Superconducting transition temperature(Tc),as a crucial parameter,exploring its relationship with various macroscopic and microscopic factors helps to understand the mechanism of high-temperature superconductivity fro...Superconducting transition temperature(Tc),as a crucial parameter,exploring its relationship with various macroscopic and microscopic factors helps to understand the mechanism of high-temperature superconductivity from multiple perspectives,aiding in a multidimensional comprehension of high-temperature superconductivity mechanisms.Drawing inspiration from the block-layer structure models of cuprate superconductors,we computationally investigated the interlayer interaction energies in the 12442-type iron-based superconducting materials AkCa_(2)Fe_(4)As_(4)F_(2)(Ak=K,Rb,Cs)systems based on the block-layer model and explored their relationship with Tc.We observed that an increase in interlayer combinative energy leads to a decrease in Tc,while conversely,a decrease in interlayer combination energy results in an increase in Tc.Further,we found that the contribution of the Fe 3d band structure,especially the 3dz2 orbital,to charge transfer is significant.展开更多
In order to find the main factors that influence the urban traffic structure,a relational model between the travelers' characteristics and the trip mode choice is built.The data of urban residents' characteristics a...In order to find the main factors that influence the urban traffic structure,a relational model between the travelers' characteristics and the trip mode choice is built.The data of urban residents' characteristics are obtained from statistical data,while the trip mode split data is collected through a trip survey in Bengbu.In addition,the discrete choice model is adopted to build the functional relationship between the mode choice and the travelers' personal characteristics,as well as family characteristics and trip characteristics.The model shows that the relationship between the mode split and the personal,as well as family and trip characteristics is stable and changes little as the time changes.Deduced by the discrete model,the mode split result is relatively accurate and can be feasibly used for trip mode structure forecasts.Furthermore,the proposed model can also contribute to find the key influencing factors on trip mode choice,and restructure or optimize the urban trip mode structure.展开更多
This paper presents the theoretical investigation of hierarchical sub-wavelength photonic structures with various periods and numbers of layers, which were fabricated using a high-order waveguide-mode interference fie...This paper presents the theoretical investigation of hierarchical sub-wavelength photonic structures with various periods and numbers of layers, which were fabricated using a high-order waveguide-mode interference field. A 442-nm laser was used to excite high-order waveguide modes in an asymmetric metal-cladding dielectric waveguide structure. The dispersion curve of the waveguide modes was theoretically analyzed, and the distribution of the interference field of high-order waveguide modes was numerically simulated using the finite-element method. The various dependences of the characteristics of hierarchical sub-wavelength photonic structures on the thickness and refractive index of the photoresist and the waveguide mode were investigated in detail. These hierarchical sub-wavelength photonic structures have various periods and numbers of layers and can be fabricated by a simple and low-cost method.展开更多
A sliding mode variable structure control (SMVSC) based on a coordinating optimization algorithm has been developed. Steady state error and control switching frequency are used to constitute the system performance i...A sliding mode variable structure control (SMVSC) based on a coordinating optimization algorithm has been developed. Steady state error and control switching frequency are used to constitute the system performance indexes in the coordinating optimization, while the tuning rate of boundary layer width (BLW) is employed as the optimization parameter. Based on the mathematical relationship between the BLW and steady-state error, an optimized BLW tuning rate is added to the nonlinear control term of SMVSC. Simulation experiment results applied to the positioning control of an electro-hydraulic servo system show the comprehensive superiority in dynamical and static state performance by using the proposed controller is better than that by using SMVSC without optimized BLW tuning rate. This succeeds in coordinately considering both chattering reduction and high-precision control realization in SMVSC.展开更多
Various bond modes of the M-C(C5 ring) exist in metallocene compounds of group 14 heavier elements,mostly due to an intricate interaction between the lone electron pairs at the M center and the 6 p-electrons of the ...Various bond modes of the M-C(C5 ring) exist in metallocene compounds of group 14 heavier elements,mostly due to an intricate interaction between the lone electron pairs at the M center and the 6 p-electrons of the C5 ring.The tin(Ⅱ) metallocene complexes LSn R(L = HC[CMe(N-2,6-iPr2C6H3)]2,R = cyclopentadienyl,C5H5(1); indenyl,C9H7(2); fluorenyl,C(13)H9(3)) stabilized by the β-diketiminato ligand were prepared and utilized in the study on their solid and solution state structures.X-ray single-crystal diffraction data revealed an η~1-mode of the Sn-C(C5 ring) bond in each 1~3.However,the room temperature ~1H NMR spectral studies disclosed such a fluxional bonding mode in solution.The 119 Sn NMR studies suggested a quadruple coordination nature of the Sn center in 1 while the triple coordination manner was for the Sn atom in both 2 and 3.Then the variable-temperature(25~–75 ℃) ~1H NMR spectral studies for each 1~3 were performed,which detected the relaxation state structures of 1~3 at lower temperature.All of these results indicate a stereochemical activity of the lone electron pairs at the tin(Ⅱ) atom that definitely has an electronic interaction with the 6 p-electrons of the C5 ring.The observed Sn-C(C5 ring) bond modes appear influenced by either the metallocene size or the compound state existed.展开更多
