Iron-nitride films were prepared by reactive sputtering, and the effect of annealing treatment on the structures was investigated by means of in-situ electron microscopy and high resolution electron microscopy (HREM)....Iron-nitride films were prepared by reactive sputtering, and the effect of annealing treatment on the structures was investigated by means of in-situ electron microscopy and high resolution electron microscopy (HREM). As-deposited films were observed to be a mixed structure of a few ultrafine epsilon-Fe2-3N particles existing in the amorphous matrix. it was found that the structure-relaxation in the amorphous occurred at 473 K, and the ultrafine grains began to grow at the higher annealing temperatures. The transition of the amorphous to epsilon-Fe2-3N was almost completed at 673 K. It is considered that the formation of the ideal epsilon-Fe3N is originated from the ordering of the nitrogen atoms during the annealing in vacuum. On the other hand, gamma'-phase (Fe4N) was seen to precipitation of epsilon-phase at 723 K. Two possible modes are proposed in the precipitation of gamma'-phase, depending on the heating rate and crystallographic orientation relationships, i.e. [121](epsilon)//[001](gamma), (2(1) over bar0$)(epsilon)//(110)(gamma) and [100](epsilon)//[110](gamma), (001)(epsilon)//(111)(gamma). In addition, alpha-Fe particles were observed to form from the gamma'-phase at high temperatures. We assumed that these structural changes are due to the diffusion of nitrogen and iron atoms during the annealing, except for the case of the precipitation of the gamma'-phase as depicted above. The results obtained in this work are in a good agreement with the assumption.展开更多
Two adaptive friction compensation schemes are developed for a high precision turntable system with nonlinear dynamic friction to handle two types of parametric uncertainties in the friction. Both schemes utilize a no...Two adaptive friction compensation schemes are developed for a high precision turntable system with nonlinear dynamic friction to handle two types of parametric uncertainties in the friction. Both schemes utilize a nonlinear observer/filter structure to compensate for uncertainties in corresponding friction parameters associated with the turntable system. Moreover, in the second scheme, adjustable gains are introduced into the dual nonlin- ear filters and they can be tuned to improve the position tracking performance. In both cases, a Lyapunov-like argument is provided for the global asymptotic stability of the closed-loop system. Simulation results demonstrate the effectiveness of the proposed schemes.展开更多
This paper deals with the design of an observer-based nonlinear control for continuous stirred tank reactors(CSTR).A variable structure observer is constructed to estimate the whole process state variables.This observ...This paper deals with the design of an observer-based nonlinear control for continuous stirred tank reactors(CSTR).A variable structure observer is constructed to estimate the whole process state variables.This observer is basically the conventional Luenberger observer with an additional switching term used to guarantee the robustness against modeling errors.The observer is coupled with a nonlinear controller,designed based on input-output linearization for controlling the reactor temperature.The asymptotical stability of the closed-loop system is shown by the Lyapunov stability theorem.Finally,computer simulations are developed for showing the performance of the proposed approach.展开更多
Nonlinear sliding m ode predictive controller is designed for a class of nonlinear system w ith unm odeled dynam ic characteristics and nonlinear term . The m ethod is based on nonlinear opti- m alpredictive control...Nonlinear sliding m ode predictive controller is designed for a class of nonlinear system w ith unm odeled dynam ic characteristics and nonlinear term . The m ethod is based on nonlinear opti- m alpredictive control. The variable structure controllaw m inim izes the quadratic index ofa predic- tive sliding m ode, w hich contains thecostfunction ofcontrolpreventing the controleffectfrom satu- ration for in m ostpracticalim plem entation the controlinputs are bounded by physicalconstraints and energy constraints. According to the im m easurable states, the variable structure observer for nonlin- ear system sisadapted. The variablestructure system m ethod isaptto therealization ofobserverw ith variable param eters and uncertainty. The proofshow s thatthe states ofthe observer asym ptotically convergence to the realstates ofthe system although itisofuncertainty and nonlinear term s. Final- ly, the digitalsim ulation results prove the effectiveness ofthe proposed m ethod.展开更多
A feedback control optimization method of partially observable linear structures via stationary response is proposed and analyzed with linear building structures equipped with control devices and sensors. First, the p...A feedback control optimization method of partially observable linear structures via stationary response is proposed and analyzed with linear building structures equipped with control devices and sensors. First, the partially observable control problem of the structure under horizontal ground acceleration excitation is converted into a completely observable control problem. Then the It6 stochastic differential equations of the system are derived based on the stochastic averaging method for quasi-integrable Hamiltonian systems and the stationary solution to the Fokker-Plank-Kolmogorov (FPK) equation associated with the It6 equations is obtained. The performance index in terms of the mean system energy and mean square control force is established and the optimal control force is obtained by minimizing the performance index. Finally, the numerical results for a three-story building structure model under E1 Centro, Hachinohe, Northridge and Kobe earthquake excitations are given to illustrate the application and the effectiveness of the proposed method.展开更多
