期刊文献+
共找到151篇文章
< 1 2 8 >
每页显示 20 50 100
Structural phase transition and transport properties in topological material candidate NaZn_(4)As_(3)
1
作者 董庆新 阮彬彬 +7 位作者 黄奕飞 王义炎 张黎博 白建利 刘乔宇 程靖雯 任治安 陈根富 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期447-453,共7页
We report a comprehensive study on a layered-structure compound of NaZn_(4)As_(3),which has been predicted to be an ideal topological semimetal(TSM) candidate.It is found that NaZn_(4)As_(3) undergoes a structural tra... We report a comprehensive study on a layered-structure compound of NaZn_(4)As_(3),which has been predicted to be an ideal topological semimetal(TSM) candidate.It is found that NaZn_(4)As_(3) undergoes a structural transformation from high temperature rhombohedral to a low temperature monoclinic phase.The electric resistivity exhibits a metal-to-insulatorlike transition at around 100 K,and then develops a plateau at low temperature,which might be related to the protected topologically conducting surface states.Our first-principles calculation confirms further that NaZn_(4)As_(3) is a topological insulator(TI) for both different phases rather than a previously proposed TSM.The Hall resistivity reveals that the hole carriers dominate the transport properties for the whole temperature range investigated.Furthermore,an obvious kink possibly associated to the structure transition has been detected in thermopower around ~ 170 K.The large thermopower and moderate κ indicate that NaZn_(4)As_(3) and/or its derivatives can provide a good platform for optimizing and studying the thermoelectric performance. 展开更多
关键词 structural phase transition THERMOELECTRIC topological materials crystal growth
下载PDF
Structural Phase Transitions of ZnTe under High Pressure Using Experiments and Calculations
2
作者 程虎 李延春 +1 位作者 李工 李晓东 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第9期95-99,共5页
The pressure-induced structural transitions of ZnTe are investigated at pressures up to 59.2 GPa in a diamond anvil cell by using synchrotron powder x-ray diffraction method. A phase transition from the initial zinc b... The pressure-induced structural transitions of ZnTe are investigated at pressures up to 59.2 GPa in a diamond anvil cell by using synchrotron powder x-ray diffraction method. A phase transition from the initial zinc blende (ZB, ZnTe-Ⅰ) structure to a cinnabar phase (ZnTe-Ⅱ) is observed at 9.6 GPa, followed by a high pressure orthorhombic phase (ZnTe-Ⅲ) with Cmcm symmetry at 12.1 GPa. The ZB, cinnabar (space group P3121), Cmcm, P31 and rock salt structures of ZnTe are investigated by using density functional theory calculations. Based on the experiments and calculations, the ZnTe-Ⅱ phase is determined to have a cinnabar structure rather than a P3 1 symmetry. 展开更多
关键词 ZNTE of structural phase Transitions of ZnTe under High Pressure Using Experiments and Calculations in
下载PDF
Structural phase transition, precursory electronic anomaly, and strong-coupling superconductivity in quasi-skutterudite (Sr1-xCax)3Ir4Sn13 and Ca3Rh4Sn13
3
作者 Jun Luo Jie Yang +2 位作者 S Maeda Zheng Li Guo-Qing Zheng 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第7期163-170,共8页
The interplay between superconductivity and structural phase transition has attracted enormous interest in recent years. For example, in Fe-pnictide high temperature superconductors, quantum fluctuations in associatio... The interplay between superconductivity and structural phase transition has attracted enormous interest in recent years. For example, in Fe-pnictide high temperature superconductors, quantum fluctuations in association with structural phase transition have been proposed to lead to many novel physical properties and even the superconductivity itself. Here we report a finding that the quasi-skutterudite superconductors (Sr1-xCax)3Ir4Sn13 (x = 0, 0.5, 1) and Ca3Rh4Snl3 show some unusual properties similar to the Fe-pnictides, through 119Sn nuclear magnetic resonance (NMR) measurements. In (Sr1-xCax)3Ir4Sn13, the NMR linewidth