Aiming at the PWM rectifier control strategy of sliding mode control, steady state performance weak Hamiltonian control dynamic tracking performance is poor, the coordinated compound control is proposed, the feedback ...Aiming at the PWM rectifier control strategy of sliding mode control, steady state performance weak Hamiltonian control dynamic tracking performance is poor, the coordinated compound control is proposed, the feedback linearization controller and sliding mode controller Hamiltonian system is obtained, and the design of a coordinated control strategy. In order to verify the accuracy of this method, MATLAB/Simulink is used for simulation analysis. The simulation results show that the composite control can achieve the coordinated dynamic rapid tracking and constant DC output and unit power factor operation, and satisfy the control requirements of the rectifier, effectively reducing the disturbance effect on the system. Compared with Hamiltonian control, the proposed method combines the advantages of the two methods, which have the fast tracking performance and excellent steady-state characteristics, and the research prospect is broad.展开更多
The basic concepts about the active structures and some attributes of the modes were presented in paper “Liner Active Structures and Modes]( I) ". The characteristics of the active discrete systems and active be...The basic concepts about the active structures and some attributes of the modes were presented in paper “Liner Active Structures and Modes]( I) ". The characteristics of the active discrete systems and active beams were discussed, especially, the stability of the active structures and the orthogonality of the eigenvectors. The notes about modes were portrayed by a model of a seven-storeyed building with sensors and actuators. The concept of the adjoint active structure was extended from the discrete systems to the beams that were the representations of the continuous structures. Two types of beams with different placements of the measuring and actuating systems were discussed in detail. One is the beam with the discrete sensors and actuators, and the other is the beam with distributed sensor and actuator function. The orthogonality conditions were derived with the modal shapes of the active beam and its adjoint active beam. An example shows that the variation of eigenvalues with feedback amplitude for the homo-configuration and non-homo-configuration active structures.展开更多
A new method of system failure analysis was proposed. First, considering the relationships between the failure subsystems,the decision making trial and evaluation laboratory(DEMATEL) method was used to calculate the d...A new method of system failure analysis was proposed. First, considering the relationships between the failure subsystems,the decision making trial and evaluation laboratory(DEMATEL) method was used to calculate the degree of correlation between the failure subsystems, analyze the combined effect of related failures, and obtain the degree of correlation by using the directed graph and matrix operations. Then, the interpretative structural modeling(ISM) method was combined to intuitively show the logical relationship of many failure subsystems and their influences on each other by using multilevel hierarchical structure model and obtaining the critical subsystems. Finally, failure mode effects and criticality analysis(FMECA) was used to perform a qualitative hazard analysis of critical subsystems, determine the critical failure mode, and clarify the direction of reliability improvement.Through an example, the result demonstrates that the proposed method can be efficiently applied to system failure analysis problems.展开更多
To scientifically evaluate the equipment system of systems(SoS)contribution rate,a contribution rate calculation method based on a structural equation model(SEM)is proposed in this paper.The connotation and evaluation...To scientifically evaluate the equipment system of systems(SoS)contribution rate,a contribution rate calculation method based on a structural equation model(SEM)is proposed in this paper.The connotation and evaluation process of the equipment SoS contribution rate were redefined and standardized.To solve the existing problems in the application of the original contribution rate formula,a modified contribution rate calculation formula is proposed.Finally,the contribution rate evaluation index was divided into latent and explicit variables.The measurement and structural equations in the SEM were used to calculate and analyze the latent variables.The simulation results show that the number of defense lines of air defense weapon equipment has a greater impact on the linear configuration than the group configuration.When the number of K-type air defense weapons is sufficient,the two-layer linear configuration should be adopted with 20 air defense weapon systems.When the number of K-type air defense weapons is insufficient,the single-layer group configuration should be adopted with 12 air defense weapon systems.展开更多