With the help of skew-symmetric differential forms, the hidden properties of the mathematical physics equations that describe discrete quantum transitions and emergence the physical structures are investigated. It is ...With the help of skew-symmetric differential forms, the hidden properties of the mathematical physics equations that describe discrete quantum transitions and emergence the physical structures are investigated. It is shown that the mathematical physics equations possess a unique property. They can describe discrete quantum transitions, emergence of physical structures and occurrence observed formations. However, such a property possesses only equations on which no additional conditions, namely, the conditions of integrability, are imposed. The intergrability conditions are realized from the equations themselves. Just under realization of integrability conditions double solutions to the mathematical physics equations, which describe discrete transitions and so on, are obtained. The peculiarity consists in the fact that the integrability conditions do not directly follow from the mathematical physics equations;they are realized under the description of evolutionary process. The hidden properties of differential equations were discovered when studying the integrability of differential equations of mathematical physics that depends on the consistence between the derivatives in differential equations along different directions and on the consistence of equations in the set of equations. The results of this work were obtained with the help of skew-symmetric differential forms that possess a nontraditional mathematical apparatus such as nonidentical relations, degenerate transformations and the transition from nonintegrable manifolds to integrable structures. Such results show that mathematical physics equations can describe quantum processes.展开更多
A new way of probing the large-scale structure of the universe is proposed. Space is partitioned into cells the shape of rhombic dodecahedron. The cells are labelled 'filled' or 'empty' according as th...A new way of probing the large-scale structure of the universe is proposed. Space is partitioned into cells the shape of rhombic dodecahedron. The cells are labelled 'filled' or 'empty' according as they contain galaxies or not. The cell size is so chosen as to have nearly equal numbers of filled and empty cells for the given galaxy sample. Two observables on each cell are definable: the number of its like neighbors, n1, and a two-suffixed topological type τ, the suffixes being the numbers of its like and unlike neighbor-groups. The frequency distributions of n1 and T in the observed set of filled (empty) cells are then considered as indicators of the morphology of the set. The method is applied to the CfA catalogue of galaxies as an illustration. Despite its limited size, the data offers evidence 1) that the empty cells are more strongly clustered than the filled cells, and 2) that the filled cells, but not the empty cells, have a tendency to occur in sheets. Further directions of development both in theory and application are indicated.展开更多
The paper is focused on different kinds of gravity results obtained in Shults Cape Observatory for 2010 -2015. Gravity observation is interpreted together with GPS observation data which was obtained from 2012 to 2015...The paper is focused on different kinds of gravity results obtained in Shults Cape Observatory for 2010 -2015. Gravity observation is interpreted together with GPS observation data which was obtained from 2012 to 2015 at the same station, The station is situated on Gamov peninsular (42.58° N, 131.15° E, Russia) at the coast of Japan Sea, This region constitutes the eastern boundary of Eurasia. This major continental tectonic feature is associated with a seismic activity, high heat flow and anomalous thickness of earth's crust. The goal of the observation was the investigation of gravity variation with time and seismicity situation monitoring. Gravity observation was developed at special basement by absolute gravimeter (GABL type) and by spring gravimeter (SCINREX CG-5and gPhone type). Tidal models were tested by results of observation with spring gravimeters. Reduction task was solved, as the experimental data received from different points of Shults Cape Observatory was used. Applied reduction coefficient is 203.3 12Gal m l, and agrees with theoretical calculation. Next goal was studying structure of earth's crust by means of gravity models. Gravity anomaly varied from 30 mGal to 46 mGal, which also depend on difference reference system, Experimental results were used for testing of the structure of continental boundary, which also depends on the sea bottom flexion. Thickness of elastic layer was estimated from 12 km to 18 km by using different models.展开更多
