The Archean North China Craton is composed of the Western Block,Eastern Block and the intervening Central Orogenic Belt.A 4-10 km wide and 85 km long tectonic mélange belt informally called the Zanhuang tectonic
Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurr...Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurrent Temporal Graph Convolution Networks(IndRT-GCNets)framework to efficiently and accurately capture event attribute information.The framework models the knowledge graph sequences to learn the evolutionary represen-tations of entities and relations within each period.Firstly,by utilizing the temporal graph convolution module in the evolutionary representation unit,the framework captures the structural dependency relationships within the knowledge graph in each period.Meanwhile,to achieve better event representation and establish effective correlations,an independent recurrent neural network is employed to implement auto-regressive modeling.Furthermore,static attributes of entities in the entity-relation events are constrained andmerged using a static graph constraint to obtain optimal entity representations.Finally,the evolution of entity and relation representations is utilized to predict events in the next subsequent step.On multiple real-world datasets such as Freebase13(FB13),Freebase 15k(FB15K),WordNet11(WN11),WordNet18(WN18),FB15K-237,WN18RR,YAGO3-10,and Nell-995,the results of multiple evaluation indicators show that our proposed IndRT-GCNets framework outperforms most existing models on knowledge reasoning tasks,which validates the effectiveness and robustness.展开更多
Peptides are functional active fragments of proteins which can provide nutrients needed for human growth and development,and they also have unique physiological activity characteristics relative to proteins.Bioactive ...Peptides are functional active fragments of proteins which can provide nutrients needed for human growth and development,and they also have unique physiological activity characteristics relative to proteins.Bioactive peptides contain a great deal of development potential.More specifically,food-derived bioactive peptides have the advantages of a wide variety of sources,unique structures,high efficiency and safety,so they have broad development prospects.This review provides an overview of the current advances regarding the preparation,functional characteristics,and structure–activity relationships of food-derived bioactive peptides.Moreover,the prospects for the future development and application of food-derived bioactive peptides are discussed.This review may provide a better understanding of foodderived bioactive peptides,and some constructive inspirations for further research and applications in the food industry.展开更多
The molecular electronegativity interaction vector (MEIV) was used to describe the molecular structure of 30 selected esters. Two excellent QSTR models were built up by using multiple linear regression (MLR) and p...The molecular electronegativity interaction vector (MEIV) was used to describe the molecular structure of 30 selected esters. Two excellent QSTR models were built up by using multiple linear regression (MLR) and partial least-squares regression (PLS). The correlation coefficients (R) of the two models were 0.945 and 0.941, respectively. The models were evaluated by performing the cross validation with the leave-one-out (LOO) procedure. The cross-verification correlation coefficients (RCV) of the two models were 0.921 and 0.919, respectively. The results showed that the models constructed in this work could provide estimation stability and favorable predictive ability.展开更多
New descriptors were constructed and structures of some oxygen-containing organic compounds were parameterized. The multiple linear regression(MLR) and partial least squares regression(PLS) methods were employed t...New descriptors were constructed and structures of some oxygen-containing organic compounds were parameterized. The multiple linear regression(MLR) and partial least squares regression(PLS) methods were employed to build two relationship models between the structures and octanol/water partition coefficients(LogP) of the compounds. The modeling correlation coefficients(R) were 0.976 and 0.922, and the "leave one out" cross validation correlation coefficients(R(CV)) were 0.973 and 0.909, respectively. The results showed that the structural descriptors could well characterize the molecular structures of the compounds; the stability and predictive power of the models were good.展开更多