In lhis paper, we study the variable structure control of indefinite-dimensionalcontrol systems with the functional analysis method. The reaching conditions, stabilityconditions and the approximating conditions of sli...In lhis paper, we study the variable structure control of indefinite-dimensionalcontrol systems with the functional analysis method. The reaching conditions, stabilityconditions and the approximating conditions of sliding mode, as well as the generalform of the variable structure control law are given. and the elementary frame of thevariable structure control of indefinite-dimensional systems is built.展开更多
Based on the radiation modes, an active control strategy is presented for sound radiation from elastic structures with an example of simply supported rectangular panel. The physical characteristics and mathematical me...Based on the radiation modes, an active control strategy is presented for sound radiation from elastic structures with an example of simply supported rectangular panel. The physical characteristics and mathematical meaning of the radiation modes are analyzed. The radiation efficiency of radiation mode falls off very rapidly with the increase of modes order at low frequency. A new control strategy is developed in which by canceling the adjoint coef- ficient of the first k radiation modes, the sound powers of the first k radiation modes is zero theoratically. The numerical calculation is made by using point force actuators as control forces.展开更多
In this paper,a coordinated control scheme for wind turbine generator(WTG)and supercapacitor energy storage system(ESS)is proposed for temporary frequency supports.Inertial control is designed by using generator torqu...In this paper,a coordinated control scheme for wind turbine generator(WTG)and supercapacitor energy storage system(ESS)is proposed for temporary frequency supports.Inertial control is designed by using generator torque limit considering the security of WTG system,while ESS releases its energy to compensate the sudden active power deficit during the recovery process of turbine rotor.WTG is modeled using the fatigue,aerodynamic,structure,turbulence(FAST)code,which identifies the mechanical loadings of the turbine and addresses electro-mechanical interactions in the wind energy system.A damping controller is augmented to the inertial control to suppress severe mechanical oscillations in the shaft and tower of the turbine during frequency supports.Furthermore,the result of small-signal stability analysis shows that the WTGESS tends to improve the stability of the whole multi-energy power grid.The major contributions of this paper will be validated by utilizing the proposed control method that combines the grid support capability and maintaining the integrity of structural design of the turbine for normal operations.展开更多
We report the observation of mirror mode structures by Cluster spacecraft at around X^-16 RE in the Earth’s magnetotail.The wavelength of the mirror structure is larger than 7000 km,corresponding to tens of ion gyror...We report the observation of mirror mode structures by Cluster spacecraft at around X^-16 RE in the Earth’s magnetotail.The wavelength of the mirror structure is larger than 7000 km,corresponding to tens of ion gyroradii.Features of the mirror structures are similar to those detected in the magnetosheath:the anti-correlation between the magnetic field strength and plasma density,zero phase velocity in the plasma rest frame and linear polarization.The structures were observed in a region bounded by two dipolarizations during a substorm intensification.Thus,the dipolarization process may provide a plasma condition facilitating the growth of the mirror mode structures.Another interesting feature is the electron dynamics within the mirror structures.Thermal electron energy flux has an enhancement at 0°and 180°pitch angles inside the magnetic dips of the first three mirror structures and an enhancement at 90°pitch angle inside the magnetic dip of the last structure.The different electron distribution inside the mirror structures might be a result of different evolution stages of the mirror wave.The last structure may be in the nonlinear stage of the mirror instability,whereas the three others with quasi-sinusoidal waveforms may be in the linear stage.In addition,we found that intense whistler waves were confined within the magnetic dips.We conjecture that whistler waves observed in the first three dips were generated in a remote region,then they were trapped in the mirror mode troughs and transported toward the spacecraft;while the whistler wave detected in the last dip was excited locally by the electron anisotropy instability.展开更多
We propose a method based on the local breeding of growing modes(LBGM) considering strong local weather characteristics for convection-allowing ensemble forecasting. The impact radius was introduced in the breeding of...We propose a method based on the local breeding of growing modes(LBGM) considering strong local weather characteristics for convection-allowing ensemble forecasting. The impact radius was introduced in the breeding of growing modes to develop the LBGM method. In the local breeding process, the ratio between the root mean square error(RMSE) of local space forecast at each grid point and that of the initial full-field forecast is computed to rescale perturbations. Preliminary evaluations of the method based on a nature run were performed in terms of three aspects: perturbation structure, spread,and the RMSE of the forecast. The experimental results confirm that the local adaptability of perturbation schemes improves after rescaling by the LBGM method. For perturbation physical variables and some near-surface meteorological elements, the LBGM method could increase the spread and reduce the RMSE of forecast,improving the performance of the ensemble forecast system.In addition, different from those existing methods of global orthogonalization approach, this new initial-condition perturbation method takes into full consideration the local characteristics of the convective-scale weather system, thus making convectionallowing ensemble forecast more accurate.展开更多