increases below a temperature T* that is higher than the structural phase transition temperature Ts. The spin-lattice relaxation rate (1/T1 ) divided by temperature (T), 1/TI T and the Knight shift K increase with decreasing T down to T*, but start to decrease below T*, and followed by more distinct changes at Ts. In contrast, none of the anomalies is observed in Ca3Rh4Sn13 that does not undergo a structural phase transition. The precursory phenomenon above the structural phase transition resembles that occurring in Fe-pnictides. In the superconducting state of Ca3Ir4Sn13, 1/T1 decays as exp(-△/kBT) with a large gap △ = 2.21kBTc, yet without a Hebel-Slichter coherence peak, which indicates strong-coupling superconductivity. Our results provide new insight into the relationship between superconductivity and the electronic-structure change associated with structural phase transition. 展开更多
关键词 nuclear magnetic resonance antiferromagnetic fluctuation structural phase transition phase diagram
下载PDF
Structural Phase Transition and a Mutation of Electron Mobility in Zn_xCd_(1-x)O Alloys
4
作者 Ya-Wei Zhang Kai-Ke Yang Hui-Xiong Deng 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第5期87-90,共4页
We investigate the electronic structures and phase stability of ZnO, CdO and the related alloys in rocksalt(B1)and wurzite(B4) crystal, using the first-principle density functional theory within the hybrid functio... We investigate the electronic structures and phase stability of ZnO, CdO and the related alloys in rocksalt(B1)and wurzite(B4) crystal, using the first-principle density functional theory within the hybrid functional approximation. By varying the concentration of Zn components from 0% to 100%, we find that the Zn_xCd(1-x)O alloy undergoes a phase transition from octahedron to tetrahedron at x = 0.32, in agreement with the recent experimental findings. The phase transition leads to a mutation of the electron mobility originated from the changes of the effective mass. Our results qualify Zn O/Cd O alloy as an attractive candidate for photo-electrochemical and solar cell power applications. 展开更多
关键词 structural phase Transition and a Mutation of Electron Mobility in Zn_xCd x)O Alloys ZN
下载PDF
Structural Phase Transition in Nanostructured TiO_2
5
作者 Xisheng YE Jian SHA and Zhengkuan JIAO(Dept. of Physics, Zhejiang University, Hangzhou 310027. China)Zifei PENG and Lide ZHANG(Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1997年第4期359-360,共2页
Using DTA (difFerential thermal analysis) measurement on nanostructured TiO2, we find two endothermic peaks on the DTA curve. From XRD (X-ray diffraction) analysis of the original nanostructured TiO2 and its heat-trea... Using DTA (difFerential thermal analysis) measurement on nanostructured TiO2, we find two endothermic peaks on the DTA curve. From XRD (X-ray diffraction) analysis of the original nanostructured TiO2 and its heat-treated samples, we obtain the following results: the first endothermic peak corresponds to the desorption of physical or chemical absorption, the second one is related to the structural phase transition from brookite to anatase then to rutile, and this structural phase transition is beneficial to the grain growth of nanocrystal 展开更多
关键词 TIO structural phase Transition in Nanostructured TiO2
下载PDF
Structural phase transition in a new organic-inorganic hybrid post-perovskite:(N,N-dimethylpyrrolidinium)[Mn(N(CN)_(2))_(3)]
6
作者 Le Ye Wei-Xiong Zhang 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2024年第6期40-44,共5页
