SWNT) space frame structure Tersof- Brenner force feld Young’s modulus
下载PDF
Seismic performance analysis and design suggestion for frame buildings with cast-in-place staircases 被引量:2
17
作者 Feng Yuan Wu Xiaobin +2 位作者 Xiong Yaoqing Li Congchun Yang Wen 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第2期209-219,共11页
Many staircases in reinforced concrete (RC) frame structures suffered severe damage during the Wenchuan earthquake. Elastic analyses for 18 RC structure models with and without staircases are conducted and compared ... Many staircases in reinforced concrete (RC) frame structures suffered severe damage during the Wenchuan earthquake. Elastic analyses for 18 RC structure models with and without staircases are conducted and compared to study the influence of the staircase on the stiffness, displacements and internal forces of the structures. To capture the yielding development and damage mechanism of frame structures, elasto-plastic analysis is carried out for one of the 18 models. Based on the features observed in the analyses, a new type of staircase design i.e., isolating them from the master structure to eliminate the effect of K-type struts, is proposed and discussed. It is concluded that the proposed method of staircase isolation is effective and feasible for engineering design, and does not significantly increase the construction cost. 展开更多
关键词 cast-in-place staircases frame structure seismic performance design suggestions
下载PDF
Study of the seismic response of a recycled aggregate concrete frame structure 被引量:2
18
作者 Wang Changqing Xiao Jianzhuang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第4期669-680,共12页
Based on six-degree-of-freedom three-dimensional shaking table tests, the seismic response of a recycled aggregate concrete (RAC) frame was obtained. The analysis results indicate that the maximum story shear force ... Based on six-degree-of-freedom three-dimensional shaking table tests, the seismic response of a recycled aggregate concrete (RAC) frame was obtained. The analysis results indicate that the maximum story shear force and overturning moment reduce proportionally along the height of the model under the same earthquake wave. The story shear force, base shear coefficient and overturning moment of the structure increase progressively as the acceleration amplitude increases. The base shear coefficient is primarily controlled by the peak ground acceleration (PGA). The relationships between the PGA and the shear coefficient as well as between the PGA and the dynamic amplification factor are obtained by mathematical fitting. The dynamic amplification factor decreases rapidly at the elastic-plastic stage, but decreases slowly with the development of the elastic-plasticity stage. The results show that the RAC frame structure has reasonable deformability when compared with natural aggregate concrete frame structures. The maximum inter-story drift ratios of the RAC frame model under frequent and rare intensity 8 test phases are 1/266 and 1/29, respectively, which are larger than the allowable value of 1/500 and 1/50 according to Chinese seismic design requirements. Nevertheless, the RAC frame structure does not collapse under base excitations with PGAs from 0.066 g up to 1.170 g. 展开更多
关键词 recycled aggregate concrete (RAC) frame structure seismic response shear coefficient dynamicamplification factor
下载PDF
Method of reverberation ray matrix for static analysis of planar framed structures composed of anisotropic Timoshenko beam members 被引量:2
19
作者 Jiao ZHANG Guohua NIE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第2期233-242,共10页
Based on the method of reverberation ray matrix(MRRM), a reverberation matrix for planar framed structures composed of anisotropic Timoshenko(T) beam members containing completely hinged joints is developed for st... Based on the method of reverberation ray matrix(MRRM), a reverberation matrix for planar framed structures composed of anisotropic Timoshenko(T) beam members containing completely hinged joints is developed for static analysis of such structures.In the MRRM for dynamic analysis, amplitudes of arriving and departing waves for joints are chosen as unknown quantities. However, for the present case of static analysis, displacements and rotational angles at the ends of each beam member are directly considered as unknown quantities. The expressions for stiffness matrices for anisotropic beam members are developed. A corresponding reverberation matrix is derived analytically for exact and unified determination on the displacements and internal forces at both ends of each member and arbitrary cross sectional locations in the structure. Numerical examples are given and compared with the finite element method(FEM) results to validate the present model. The characteristic parameter analysis is performed to demonstrate accuracy of the present model with the T beam theory in contrast with errors in the usual model based on the Euler-Bernoulli(EB) beam theory. The resulting reverberation matrix can be used for exact calculation of anisotropic framed structures as well as for parameter analysis of geometrical and material properties of the framed structures. 展开更多
关键词 planar framed structure ANISOTROPIC Timenshenko(T) beam stiffness matrix method of reverberation ray matrix(MRRM) static analysis
下载PDF
Concurrent multi-scale design optimization of composite frame structures using the Heaviside penalization of discrete material model 被引量:6
20
作者 Jun Yan Zunyi Duan +1 位作者 Erik Lund Guozhong Zhao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第3期430-441,共12页
This paper deals with the concurrent multi-scale optimization design of frame structure composed of glass or carbon fiber reinforced polymer laminates. In the composite frame structure, the fiber winding angle at the ... This paper deals with the concurrent multi-scale optimization design of frame structure composed of glass or carbon fiber reinforced polymer laminates. In the composite frame structure, the fiber winding angle at the micro-material scale and the geometrical parameter of components of the frame in the macro-structural scale are introduced as the independent variables on the two geometrical scales. Considering manufacturing requirements, discrete fiber winding angles are specified for the micro design variable. The improved Heaviside penalization discrete material optimization interpolation scheme has been applied to achieve the discrete optimization design of the fiber winding angle. An optimization model based on the minimum structural compliance and the specified fiber material volume constraint has been established. The sensitivity information about the two geometrical scales design variables are also deduced considering the characteristics of discrete fiber winding angles. The optimization results of the fiber winding angle or the macro structural topology on the two single geometrical scales, together with the concurrent two-scale optimization, is separately studied and compared in the paper. Numerical examples in the paper show that the concurrent multi-scale optimization can further explore the coupling effect between the macro-structure and micro-material of the composite to achieve an ultralight design of the composite frame structure. The novel two geometrical scales optimization model provides a new opportunity for the design of composite structure in aerospace and other industries. 展开更多
关键词 Composite frame structure Multi-scale optimization Topology optimization Fiber winding angle structural compliance
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部