Applicability of guided mode resonant structures to tunable optical filtering and sensing is demonstrated using nematic liquid crystals. As a sensor, a minimum refractive index detectivity of 10^-5 is demonstrated whi...Applicability of guided mode resonant structures to tunable optical filtering and sensing is demonstrated using nematic liquid crystals. As a sensor, a minimum refractive index detectivity of 10^-5 is demonstrated while as a tunable filter, tunability range of few tens of nanometers with 2-nm bandwidth is presented. The optimum design is achieved by maximizing the evanescent field region in the analyte which maximizes the overlap integral. The device can be operated in reflection or transmission modes at normal incidence. It can also be operated at a single wavelength by measuring the angular profile of the light beam.展开更多
The modulation of resonance features in microcavities is important to applications in nanophotonics.Based on the asymmetric whispering-gallery modes(WGMs)in a plasmonic resonator,we theoretically studied the mode evol...The modulation of resonance features in microcavities is important to applications in nanophotonics.Based on the asymmetric whispering-gallery modes(WGMs)in a plasmonic resonator,we theoretically studied the mode evolution in an asymmetric WGM plasmonic system.Exploiting the gap or nano-scatter in the plasmonic ring cavity,the symmetry of the system will be broken and the standing wave in the cavity will be tunable.Based on this asymmetric structure,the output coupling rate between the two cavity modes can also be tuned.Moreover,the proposed method could further be applied for sensing and detecting the position of defects in a WGM system.展开更多
A technique for analyzing the nonlinear generation of the cumulative second har-monics of generalized Lamb modes in a layered planar structure is developed. A theoretical model for nonlinear generalized Lamb mode prop...A technique for analyzing the nonlinear generation of the cumulative second har-monics of generalized Lamb modes in a layered planar structure is developed. A theoretical model for nonlinear generalized Lamb mode propagation in a layered planar structure has been established, based on a partial plane wave approach. The nonlinearity is treated as a second-order perturbation of the linear elastic response. This model reveals some interesting features of the physics of the cumulative second harmonic generation. Although Lamb mode propagation is dispersive in a layered structure, the results of this analysis show that the amplitudes of the second harmonics do accumulate with propagation distance under certain special conditions. On the basis of the boundary and initial conditions of excitation, the formal solution of the cumulative second harmonic has been derived. Using the formal solution, we have performed some numerical simulations and obtained the cumulative second harmonic field patterns, illus-trating the distortion effect along the propagation distance, as well as the dependence of the field patterns on the position of the excitation source.展开更多
Based on mode acoustic emission theory,the paper analyses the acoustic emission analog signal of thin steel plate using matching pursuit,then obtains the characteristics interpretation of the different frequency signa...Based on mode acoustic emission theory,the paper analyses the acoustic emission analog signal of thin steel plate using matching pursuit,then obtains the characteristics interpretation of the different frequency signal energy concentration degree; Combined with four-point arc positioning method,the papers researches the damage localization of the plate-like structure. Simulation experiment shows that this method can accurately detect and locate the damage. This can provide data support for further imaging research based on time reverse theory.展开更多
Dual-volume Helmholtz dampers with two resonant frequencies are proposed to simultaneously attenuate longitudinal and azimuthal thermo-acoustic instabilities in annular combustors. Thermo-acoustic instabilities in a s...Dual-volume Helmholtz dampers with two resonant frequencies are proposed to simultaneously attenuate longitudinal and azimuthal thermo-acoustic instabilities in annular combustors. Thermo-acoustic instabilities in a swirled annular combustor equipped with dual-volume dampers are numerically investigated by the Helmholtz method, combined with a measured flame transfer function and the established damper impedance model. Furthermore, the influences of the damper number and circumferential configurations on oscillation attenuations and mode structures are explored. The established dual-volume damper model is well validated by the impedance tube tests. Numerical results indicate velocity fluctuation levels of the longitudinal and azimuthal modes decline after installing Helmholtz dampers, whereas those of the azimuthal modes further decrease by around 16% after using four retuned dual-volume dampers. The eigenfrequencies of the first longitudinal and azimuthal modes decrease and increase after installing dampers, respectively. After installing dual-volume dampers, the difference between the pressure fluctuation in the plenum and combustion chamber is reduced, and pressure waveforms of the azimuthal modes along the circumferential direction shifts. The pressure distribution of azimuthal modes becomes more uniform after using more dual-volume dampers. The specific absorption frequency band for azimuthal modes introduced by the dual-volume damper may lead to decreased oscillations and mode evolutions. The maximal absorbing ability can be approached by installing dampers with the same angle between adjacent dampers. When dampers are unevenly distributed, the symmetry between two azimuthal modes is broken and standing modes will emerge.展开更多