In the realm of molecular phase transition research,particularly for applications in sensors,data storage and switching technologies,the role of organic-inorganic hybrid perovskite materials has been increasingly reco... In the realm of molecular phase transition research,particularly for applications in sensors,data storage and switching technologies,the role of organic-inorganic hybrid perovskite materials has been increasingly recognized for their significant potential.Nevertheless,hybrid post-perovskites,as a critical subclass of perovskites,have not been thoroughly studied and mainly limit in the instances based on polyatomic bridging agents like dicyanamide(dca^(-))and non-cyclic organic cations.Herein,a polar cyclic quaternary ammonium cation,N,N-dimethylpyrrolidinium(DMP^(+)),was used to assemble a new hybrid post-perovskite,(DMP)[Mn(dca)_(3)](1),which undergoes a phase transition from orthorhombic Bmmb to monoclinic P2_(1)/n space group at 249 K.By employing multiple techniques such as differential scanning calorimetry,variable-temperature single-crystal X-ray analysis,dielectric measurements,and Hirshfeld surface analysis,we disclosed the role of polar cyclic quaternary ammonium DMP^(+)in elevating the phase-transition temperature by 48 K,generating significant dielectric switching effect and facilitating interlayer sliding of inorganic framework. 展开更多
关键词 structural phase transitions Dielectric switching Organic-inorganic hybrid crystals Post-perovskites
原文传递
Correlation between structural phase transition and physical properties of Co^(2+)/Gd^(3+)co-substituted copper ferrite 被引量:1
7
作者 Mohsen Choupani Ahmad Gholizadeh 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第7期1344-1353,I0006,共11页
The doping of the spinel ferrites with selective cations usually improves the properties of the parent ferrite.The effect of Co^(2+)/Gd^(3+)co-substitution on the microstructure,optical,and magnetic properties of Cu1-... The doping of the spinel ferrites with selective cations usually improves the properties of the parent ferrite.The effect of Co^(2+)/Gd^(3+)co-substitution on the microstructure,optical,and magnetic properties of Cu1-xCoxFe2-xGdxO4 prepared by the citrate-nitrate auto-combustion synthesis was investigated.Characterization of the samples was performed with powder X-ray diffraction(XRD),Raman and Fouriertransform infrared(FTIR)spectroscopy,field-emission scanning electron microscopy,X-ray energydispersive spectroscopy,UV-Vis spectroscopy,and a vibrating sample magnetometer.The results of XRD,Raman,and FTIR analysis show a gradual structural phase transition from a tetragonal(I41/amd)structure to a cubic(Fd3m)structure.The bandgap energy of the studied samples is in a range of 1.57-1.75 eV with a minimum in sample x=0.06 and then increases.Magnetic investigations show that the presence of Co^(2+)/Gd^(3+)cations in an octahedral site of the copper ferrite structure could increase saturation magnetization and coercive field from 567.9 Oe and 23.62 emu/g to 929.4 Oe and 28.27 emu/g,respectively. 展开更多
关键词 Spinel copper ferrite Citrate-nitrate method Structure phase transition Microstructure properties Magnetic properties Rare earths
原文传递
Surface depletion field in 2D perovskite microplates: Structural phase transition, quantum confinement and Stark effect 被引量:2
8
作者 Wancai Li Chen Fang +6 位作者 Haizhen Wang Shuai Wang Junze Li Jiaqi Ma Jun Wang Hongmei Luo Dehui Li 《Nano Research》 SCIE EI CAS CSCD 2019年第11期2858-2865,共8页
Surface depletion field would introduce the depletion region near surface and thus could significantly alter the optical,electronic and optoelectronic properties of the materials,especially low-dimensional materials.T... Surface depletion field would introduce the depletion region near surface and thus could significantly alter the optical,electronic and optoelectronic properties of the materials,especially low-dimensional materials.Two-dimensional(2D)organic—inorganic hybrid perovskites with van der Waals bonds in the out-of-plane direction are expected to have less influence from the surface depletion field;nevertheless,studies on this remain elusive.Here we report on how the surface depletion field affects the structural phase transition,quantum confinement and Stark effect in 2D(BA)2PbI4 perovskite microplates by the thickness-,temperature-and power-dependent photoluminescence(PL)spectroscopy.Power dependent PL studies suggest that high-temperature phase(HTP)and