The relationships between the structure of oxime compounds(R^(1)R^(2)C=NOH,R^(1)/R^(2)=alkyl groups) with different substituents and their corresponding flotation performances were studied. The analyses of density fun...The relationships between the structure of oxime compounds(R^(1)R^(2)C=NOH,R^(1)/R^(2)=alkyl groups) with different substituents and their corresponding flotation performances were studied. The analyses of density functional theory(DFT) calculations illustrated that the introduced phenyl group at the R^(1) position could enhance the acidity,while the heptyl group could effectively increase the hydrophobicity and benefit van der Waals interactions. Meanwhile,the introduced amino group at the R^(2) position could provide cationic sites to interact with negatively charged surfaces of minerals, while the introduced hydroxyl group could provide additional action sites to form stable chelates with metal ions. Based on the structure-activity relationships, structural optimization was carried out to obtain three efficient collectors, which possessed superior flotation separation performances, proving the effectiveness of the structural modification to oxime compounds in this work.展开更多
Selective hydrogenation of 1,3‐butadiene is an essential process in the upgrading of the crude C4 cut from the petroleum chemical sector.Catalyst design is crucial to achieve a virtually alkadiene‐free product while...Selective hydrogenation of 1,3‐butadiene is an essential process in the upgrading of the crude C4 cut from the petroleum chemical sector.Catalyst design is crucial to achieve a virtually alkadiene‐free product while avoiding over‐hydrogenating valuable olefins.In addition to the great industrial relevance,this demanding selectivity pattern renders 1,3‐butadiene hydrogenation a widely used model reaction to discriminate selective hydrogenation catalysts in academia.Nonetheless,critical reviews on the catalyst development are extremely lacking in literature.In this review,we aim to provide the reader an in‐depth overview of different catalyst families,particularly the precious metal‐based monometallic catalysts(Pd,Pt,and Au),developed in the last half century.The emphasis is placed on the development of new strategies to design high‐performance architectures,the establishment of structure‐performance relationships,and the reaction and deactivation mechanisms.Thrilling directions for future optimization of catalyst formulations and engineering aspect are also provided.展开更多
A new molecular structural characterization(MSC)method called molecular vertexes correlative index(MVCI)was constructed in this paper.The index was used to describe the structures of 45 compounds and a quantitativ...A new molecular structural characterization(MSC)method called molecular vertexes correlative index(MVCI)was constructed in this paper.The index was used to describe the structures of 45 compounds and a quantitative structure-activity relationship(QSAR)model of toxicity(–lgEC50)was obtained through multiple linear regression(MLR)and stepwise multiple regression(SMR).The correlation coefficient(R)of the model was 0.912,and the standard deviation(SD)of the model was 0.525.The estimation stability and prediction ability of the model were strictly analyzed by both internal and external validations.The Leave-One-Out(LOO)Cross-Validation(CV)correlation coefficient(RCV)was 0.816 and the standard deviation(SDCV)was 0.739,respectively.For the external validation,the correlation coefficient(Rtest)was 0.905 and the standard deviation(SDtest)was 0.520,respectively.The results showed that the index was superior in molecular structural representation.The stability and predictability of the model were good.展开更多
A quantitative structure–activity relationship(QSAR) was performed to analyze antimalarial activities against the D10 strains of Plasmodium falciparum of triazole-linked chalcone and dienone hybrid derivatives using ...A quantitative structure–activity relationship(QSAR) was performed to analyze antimalarial activities against the D10 strains of Plasmodium falciparum of triazole-linked chalcone and dienone hybrid derivatives using partial least squares regression coupled with stepwise forward–backward variable selection method. QSAR analyses were performed on the available IC50 D10 strains of Plasmodium falciparum data based on theoretical molecular descriptors. The QSAR model developed gave good predictive correlation coefficient(r2) of 0.8994, significant cross validated correlation coefficient(q2) of 0.7689, r2 for external test set)(2predr of 0.8256, coefficient of correlation of predicted data set)(2sepred,r of 0.3276. The model shows that antimalarial activity is greatly affected by donor and electron-withdrawing substituents. The study implicates that chalcone and dienone rings should have strong donor and electron-withdrawing substituents as they increase the activity of chalcone. Results show that the predictive ability of the model is satisfactory, and it can be used for designing similar group of antimalarial compounds. The findings derived from this analysis along with other molecular modeling studies will be helpful in designing of the new potent antimalarial activity of clinical utility.展开更多