We present galactic spectroscopic data from a pencil beam of 10.75×7.5 centered on the X-ray cluster RXJ0054.0–2823 at z=0.29.We study the spectral evolution of galaxies from z=1 down to the cluster redshift in ...We present galactic spectroscopic data from a pencil beam of 10.75×7.5 centered on the X-ray cluster RXJ0054.0–2823 at z=0.29.We study the spectral evolution of galaxies from z=1 down to the cluster redshift in a magnitude-limited sample at R≤23,for which the statistical properties of the sample are well understood.We divide emission-line galaxies into star-forming galaxies,Low Ionization Nuclear Emission line Regions(LINERs) ,and Seyferts by using emission-line ratios of[OII],Hβ,and[OIII],and derive stellar fractions from population synthesis models. We focus our analysis on absorption and low-ionization galaxies.For absorption-line galaxies,we recover the well-known result that these galaxies have had no detectable evolution since z~0.6-0.7,but we also find that in the range z=0.65-1,at least 50% of the stars in bright absorption systems are younger than 2.5 Gyr.Faint absorption-line galaxies in the cluster at z=0.29 also had significant star formation during the previous 2-3 Gyr,but their brighter counterparts seem to be only composed of old stars.At z~0.8,our dynamically young cluster had a truncated red-sequence.This result seems to be consistent with a scenario where the final assembly of E/S0 took place at z1.In the volume-limited range 0.35≤z≤0.65,we find that 23% of the early-type galaxies have LINER-like spectra with Hβin absorption and have a significant component of A stars.The vast majority of LINERs in our sample have significant populations of young and intermediate-aged stars and are thus not related to AGNs,but to the population of‘retired galaxies’recently identified by Cid Fernandes et al.in the Sloan Digital Sky Survey(SDSS) .Early-type LINERs with various fractions of A stars and E+A galaxies appear to play an important role in the formation of the red sequence.展开更多
Large-scale magnetic structures are the main carrier of major eruptions in the solar atmosphere. These structures are rooted in the photosphere and are driven by the unceasing motion of the photospheric material throu...Large-scale magnetic structures are the main carrier of major eruptions in the solar atmosphere. These structures are rooted in the photosphere and are driven by the unceasing motion of the photospheric material through a series of equilibrium configurations. The motion brings energy into the coronal magnetic field until the system ceases to be in equilibrium. The catastrophe theory for solar eruptions indicates that loss of mechanical equilibrium constitutes the main trigger mechanism of major eruptions, usually shown up as solar flares, eruptive prominences, and coronal mass ejections (CMEs). Magnetic reconnection which takes place at the very beginning of the eruption as a result of plasma instabilities/turbulence inside the current sheet, converts magnetic energy into heating and kinetic energy that are responsible for solar flares, and for accelerating both plasma ejecta (flows and CMEs) and energetic particles. Various manifestations are thus related to one another, and the physics behind these relationships is catastrophe and magnetic reconnection. This work reports on recent progress in both theoretical research and observations on eruptive phenomena showing the above manifestations. We start by displaying the properties of large-scale structures in the corona and the related magnetic fields prior to an eruption, and show various morphological features of the disrupting magnetic fields. Then, in the framework of the catastrophe theory, we look into the physics behind those features investigated in a succession of previous works, and discuss the approaches they used.展开更多
文摘Iron-nitride films were prepared by reactive sputtering, and the effect of annealing treatment on the structures was investigated by means of in-situ electron microscopy and high resolution electron microscopy (HREM). As-deposited films were observed to be a mixed structure of a few ultrafine epsilon-Fe2-3N particles existing in the amorphous matrix. it was found that the structure-relaxation in the amorphous occurred at 473 K, and the ultrafine grains began to grow at the higher annealing temperatures. The transition of the amorphous to epsilon-Fe2-3N was almost completed at 673 K. It is considered that the formation of the ideal epsilon-Fe3N is originated from the ordering of the nitrogen atoms during the annealing in vacuum. On the other hand, gamma'-phase (Fe4N) was seen to precipitation of epsilon-phase at 723 K. Two possible modes are proposed in the precipitation of gamma'-phase, depending on the heating rate and crystallographic orientation relationships, i.e. [121](epsilon)//[001](gamma), (2(1) over bar0$)(epsilon)//(110)(gamma) and [100](epsilon)//[110](gamma), (001)(epsilon)//(111)(gamma). In addition, alpha-Fe particles were observed to form from the gamma'-phase at high temperatures. We assumed that these structural changes are due to the diffusion of nitrogen and iron atoms during the annealing, except for the case of the precipitation of the gamma'-phase as depicted above. The results obtained in this work are in a good agreement with the assumption.