low-temperature phase(LTP)can coexist in a wider temperature range depending on the thickness of the 2D perovskite microplates.With the decrease of the microplate thickness,the structural phase transition temperature first gradually decreases and then increases below 25 nm,in striking contrast to the conventional size dependent structural phase transition.Based on the thickness evolution of the emission peaks for both high-temperature phase and low-temperature phase,the anomalous size dependent phase transition could probably be ascribed to the surface depletion field and the surface energy difference between polymorphs.This explanation was further supported by the temperature dependent PL studies of the suspended microplates and encapsulated microplates with graphene and boron nitride flakes.Along with the thickness dependent phase transition,the emission energies of free excitons for both HTP and LTP with thickness can be ascribed to the surface depletion induced confinement and Stark effect. 展开更多
关键词 two-dimensional(2D)perovskite thickness surface depletion field structural phase transition quantum confinement Stark effect
原文传递
Desolvation–Solvation-Induced Reversible On–Off Switching of Two Memory Channels in a Cobalt(II) Coordination Polymer: Overlay of Spin Crossover and Structural Phase Transition 被引量:1
9
作者 Yi-Fei Deng Yi-Nuo Wang +1 位作者 Xin-Hua Zhao Yuan-Zhu Zhang 《CCS Chemistry》 CAS 2022年第9期3064-3075,共12页
The engineering of switchable materials with controllable stimuli-responsive multistability remains challenging in materials science.Herein,we present syntheses and structural and magnetic studies of a one-dimensional... The engineering of switchable materials with controllable stimuli-responsive multistability remains challenging in materials science.Herein,we present syntheses and structural and magnetic studies of a one-dimensional cobalt(Ⅱ)coordination polymer[(enbzp)Co(bpy)](ClO_(4))_(2)·-MeOH·H2O(1;enbzp=N,N′-(ethane-1,2-diyl)bis(1-phenyl-1-(pyridin-2-yl)methanimine,bpy=4,4′-bipyridine)and its desolvated analogue[(enbzp)Co(bpy)](ClO_(4))_(2)(2),obtained by reversible single-crystal-to-single-crystal(SCSC)transformation. 展开更多
关键词 single-crystal-to-single-crystal transformation spin crossover structural phase transition scan-rate selectivity switchable materials
原文传递
Structural phase transition, antiferromagnetism and two superconducting domes in LaFeAsO_(1-x)F_x(0
10
作者 Jie Yang Toshihide Oka +4 位作者 Zheng Li HuaiXin Yang JianQi Li GenFu Chen Guo-Qing Zheng 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2018年第11期72-83,共12页
We report^(75) As nuclear magnetic resonance(NMR)/nuclear quadrupole resonance(NQR) and transmission electron microscopy(TEM) studies on LaFeAsO_(1-x)F_x. There are two superconducting domes in this material. The firs... We report^(75) As nuclear magnetic resonance(NMR)/nuclear quadrupole resonance(NQR) and transmission electron microscopy(TEM) studies on LaFeAsO_(1-x)F_x. There are two superconducting domes in this material. The first one appears at 0.03 ≤ x ≤0.2 with T_c^(max) = 27 K, and the second one at 0.25 ≤x≤0.75 with T_c^(max) = 30 K. By NMR and TEM, we demonstrate that a C4-to-C2 structural phase transition(SPT) takes place above both domes, with the transition temperature T_s varying strongly with x. In the first dome, the SPT is followed by an antiferromagnetic(AF) transition, but neither AF order nor low-energy spin fluctuations are found in the second dome. By ^(75) As nuclear spin-lattice relaxation rate(1/T_1) measurements, we find that AF order and superconductivity coexist microscopically in LaFeAsO_(0.97) F_(0.03). In the coexisting region, 1/T_1 decreases at T_c but becomes proportional to T below 0.6 T_c, indicating gapless excitations. Therefore, in contrast to the early reports, the obtained phase diagram for x ≤ 0.2 is quite similar to the doped BaFe_2As_2 system. The electrical resistivity p in the second dome can be fitted by ρ = ρ0 + AT^n with n = 1 and a maximal coefficient A at around xopt = 0.5-0.55 at which T_s extrapolates to zero and Tc is the maximal, which suggests the importance of quantum critical fluctuations associated with the SPT. We have constructed a complete phase diagram of LaFeAsO_(1-x)F_x, which provides insight into the relationship between SPT, antiferromagnetism and superconductivity. 展开更多