Composite-metal joints with a metal insert are one kind of connecting structure.In this paper,tensile experimental tests were carried out to investigate tensile properties of a compositemetal joint with a novel metal ...Composite-metal joints with a metal insert are one kind of connecting structure.In this paper,tensile experimental tests were carried out to investigate tensile properties of a compositemetal joint with a novel metal insert design.Finite element models of the joint were established,and strain distribution and tensile strength were analyzed.The numerical results are in good agreement with the experimental results.Results show that the joint failure is dominated by shear properties of the resin layer.Increasing the resin layer thickness in a certain range will improve the tensile strength of the joint,while increasing the radius of the fillet on the ending side of the metal insert will decrease the joint strength.Increasing the resin layer plasticity will improve the joint strength.The effect of the embedded depth of the metal insert can be ignored.展开更多
文摘Superconducting transition temperature(Tc),as a crucial parameter,exploring its relationship with various macroscopic and microscopic factors helps to understand the mechanism of high-temperature superconductivity from multiple perspectives,aiding in a multidimensional comprehension of high-temperature superconductivity mechanisms.Drawing inspiration from the block-layer structure models of cuprate superconductors,we computationally investigated the interlayer interaction energies in the 12442-type iron-based superconducting materials AkCa_(2)Fe_(4)As_(4)F_(2)(Ak=K,Rb,Cs)systems based on the block-layer model and explored their relationship with Tc.We observed that an increase in interlayer combinative energy leads to a decrease in Tc,while conversely,a decrease in interlayer combination energy results in an increase in Tc.Further,we found that the contribution of the Fe 3d band structure,especially the 3dz2 orbital,to charge transfer is significant.
基金The National Natural Science Foundation of China (No.50738001,51078086)
文摘In order to find the main factors that influence the urban traffic structure,a relational model between the travelers' characteristics and the trip mode choice is built.The data of urban residents' characteristics are obtained from statistical data,while the trip mode split data is collected through a trip survey in Bengbu.In addition,the discrete choice model is adopted to build the functional relationship between the mode choice and the travelers' personal characteristics,as well as family characteristics and trip characteristics.The model shows that the relationship between the mode split and the personal,as well as family and trip characteristics is stable and changes little as the time changes.Deduced by the discrete model,the mode split result is relatively accurate and can be feasibly used for trip mode structure forecasts.Furthermore,the proposed model can also contribute to find the key influencing factors on trip mode choice,and restructure or optimize the urban trip mode structure.
基金Project supported by the National Natural Science Foundation of China(Grant No.61505074)the National Key Basic Research Program of China(Grant No.2013CBA01703)the Hong Liu Young Teachers Training Program Funded Projects of Lanzhou University of Technology(Grant No.Q201509)
文摘This paper presents the theoretical investigation of hierarchical sub-wavelength photonic structures with various periods and numbers of layers, which were fabricated using a high-order waveguide-mode interference field. A 442-nm laser was used to excite high-order waveguide modes in an asymmetric metal-cladding dielectric waveguide structure. The dispersion curve of the waveguide modes was theoretically analyzed, and the distribution of the interference field of high-order waveguide modes was numerically simulated using the finite-element method. The various dependences of the characteristics of hierarchical sub-wavelength photonic structures on the thickness and refractive index of the photoresist and the waveguide mode were investigated in detail. These hierarchical sub-wavelength photonic structures have various periods and numbers of layers and can be fabricated by a simple and low-cost method.
基金This work was supported by the Provincial Natural Science Foundation of Hunan(No.04JJ6033) the Research Foundation of Hunan Education Bureau (No.03C066).
文摘A sliding mode variable structure control (SMVSC) based on a coordinating optimization algorithm has been developed. Steady state error and control switching frequency are used to constitute the system performance indexes in the coordinating optimization, while the tuning rate of boundary layer width (BLW) is employed as the optimization parameter. Based on the mathematical relationship between the BLW and steady-state error, an optimized BLW tuning rate is added to the nonlinear control term of SMVSC. Simulation experiment results applied to the positioning control of an electro-hydraulic servo system show the comprehensive superiority in dynamical and static state performance by using the proposed controller is better than that by using SMVSC without optimized BLW tuning rate. This succeeds in coordinately considering both chattering reduction and high-precision control realization in SMVSC.