Precisely tuning the spacing of the active centers on the atomic scale is of great significance to improve the catalytic activity and deepen the understanding of the catalytic mechanism,but still remains a challenge.H...Precisely tuning the spacing of the active centers on the atomic scale is of great significance to improve the catalytic activity and deepen the understanding of the catalytic mechanism,but still remains a challenge.Here,we develop a strategy to dilute catalytically active metal interatomic spacing(d_(M-M))with light atoms and discover the unusual adsorption patterns.For example,by elevating the content of boron as interstitial atoms,the atomic spacing of osmium(d_(Os-Os))gradually increases from 2.73 to 2.96?.More importantly,we find that,with the increase in dOs-Os,the hydrogen adsorption-distance relationship is reversed via downshifting d-band states,which breaks the traditional cognition,thereby optimizing the H adsorption and H_2O dissociation on the electrode surface during the catalytic process;this finally leads to a nearly linear increase in hydrogen evolution reaction activity.Namely,the maximum dOs-Os of 2.96?presents the optimal HER activity(8 mV@10 mA cm^(-2))in alkaline media as well as suppressed O adsorption and thus promoted stability.It is believed that this novel atomic-level distance modulation strategy of catalytic sites and the reversed hydrogen adsorption-distance relationship can shew new insights for optimal design of highly efficient catalysts.展开更多
The isolated secondary metabolites from 39 edible mushrooms are reported,among which 107 compounds were active,61 demonstrated antitubercular activities with IC_(50) range of 0.2-50μg/mL and 46 manifested antimalaria...The isolated secondary metabolites from 39 edible mushrooms are reported,among which 107 compounds were active,61 demonstrated antitubercular activities with IC_(50) range of 0.2-50μg/mL and 46 manifested antimalarial effects with IC_(50) range of 0.061-36μg/mL.While more than 2000 strains of edible mushrooms are identified,this review shows the paucity of research in these rich organisms featuring a vital culinary ingredient worldwide.A thorough search was conducted on basidiomycetes to discuss the chemistry and biology of the isolated compounds,structure activity relationships(SAR)as well as the cytotoxicity profiles of,primarily,the active anti-plasmodial and antitubercular molecules.With a safe cellular profile,lanostane triterpenoids were found to be the only molecules with combined activities against both diseases.SAR correlations reviewed here indicated the significance of 3β-and 7α-hydroxylation in the anti-tuberculosis activity and the terminal unsaturated moiety between C-4 and C-28 in the antimalarial activity in the same terpene skeleton.This review will attract the attention of medicinal chemists,and food scientists to optimize and rationalize the use of mushrooms both as unexploited sources of novel molecules and as nutraceuticals to treat two of the deadliest infectious diseases,malaria,and tuberculosis.展开更多
Methicillin-resistant Staphylococcus aureus (MRSA), the most common pathogen in hospital and community environments, can cause serious and even fatal infections. The antibiotics currently used for clinical treatment o...Methicillin-resistant Staphylococcus aureus (MRSA), the most common pathogen in hospital and community environments, can cause serious and even fatal infections. The antibiotics currently used for clinical treatment of MRSA have developed resistance, and there is an urgent need to develop new antimicrobials to treat infections caused by MRSA strains. Quinoline analogues play an important role in the development of antimicrobials. Herein, we discussed the current development of antibacterial activities of quinoline analogues, mainly for anti-MRSA activity, and their structure-activity relationships (SARs) from the perspective of using the quinoline nucleus to search for novel potential anti-MRSA candidates. Additionally, the mechanisms of some representative quinoline analogues against MRSA were clarified. Altogether, this review could provide further insights for the rational development of quinoline-based antibacterial drugs, especially against MRSA.展开更多
Human Notum(hNotum)inhibitors could be used for treating Wnt signalling-associated diseases including colorectal cancer.Herein,two series of chalcone derivatives were designed and synthesized aiming to find selective ...Human Notum(hNotum)inhibitors could be used for treating Wnt signalling-associated diseases including colorectal cancer.Herein,two series of chalcone derivatives were designed and synthesized aiming to find selective and potent hNotum inhibitors.Structure–activity relationship(SAR)studies showed that 2-methoxyl and 5-bromine substitutions on A-ring significantly enhanced anti-hNotum effect,while 4’-ethoxyl and 3’-alkyl substitutions on B-ring were beneficial for hNotum inhibition.Among all tested chalcones,B11 displayed the most potent anti-Notum effect(IC_(50)=3.6 nmol/L),good selectivity,excellent chemical stability and suitable metabolic stability.Further investigations showed that B11 acted as a competitive inhibitor of hNotum,while this agent(5μmol/L)significantly weaken the migration abilities of colorectal cancer cells.Collectively,this study deciphers the SARs of chalcones as hNotum inhibitors and reports a novel and potent hNotum inhibitor with the anti-migration effect on colorectal cancer cells,which offers a promising lead compound to develop novel anti-cancer agents.展开更多