关键词 nuclear magnetic resonance ANTIFERROMAGNETISM SUPERCONDUCTIVITY structural phase transition
原文传递
Structural Evolution and Phase Change Properties of C-Doped Ge_2Sb_2Te_5 Films During Heating in Air 被引量:1
11
作者 郑龙 杨幸明 +4 位作者 胡益丰 翟良君 薛建忠 朱小芹 宋志棠 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第12期41-44,共4页
We elucidate the importance of a capping layer on the structural evolution and phase change properties of carbondoped Ge2 Sb2 Te5(C-GST) films during heating in air. Both the C-GST films without and with a thin SiO2... We elucidate the importance of a capping layer on the structural evolution and phase change properties of carbondoped Ge2 Sb2 Te5(C-GST) films during heating in air. Both the C-GST films without and with a thin SiO2 capping layer(C-GST and C-GST/SiO2) are deposited for comparison. Large differences are observed between C-GST and C-GST/SiO2 films in resistance-temperature, x-ray diffraction, x-ray photoelectron spectroscopy,Raman spectra, data retention capability and optical band gap measurements. In the C-GST film, resistancetemperature measurement reveals an unusual smooth decrease in resistance above 110℃ during heating. Xray diffraction result has excluded the possibility of phase change in the C-GST film below 170℃. The x-ray photoelectron spectroscopy experimental result reveals the evolution of Te chemical valence because of the carbon oxidation during heating. Raman spectra further demonstrate that phase changes from an amorphous state to the hexagonal state occur directly during heating in the C-GST film. The quite smooth decrease in resistance is believed to be related with the formation of Te-rich GeTe4-n Gen(n = 0, 1) units above 110℃ in the C-GST film. The oxidation of carbon is harmful to the C-GST phase change properties. 展开更多
关键词 GST structural Evolution and phase Change Properties of C-Doped Ge2Sb2Te5 Films During Heating in Air Sb
下载PDF
Phase structure and electrochemical properties of La_(0.7)Ce_(0.3)Ni_(3.75)Mn_(0.35)Al_(0.15)Cu_(0.75-x)Fe_x hydrogen storage alloys 被引量:2
12
作者 刘宝忠 李安铭 +2 位作者 范燕平 胡梦娟 张宝庆 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第11期2730-2735,共6页
La0.7Ce0.3Ni3.75Mn0.35Al0.15Cu0.75-xFex (x=0-0.20) hydrogen storage alloys were synthesized by induction melting and subsequent annealing treatment, and phase structure and electrochemical characteristics were inves... La0.7Ce0.3Ni3.75Mn0.35Al0.15Cu0.75-xFex (x=0-0.20) hydrogen storage alloys were synthesized by induction melting and subsequent annealing treatment, and phase structure and electrochemical characteristics were investigated. All alloys consist of a single LaNi5 phase with CaCu5 structure, and the lattice constant a and the cell volume (V) of the LaNi5 phase increase with increasing x value. The maximum discharge capacity gradually decreases from 319.0 mA?h/g (x=0) to 291.9 mA?h/g (x=0.20) with the increase in x value. The high-rate dischargeability at the discharge current density of 1200 mA/g decreases monotonically from 53.1% (x=0) to 44.2% (x=0.20). The cycling stability increases with increasing x from 0 to 0.20, which is mainly ascribed to the improvement of the pulverization resistance. 展开更多
关键词 hydrogen storage alloy AB5-type hydrogen storage alloys phase structures electrochemical property KINETICS Ni-MH battery LaNi5 phase
下载PDF
First principles study of structural, electronic and mechanical properties of transition metal hydrides(TMH, TM=Mo,Tc, Ru) 被引量:3
13
作者 G. SUDHA PRIYANGA A.T.ASVINI MEENAATCI +1 位作者 R. RAJESWARA PALANICHAMY K.IYAKUTTI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第9期2700-2707,共8页