基金supported by the National Natural Science Foundation of China(21473142 and 21673191)the National Innovative Research Team of China(IRT_14R31 and J1310024)
文摘Various bond modes of the M-C(C5 ring) exist in metallocene compounds of group 14 heavier elements,mostly due to an intricate interaction between the lone electron pairs at the M center and the 6 p-electrons of the C5 ring.The tin(Ⅱ) metallocene complexes LSn R(L = HC[CMe(N-2,6-iPr2C6H3)]2,R = cyclopentadienyl,C5H5(1); indenyl,C9H7(2); fluorenyl,C(13)H9(3)) stabilized by the β-diketiminato ligand were prepared and utilized in the study on their solid and solution state structures.X-ray single-crystal diffraction data revealed an η~1-mode of the Sn-C(C5 ring) bond in each 1~3.However,the room temperature ~1H NMR spectral studies disclosed such a fluxional bonding mode in solution.The 119 Sn NMR studies suggested a quadruple coordination nature of the Sn center in 1 while the triple coordination manner was for the Sn atom in both 2 and 3.Then the variable-temperature(25~–75 ℃) ~1H NMR spectral studies for each 1~3 were performed,which detected the relaxation state structures of 1~3 at lower temperature.All of these results indicate a stereochemical activity of the lone electron pairs at the tin(Ⅱ) atom that definitely has an electronic interaction with the 6 p-electrons of the C5 ring.The observed Sn-C(C5 ring) bond modes appear influenced by either the metallocene size or the compound state existed.
文摘Aiming at the PWM rectifier control strategy of sliding mode control, steady state performance weak Hamiltonian control dynamic tracking performance is poor, the coordinated compound control is proposed, the feedback linearization controller and sliding mode controller Hamiltonian system is obtained, and the design of a coordinated control strategy. In order to verify the accuracy of this method, MATLAB/Simulink is used for simulation analysis. The simulation results show that the composite control can achieve the coordinated dynamic rapid tracking and constant DC output and unit power factor operation, and satisfy the control requirements of the rectifier, effectively reducing the disturbance effect on the system. Compared with Hamiltonian control, the proposed method combines the advantages of the two methods, which have the fast tracking performance and excellent steady-state characteristics, and the research prospect is broad.
文摘The basic concepts about the active structures and some attributes of the modes were presented in paper “Liner Active Structures and Modes]( I) ". The characteristics of the active discrete systems and active beams were discussed, especially, the stability of the active structures and the orthogonality of the eigenvectors. The notes about modes were portrayed by a model of a seven-storeyed building with sensors and actuators. The concept of the adjoint active structure was extended from the discrete systems to the beams that were the representations of the continuous structures. Two types of beams with different placements of the measuring and actuating systems were discussed in detail. One is the beam with the discrete sensors and actuators, and the other is the beam with distributed sensor and actuator function. The orthogonality conditions were derived with the modal shapes of the active beam and its adjoint active beam. An example shows that the variation of eigenvalues with feedback amplitude for the homo-configuration and non-homo-configuration active structures.
基金Project(51275205)supported by the National Natural Science Foundation of China
文摘A new method of system failure analysis was proposed. First, considering the relationships between the failure subsystems,the decision making trial and evaluation laboratory(DEMATEL) method was used to calculate the degree of correlation between the failure subsystems, analyze the combined effect of related failures, and obtain the degree of correlation by using the directed graph and matrix operations. Then, the interpretative structural modeling(ISM) method was combined to intuitively show the logical relationship of many failure subsystems and their influences on each other by using multilevel hierarchical structure model and obtaining the critical subsystems. Finally, failure mode effects and criticality analysis(FMECA) was used to perform a qualitative hazard analysis of critical subsystems, determine the critical failure mode, and clarify the direction of reliability improvement.Through an example, the result demonstrates that the proposed method can be efficiently applied to system failure analysis problems.
基金The National Social Science Foundation Military Science Project(No.16GJ003-068).
文摘To scientifically evaluate the equipment system of systems(SoS)contribution rate,a contribution rate calculation method based on a structural equation model(SEM)is proposed in this paper.The connotation and evaluation process of the equipment SoS contribution rate were redefined and standardized.To solve the existing problems in the application of the original contribution rate formula,a modified contribution rate calculation formula is proposed.Finally,the contribution rate evaluation index was divided into latent and explicit variables.The measurement and structural equations in the SEM were used to calculate and analyze the latent variables.The simulation results show that the number of defense lines of air defense weapon equipment has a greater impact on the linear configuration than the group configuration.When the number of K-type air defense weapons is sufficient,the two-layer linear configuration should be adopted with 20 air defense weapon systems.When the number of K-type air defense weapons is insufficient,the single-layer group configuration should be adopted with 12 air defense weapon systems.
文摘In lhis paper, we study the variable structure control of indefinite-dimensionalcontrol systems with the functional analysis method. The reaching conditions, stabilityconditions and the approximating conditions of sliding mode, as well as the generalform of the variable structure control law are given. and the elementary frame of thevariable structure control of indefinite-dimensional systems is built.