文摘Two adaptive friction compensation schemes are developed for a high precision turntable system with nonlinear dynamic friction to handle two types of parametric uncertainties in the friction. Both schemes utilize a nonlinear observer/filter structure to compensate for uncertainties in corresponding friction parameters associated with the turntable system. Moreover, in the second scheme, adjustable gains are introduced into the dual nonlin- ear filters and they can be tuned to improve the position tracking performance. In both cases, a Lyapunov-like argument is provided for the global asymptotic stability of the closed-loop system. Simulation results demonstrate the effectiveness of the proposed schemes.
文摘This paper deals with the design of an observer-based nonlinear control for continuous stirred tank reactors(CSTR).A variable structure observer is constructed to estimate the whole process state variables.This observer is basically the conventional Luenberger observer with an additional switching term used to guarantee the robustness against modeling errors.The observer is coupled with a nonlinear controller,designed based on input-output linearization for controlling the reactor temperature.The asymptotical stability of the closed-loop system is shown by the Lyapunov stability theorem.Finally,computer simulations are developed for showing the performance of the proposed approach.
文摘Nonlinear sliding m ode predictive controller is designed for a class of nonlinear system w ith unm odeled dynam ic characteristics and nonlinear term . The m ethod is based on nonlinear opti- m alpredictive control. The variable structure controllaw m inim izes the quadratic index ofa predic- tive sliding m ode, w hich contains thecostfunction ofcontrolpreventing the controleffectfrom satu- ration for in m ostpracticalim plem entation the controlinputs are bounded by physicalconstraints and energy constraints. According to the im m easurable states, the variable structure observer for nonlin- ear system sisadapted. The variablestructure system m ethod isaptto therealization ofobserverw ith variable param eters and uncertainty. The proofshow s thatthe states ofthe observer asym ptotically convergence to the realstates ofthe system although itisofuncertainty and nonlinear term s. Final- ly, the digitalsim ulation results prove the effectiveness ofthe proposed m ethod.
基金Project supported by the National Natural Science Foundation of China under a key grant (No.10332030)the Research Fund for the Doctoral Program of Higher Education of China (No.20060335125)the Zhejiang Provincial Natural Science Foundation of China (No.Y607087).
文摘A feedback control optimization method of partially observable linear structures via stationary response is proposed and analyzed with linear building structures equipped with control devices and sensors. First, the partially observable control problem of the structure under horizontal ground acceleration excitation is converted into a completely observable control problem. Then the It6 stochastic differential equations of the system are derived based on the stochastic averaging method for quasi-integrable Hamiltonian systems and the stationary solution to the Fokker-Plank-Kolmogorov (FPK) equation associated with the It6 equations is obtained. The performance index in terms of the mean system energy and mean square control force is established and the optimal control force is obtained by minimizing the performance index. Finally, the numerical results for a three-story building structure model under E1 Centro, Hachinohe, Northridge and Kobe earthquake excitations are given to illustrate the application and the effectiveness of the proposed method.
文摘With the help of skew-symmetric differential forms, the hidden properties of the mathematical physics equations that describe discrete quantum transitions and emergence the physical structures are investigated. It is shown that the mathematical physics equations possess a unique property. They can describe discrete quantum transitions, emergence of physical structures and occurrence observed formations. However, such a property possesses only equations on which no additional conditions, namely, the conditions of integrability, are imposed. The intergrability conditions are realized from the equations themselves. Just under realization of integrability conditions double solutions to the mathematical physics equations, which describe discrete transitions and so on, are obtained. The peculiarity consists in the fact that the integrability conditions do not directly follow from the mathematical physics equations;they are realized under the description of evolutionary process. The hidden properties of differential equations were discovered when studying the integrability of differential equations of mathematical physics that depends on the consistence between the derivatives in differential equations along different directions and on the consistence of equations in the set of equations. The results of this work were obtained with the help of skew-symmetric differential forms that possess a nontraditional mathematical apparatus such as nonidentical relations, degenerate transformations and the transition from nonintegrable manifolds to integrable structures. Such results show that mathematical physics equations can describe quantum processes.
文摘A new way of probing the large-scale structure of the universe is proposed. Space is partitioned into cells the shape of rhombic dodecahedron. The cells are labelled 'filled' or 'empty' according as they contain galaxies or not. The cell size is so chosen as to have nearly equal numbers of filled and empty cells for the given galaxy sample. Two observables on each cell are definable: the number of its like neighbors, n1, and a two-suffixed topological type τ, the suffixes being the numbers of its like and unlike neighbor-groups. The frequency distributions of n1 and T in the observed set of filled (empty) cells are then considered as indicators of the morphology of the set. The method is applied to the CfA catalogue of galaxies as an illustration. Despite its limited size, the data offers evidence 1) that the empty cells are more strongly clustered than the filled cells, and 2) that the filled cells, but not the empty cells, have a tendency to occur in sheets. Further directions of development both in theory and application are indicated.