The structural, electronic and mechanical properties of transition metal hydrides (TMH, TM=Mo, Tc, Ru) are investigated by means of first principles calculation based on density fimctional theory with generalized gr... The structural, electronic and mechanical properties of transition metal hydrides (TMH, TM=Mo, Tc, Ru) are investigated by means of first principles calculation based on density fimctional theory with generalized gradient approximation. Among the five crystallographic structures that have been investigated, the cubic phase is found to be more stable than the hexagonal ones. A structural phase transition from ZB to WC in Moll, NaC1 to NiAs in TcH and NaCI to ZB to NiAs in RuH is also predicted under high pressure. The calculated elastic constants indicate that all the three hydrides are mechanically stable at ambient pressure. 展开更多
关键词 ab-initio method structural phase transition electronic properties elastic property
下载PDF
Microstructure and phase composition of as-cast Mg-9Er-6Y-xZn-0.6Zr alloys
14
作者 王敬丰 宋鹏飞 +1 位作者 潘复生 周小蒽 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期889-895,共7页
The microstructure and phase composition of as-cast Mg-9Er-6Y-xZn-0.6Zr (x=1, 2, 3, 4; normal mass fraction in %) alloys were investigated. In low Zn content, aside from the major second phase of Mg24(Er, Y, Zn)5,... The microstructure and phase composition of as-cast Mg-9Er-6Y-xZn-0.6Zr (x=1, 2, 3, 4; normal mass fraction in %) alloys were investigated. In low Zn content, aside from the major second phase of Mg24(Er, Y, Zn)5, there are a few lamellar phases that grow parallel with each other from the grain boundaries to the grain interior. With Zn content increasing, the Mg24(Er, Y, Zn)5 phase decreases, but the Mg12Zn(Y, Er) phase and lamellar phases continuously increase. When Zn content reaches 4% (normal mass fraction), the Mg12Zn(Y, Er) phase mainly exists as large bulks, and some a-Mg grains are thoroughly penetrated by the lamellar phases. Moreover, the crystallography structures of the Mgl2Zn(Y, Er) and Mg24(Er, Y, Zn)5 phases are confirmed as 18R-type long-period stacking ordered structure and body-centred cubic structure, respectively. 展开更多
关键词 magnesium alloys MICROSTRUCTURE phase composition long-period stacking ordered (LPSO) structure phase
下载PDF
Effect of f–c hybridization on theγ→αphase transition of cerium studied by lanthanum doping
15
作者 Yong-Huan Wang Yun Zhang +19 位作者 Yu Liu Xiao Tan Ce Ma Yue-Chao Wang Qiang Zhang Deng-Peng Yuan Dan Jian Jian Wu Chao Lai Xi-Yang Wang Xue-Bing Luo Qiu-Yun Chen Wei Feng Qin Liu Qun-Qing Hao Yi Liu Shi-Yong Tan Xie-Gang Zhu Hai-Feng Song Xin-Chun Lai 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第8期165-172,共8页
The hybridization between the localized 4f level(f) with conduction(c) electrons in γ-Ce upon cooling has been previously revealed in single crystalline thin films experimentally and theoretically, whereas its influe... The hybridization between the localized 4f level(f) with conduction(c) electrons in γ-Ce upon cooling has been previously revealed in single crystalline thin films experimentally and theoretically, whereas its influence on the γ → α phase transition was not explicitly verified, due to the fact that the phase transition happened in the bulk-layer, leaving the surface in the γ phase. Here in our work, we circumvent this issue by investigating the effect of alloying addition of La on Ce, by means of crystal structure, electronic transport and angle resolved photoemission spectroscopy measurements, together with a phenomenological periodic Anderson model and a modified Anderson impurity model. Our current researches indicate that the weakening of f–c hybridization is the major factor in the suppression of γ → α phase transition by La doping. The consistency of our results with the effects of other rare earth and actinide alloying additions on the γ → α phase transition of Ce is also discussed. Our work demonstrates the importance of the interaction between f and c electrons in understanding the unconventional phase transition in Ce, which is intuitive for further researches on other rare earth and actinide metals and alloys with similar phase transition behaviors. 展开更多