基金the National Natural Science Foundation of China (No.50075O36).
文摘Based on the radiation modes, an active control strategy is presented for sound radiation from elastic structures with an example of simply supported rectangular panel. The physical characteristics and mathematical meaning of the radiation modes are analyzed. The radiation efficiency of radiation mode falls off very rapidly with the increase of modes order at low frequency. A new control strategy is developed in which by canceling the adjoint coef- ficient of the first k radiation modes, the sound powers of the first k radiation modes is zero theoratically. The numerical calculation is made by using point force actuators as control forces.
基金supported by the U.S.National science foundation(No.1711951)
文摘In this paper,a coordinated control scheme for wind turbine generator(WTG)and supercapacitor energy storage system(ESS)is proposed for temporary frequency supports.Inertial control is designed by using generator torque limit considering the security of WTG system,while ESS releases its energy to compensate the sudden active power deficit during the recovery process of turbine rotor.WTG is modeled using the fatigue,aerodynamic,structure,turbulence(FAST)code,which identifies the mechanical loadings of the turbine and addresses electro-mechanical interactions in the wind energy system.A damping controller is augmented to the inertial control to suppress severe mechanical oscillations in the shaft and tower of the turbine during frequency supports.Furthermore,the result of small-signal stability analysis shows that the WTGESS tends to improve the stability of the whole multi-energy power grid.The major contributions of this paper will be validated by utilizing the proposed control method that combines the grid support capability and maintaining the integrity of structural design of the turbine for normal operations.
基金supported by the National Natural Science Foundation of China(Grants Nos.41174147,41274170,41331070)Science Foundation of Jiangxi Province(Grants No.20122BAB212002)the Fundamental Research Funds for the Central Universities(Grant No.2012212020206)
文摘We report the observation of mirror mode structures by Cluster spacecraft at around X^-16 RE in the Earth’s magnetotail.The wavelength of the mirror structure is larger than 7000 km,corresponding to tens of ion gyroradii.Features of the mirror structures are similar to those detected in the magnetosheath:the anti-correlation between the magnetic field strength and plasma density,zero phase velocity in the plasma rest frame and linear polarization.The structures were observed in a region bounded by two dipolarizations during a substorm intensification.Thus,the dipolarization process may provide a plasma condition facilitating the growth of the mirror mode structures.Another interesting feature is the electron dynamics within the mirror structures.Thermal electron energy flux has an enhancement at 0°and 180°pitch angles inside the magnetic dips of the first three mirror structures and an enhancement at 90°pitch angle inside the magnetic dip of the last structure.The different electron distribution inside the mirror structures might be a result of different evolution stages of the mirror wave.The last structure may be in the nonlinear stage of the mirror instability,whereas the three others with quasi-sinusoidal waveforms may be in the linear stage.In addition,we found that intense whistler waves were confined within the magnetic dips.We conjecture that whistler waves observed in the first three dips were generated in a remote region,then they were trapped in the mirror mode troughs and transported toward the spacecraft;while the whistler wave detected in the last dip was excited locally by the electron anisotropy instability.
基金supported by the Natural Science Foundation of Nanjing Joint Center of Atmospheric Research(Grant Nos.NJCAR2016MS02 and NJCAR2016ZD04)the National Natural Science Foundation of China(Grant Nos.41205073 and41675007)the National Key Research and Development Program of China(Grant No.2017YFC1501800)
文摘We propose a method based on the local breeding of growing modes(LBGM) considering strong local weather characteristics for convection-allowing ensemble forecasting. The impact radius was introduced in the breeding of growing modes to develop the LBGM method. In the local breeding process, the ratio between the root mean square error(RMSE) of local space forecast at each grid point and that of the initial full-field forecast is computed to rescale perturbations. Preliminary evaluations of the method based on a nature run were performed in terms of three aspects: perturbation structure, spread,and the RMSE of the forecast. The experimental results confirm that the local adaptability of perturbation schemes improves after rescaling by the LBGM method. For perturbation physical variables and some near-surface meteorological elements, the LBGM method could increase the spread and reduce the RMSE of forecast,improving the performance of the ensemble forecast system.In addition, different from those existing methods of global orthogonalization approach, this new initial-condition perturbation method takes into full consideration the local characteristics of the convective-scale weather system, thus making convectionallowing ensemble forecast more accurate.
基金supported by the Ministry of Scienceunder Tashtiot Project
文摘Applicability of guided mode resonant structures to tunable optical filtering and sensing is demonstrated using nematic liquid crystals. As a sensor, a minimum refractive index detectivity of 10^-5 is demonstrated while as a tunable filter, tunability range of few tens of nanometers with 2-nm bandwidth is presented. The optimum design is achieved by maximizing the evanescent field region in the analyte which maximizes the overlap integral. The device can be operated in reflection or transmission modes at normal incidence. It can also be operated at a single wavelength by measuring the angular profile of the light beam.