文摘The paper is focused on different kinds of gravity results obtained in Shults Cape Observatory for 2010 -2015. Gravity observation is interpreted together with GPS observation data which was obtained from 2012 to 2015 at the same station, The station is situated on Gamov peninsular (42.58° N, 131.15° E, Russia) at the coast of Japan Sea, This region constitutes the eastern boundary of Eurasia. This major continental tectonic feature is associated with a seismic activity, high heat flow and anomalous thickness of earth's crust. The goal of the observation was the investigation of gravity variation with time and seismicity situation monitoring. Gravity observation was developed at special basement by absolute gravimeter (GABL type) and by spring gravimeter (SCINREX CG-5and gPhone type). Tidal models were tested by results of observation with spring gravimeters. Reduction task was solved, as the experimental data received from different points of Shults Cape Observatory was used. Applied reduction coefficient is 203.3 12Gal m l, and agrees with theoretical calculation. Next goal was studying structure of earth's crust by means of gravity models. Gravity anomaly varied from 30 mGal to 46 mGal, which also depend on difference reference system, Experimental results were used for testing of the structure of continental boundary, which also depends on the sea bottom flexion. Thickness of elastic layer was estimated from 12 km to 18 km by using different models.
基金Supported by the National Natural Science Foundation of China(Grant Nos.10878010,10221001 and 10633040)the National Basic Research Program(973 program,No.2007CB815405)
文摘We present galactic spectroscopic data from a pencil beam of 10.75×7.5 centered on the X-ray cluster RXJ0054.0–2823 at z=0.29.We study the spectral evolution of galaxies from z=1 down to the cluster redshift in a magnitude-limited sample at R≤23,for which the statistical properties of the sample are well understood.We divide emission-line galaxies into star-forming galaxies,Low Ionization Nuclear Emission line Regions(LINERs) ,and Seyferts by using emission-line ratios of[OII],Hβ,and[OIII],and derive stellar fractions from population synthesis models. We focus our analysis on absorption and low-ionization galaxies.For absorption-line galaxies,we recover the well-known result that these galaxies have had no detectable evolution since z~0.6-0.7,but we also find that in the range z=0.65-1,at least 50% of the stars in bright absorption systems are younger than 2.5 Gyr.Faint absorption-line galaxies in the cluster at z=0.29 also had significant star formation during the previous 2-3 Gyr,but their brighter counterparts seem to be only composed of old stars.At z~0.8,our dynamically young cluster had a truncated red-sequence.This result seems to be consistent with a scenario where the final assembly of E/S0 took place at z1.In the volume-limited range 0.35≤z≤0.65,we find that 23% of the early-type galaxies have LINER-like spectra with Hβin absorption and have a significant component of A stars.The vast majority of LINERs in our sample have significant populations of young and intermediate-aged stars and are thus not related to AGNs,but to the population of‘retired galaxies’recently identified by Cid Fernandes et al.in the Sloan Digital Sky Survey(SDSS) .Early-type LINERs with various fractions of A stars and E+A galaxies appear to play an important role in the formation of the red sequence.
基金the National Natural Science Foundation of China.
文摘Large-scale magnetic structures are the main carrier of major eruptions in the solar atmosphere. These structures are rooted in the photosphere and are driven by the unceasing motion of the photospheric material through a series of equilibrium configurations. The motion brings energy into the coronal magnetic field until the system ceases to be in equilibrium. The catastrophe theory for solar eruptions indicates that loss of mechanical equilibrium constitutes the main trigger mechanism of major eruptions, usually shown up as solar flares, eruptive prominences, and coronal mass ejections (CMEs). Magnetic reconnection which takes place at the very beginning of the eruption as a result of plasma instabilities/turbulence inside the current sheet, converts magnetic energy into heating and kinetic energy that are responsible for solar flares, and for accelerating both plasma ejecta (flows and CMEs) and energetic particles. Various manifestations are thus related to one another, and the physics behind these relationships is catastrophe and magnetic reconnection. This work reports on recent progress in both theoretical research and observations on eruptive phenomena showing the above manifestations. We start by displaying the properties of large-scale structures in the corona and the related magnetic fields prior to an eruption, and show various morphological features of the disrupting magnetic fields. Then, in the framework of the catastrophe theory, we look into the physics behind those features investigated in a succession of previous works, and discuss the approaches they used.