关键词 structural phase transition molecular beam epitaxy ARPES f-electron system
下载PDF
Structural evolution and bandgap modulation of layeredβ-GeSe_(2)single crystal under high pressure
16
作者 Hengli Xie Jiaxiang Wang +6 位作者 Lingrui Wang Yong Yan Juan Guo Qilong Gao Mingju Chao Erjun Liang Xiao Ren 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第7期428-435,共8页
Germanium diselenide(GeSe_(2))is a promising candidate for electronic devices because of its unique crystal structure and optoelectronic properties.However,the evolution of lattice and electronic structure ofβ-GeSe_(... Germanium diselenide(GeSe_(2))is a promising candidate for electronic devices because of its unique crystal structure and optoelectronic properties.However,the evolution of lattice and electronic structure ofβ-GeSe_(2)at high pressure is still uncertain.Here we prepared high-qualityβ-GeSe_(2)single crystals by chemical vapor transfer(CVT)technique and performed systematic experimental studies on the evolution of lattice structure and bandgap ofβ-GeSe_(2)under pressure.High-precision high-pressure ultra low frequency(ULF)Raman scattering and synchrotron angle-dispersive x-ray diffraction(ADXRD)measurements support that no structural phase transition exists under high pressure up to 13.80 GPa,but the structure ofβ-GeSe_(2)turns into a disordered state near 6.91 GPa and gradually becomes amorphous forming an irreversibly amorphous crystal at 13.80 GPa.Two Raman modes keep softening abnormally upon pressure.The bandgap ofβ-GeSe_(2)reduced linearly from 2.59 eV to 1.65 eV under pressure with a detectable narrowing of 36.5%,and the sample under pressure performs the piezochromism phenomenon.The bandgap after decompression is smaller than that in the atmospheric pressure environment,which is caused by incomplete recrystallization.These results enrich the insight into the structural and optical properties ofβ-GeSe_(2)and demonstrate the potential of pressure in modulating the material properties of two-dimensional(2D)Ge-based binary material. 展开更多
关键词 high pressure structural phase transition Raman spectroscopy scattering layered material
下载PDF
Effect of stoichiometry and Cu-substitution on the phase structure and hydrogen storage properties of Ml-Mg-Ni-based alloys 被引量:8
17
作者 Yuan Li Yang Tao Quan Huo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第1期86-93,共8页
To improve the electrochemical properties of rare-earth-Mg-Ni-based hydrogen storage alloys, the effects of stoichiometry and Cu-substitution on the phase structure and thermodynamic properties of the alloys were stud... To improve the electrochemical properties of rare-earth-Mg-Ni-based hydrogen storage alloys, the effects of stoichiometry and Cu-substitution on the phase structure and thermodynamic properties of the alloys were studied. Nonsubstituted Ml0.80Mg0.20(Ni2.90Co0.50-Mn0.30Al0.30)x (x=0.68, 0.70, 0.72, 0.74, 0.76) alloys and Cu-substituted Ml0.80Mg0.20(Ni2.90Co0.50-yCuyMn0.30Al0.30)0.70 (y=0, 0.10, 0.30, 0.50) alloys were prepared by induction melting. Phase structure analysis shows that the nonsubstituted alloys consist of a LaNi5 phase, a LaNi3 phase, and a minor La2Ni7 phase;in addition, in the case of Cu-substitution, the Nd2Ni7 phase appears and the LaNi3 phase vanishes. Ther-modynamic tests show that the enthalpy change in the dehydriding process decreases, indicating that hydride stability decreases with in-creasing stoichiometry and increasing Cu content. The maximum discharge capacity, kinetic properties, and cycling stability of the alloy electrodes all increase and then decrease with increasing stoichiometry or increasing Cu content. Furthermore, Cu substitution for Co ame-liorates the discharge capacity, kinetics, and cycling stability of the alloy electrodes. 展开更多