基金National Natural Science Foundation of China(NSFC)(61622103,61471050,61671083,11404031)Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China(151063)Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics,Tsinghua University(KF201610)
文摘The modulation of resonance features in microcavities is important to applications in nanophotonics.Based on the asymmetric whispering-gallery modes(WGMs)in a plasmonic resonator,we theoretically studied the mode evolution in an asymmetric WGM plasmonic system.Exploiting the gap or nano-scatter in the plasmonic ring cavity,the symmetry of the system will be broken and the standing wave in the cavity will be tunable.Based on this asymmetric structure,the output coupling rate between the two cavity modes can also be tuned.Moreover,the proposed method could further be applied for sensing and detecting the position of defects in a WGM system.
基金the National Natural Science Foundation of China(No.10004016).
文摘A technique for analyzing the nonlinear generation of the cumulative second har-monics of generalized Lamb modes in a layered planar structure is developed. A theoretical model for nonlinear generalized Lamb mode propagation in a layered planar structure has been established, based on a partial plane wave approach. The nonlinearity is treated as a second-order perturbation of the linear elastic response. This model reveals some interesting features of the physics of the cumulative second harmonic generation. Although Lamb mode propagation is dispersive in a layered structure, the results of this analysis show that the amplitudes of the second harmonics do accumulate with propagation distance under certain special conditions. On the basis of the boundary and initial conditions of excitation, the formal solution of the cumulative second harmonic has been derived. Using the formal solution, we have performed some numerical simulations and obtained the cumulative second harmonic field patterns, illus-trating the distortion effect along the propagation distance, as well as the dependence of the field patterns on the position of the excitation source.
基金supported by the Natural Science Foundation of Naval University of Engineering(under Grant No.HGDYDJJ13152)
文摘Based on mode acoustic emission theory,the paper analyses the acoustic emission analog signal of thin steel plate using matching pursuit,then obtains the characteristics interpretation of the different frequency signal energy concentration degree; Combined with four-point arc positioning method,the papers researches the damage localization of the plate-like structure. Simulation experiment shows that this method can accurately detect and locate the damage. This can provide data support for further imaging research based on time reverse theory.
基金funded by the National Science and Technology Major Project(J2019-Ⅲ-0020-0064)。
文摘Dual-volume Helmholtz dampers with two resonant frequencies are proposed to simultaneously attenuate longitudinal and azimuthal thermo-acoustic instabilities in annular combustors. Thermo-acoustic instabilities in a swirled annular combustor equipped with dual-volume dampers are numerically investigated by the Helmholtz method, combined with a measured flame transfer function and the established damper impedance model. Furthermore, the influences of the damper number and circumferential configurations on oscillation attenuations and mode structures are explored. The established dual-volume damper model is well validated by the impedance tube tests. Numerical results indicate velocity fluctuation levels of the longitudinal and azimuthal modes decline after installing Helmholtz dampers, whereas those of the azimuthal modes further decrease by around 16% after using four retuned dual-volume dampers. The eigenfrequencies of the first longitudinal and azimuthal modes decrease and increase after installing dampers, respectively. After installing dual-volume dampers, the difference between the pressure fluctuation in the plenum and combustion chamber is reduced, and pressure waveforms of the azimuthal modes along the circumferential direction shifts. The pressure distribution of azimuthal modes becomes more uniform after using more dual-volume dampers. The specific absorption frequency band for azimuthal modes introduced by the dual-volume damper may lead to decreased oscillations and mode evolutions. The maximal absorbing ability can be approached by installing dampers with the same angle between adjacent dampers. When dampers are unevenly distributed, the symmetry between two azimuthal modes is broken and standing modes will emerge.
基金the National Natural Science Foundation of China(No.11472024)for financial support
文摘Composite-metal joints with a metal insert are one kind of connecting structure.In this paper,tensile experimental tests were carried out to investigate tensile properties of a compositemetal joint with a novel metal insert design.Finite element models of the joint were established,and strain distribution and tensile strength were analyzed.The numerical results are in good agreement with the experimental results.Results show that the joint failure is dominated by shear properties of the resin layer.Increasing the resin layer thickness in a certain range will improve the tensile strength of the joint,while increasing the radius of the fillet on the ending side of the metal insert will decrease the joint strength.Increasing the resin layer plasticity will improve the joint strength.The effect of the embedded depth of the metal insert can be ignored.