关键词 hydrogen storage alloys electrode materials STOICHIOMETRY SUBSTITUTION phase structure thermodynamic properties electro-chemical properties
下载PDF
Phase structure and electrochemical properties of laser sintered La_2MgNi_9 hydrogen storage electrode alloys 被引量:3
18
作者 斯庭智 张庆安 刘 宁 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第4期598-603,共6页
Phase structure and electrochemical properties of laser sintered La2MgNi9 alloys were studied. The sintered alloys contained a main phase, LaNi5, and a ternary La-Mg-Ni phase, with a PuNi3 structure and a small amount... Phase structure and electrochemical properties of laser sintered La2MgNi9 alloys were studied. The sintered alloys contained a main phase, LaNi5, and a ternary La-Mg-Ni phase, with a PuNi3 structure and a small amount of LaMgNi4. The ternary La-Mg-Ni phase with a PuNi3 structure had the composition of La1.8Mg1.2Ni9 and La2MgNi9, for alloys laser sintered at 1000 and 1400 W, respectively. Owing to further reactions between LaNi5 and LaMgNi4, the amount of the PuNi3 phase increased for alloys sintered at 1400 W. Both alloys had good activation property (three charge/discharge cycles). The discharge capacities of the sintered alloys were 321.8 and 344.8 mAh/g, respectively. Compared with the alloy laser sintered at 1000 W, the poor cyclic stability of the alloy sintered at 1400 W was mainly attributed to the lower corrosion resistance of the La2MgNi9 phase. 展开更多
关键词 laser sintering La2MgNi9 alloy phase structure electrochemical property rare earths
下载PDF
Phase structure of ZK60-1Er magnesium alloy compressed at 450℃ 被引量:2
19
作者 王忠军 杨庆祥 乔军 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第B07期567-570,共4页
The phase structure of ZK60-1Er magnesium alloy thermally compressed at the temperature of 450℃ and the strain rate of 1×10 -4 s -1 was determined by transmission electron microscopy(TEM)and high-resolution elec... The phase structure of ZK60-1Er magnesium alloy thermally compressed at the temperature of 450℃ and the strain rate of 1×10 -4 s -1 was determined by transmission electron microscopy(TEM)and high-resolution electron microscopy(HREM).The results show that this magnesium alloy contains many new W phases(Mg3Zn3Er2,FCC structure)in the matrix.Those new W phases have two morphologies,either irregularly rectangular or rod morphology·Lattice constants of the two new W phases are slightly higher than those of W Phase(Mg3Zn3Y2)containing rare earth element of yttrium. 展开更多
关键词 ZK60 ER W phase magnesium alloy phase structure
下载PDF
Phase,microstructure and compressive properties of refractory high-entropy alloys CrHfNbTaTi and CrHfMoTaTi 被引量:2
20
作者 Jiaojiao Yi Fuyang Cao +3 位作者 Mingqin Xu Lin Yang Lu Wang Long Zeng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第6期1231-1236,共6页
New refractory high-entropy alloys,CrHfNbTaTi and CrHfMoTaTi,derived from the well-known HfNbTaTiZr alloy through principal element substitution were prepared using vacuum arc melting.The phase components,microstructu... New refractory high-entropy alloys,CrHfNbTaTi and CrHfMoTaTi,derived from the well-known HfNbTaTiZr alloy through principal element substitution were prepared using vacuum arc melting.The phase components,microstructures,and compressive properties of the alloys in the as-cast state were investigated.Results showed that both alloys were composed of BCC and cubic Laves phases.In terms of mechanical properties,the yield strength increased remarkably from 926 MPa for HfNbTaTiZr to 1258 MPa for CrHfNbTaTi,whereas a promising plastic strain of around 15.0%was retained in CrHfNbTaTi.The morphology and composition of the network-shaped interdendritic regions were closely related to the improved mechanical properties due to elemental substitution.Dendrites were surrounded by an incompact interdendritic shell after Mo incorporation,which deteriorated yield strength and accelerated brittleness. 展开更多
关键词 refractory high-entropy alloys phase structure MICROSTRUCTURE yield strength plastic strain
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部