The theoretical linear solvation energy relationship(TLSER) approach was adopted to predict the aqueous solubility and n -octanol/water partition coefficient of three groups of environmentally important chemicals-poly...The theoretical linear solvation energy relationship(TLSER) approach was adopted to predict the aqueous solubility and n -octanol/water partition coefficient of three groups of environmentally important chemicals-polychlorinated biphenyls(PCBs), polychlorinated dibenzodioxins and dibenzofurans(PCDDs and PCDFs). For each compound, five quantum parameters were calculated using AM1 semiempirical molecular orbital methods and used as structure descriptors: average molecular polarizability(α), energy of the lowest unoccupied molecular orbit( E _ LUMO ), energy of the highest occupied molecular orbit( E _ HOMO ), the most positive charge on a hydrogen atom( q _+), and the most negative atomic partial charge( q _-) in the solute molecule. Then standard independent variables in TLSER equation was extracted and two series of quantitative equations between these quantum parameters and aqueous solubility and n -octanol/water partition coefficient were obtained by stepwise multiple linear regression(MLR) method. The developed equations have both quite high accuracy and explicit meanings. And the cross-validation test illustrated the good predictive power and stability of the established models. The results showed that TLSER could be used as a promising approach in the estimation of partition and solubility properties of macromolecular chemicals, such as persistent organic pollutants.展开更多
To utilize themultiple functions and give full play of ginsenosides,a variety of ginsenosides with different structures were prepared into liposomes and evaluated for their effect on the stability,pharmacokinetics and...To utilize themultiple functions and give full play of ginsenosides,a variety of ginsenosides with different structures were prepared into liposomes and evaluated for their effect on the stability,pharmacokinetics and tumor targeting capability of liposomes.The results showed that the position and number of glycosyl groups of ginsenosides have significant effect on the in vitro and in vivo properties of their liposomes.The pharmacokinetics of ginsenosides liposomes indicated that the C-3 sugar group of ginsenosides is beneficial to their liposomes for longer circulation in vivo.The C-3 and C-6 glycosyls can enhance the uptake of their liposomes by 4T1 cells,and the glycosyls at C-3 position can enhance the tumor active targeting ability significantly,based on the specific binding capacity to Glut 1 expressed on the surface of 4T1 cells.According to the results in the study,ginsenoside Rg3 and ginsenoside Rh2 are potential for exploiting novel liposomes because of their cholesterol substitution,long blood circulation and tumor targeting capabilities.The results provide a theoretical basis for further development of ginsenoside based liposome delivery systems.展开更多
The demand for efficient and environmentally-benign electrocatalysts that help availably harness the renewable energy resources is growing rapidly. In recent years, increasing insights into the design of water electro...The demand for efficient and environmentally-benign electrocatalysts that help availably harness the renewable energy resources is growing rapidly. In recent years, increasing insights into the design of water electrolysers, fuel cells, and metal–air batteries emerge in response to the need for developing sustainable energy carriers, in which the oxygen evolution reaction and the oxygen reduction reaction play key roles. However, both reactions suffer from sluggish kinetics that restricts the reactivity. Therefore, it is vital to probe into the structure of the catalysts to exploit high-performance bifunctional oxygen electrocatalysts. Spinel-type catalysts are a class of materials with advantages of versatility, low toxicity, low expense, high abundance, flexible ion arrangement, and multivalence structure. In this review, we afford a basic overview of spinel-type materials and then introduce the relevant theoretical principles for electrocatalytic activity, following that we shed light on the structure–property relationship strategies for spinel-type catalysts including electronic structure, microstructure, phase and composition regulation,and coupling with electrically conductive supports. We elaborate the relationship between structure and property, in order to provide some insights into the design of spinel-type bifunctional oxygen electrocatalysts.展开更多
A series of Sn‐incorporated SBA‐15materials with high specific surface areas and highly orderedmesoporous structures were synthesized by a facile one‐pot method and used as catalyst supports.A reference sample was ...A series of Sn‐incorporated SBA‐15materials with high specific surface areas and highly orderedmesoporous structures were synthesized by a facile one‐pot method and used as catalyst supports.A reference sample was also prepared using a conventional impregnation method.The catalystswere characterized using various methods,and their activities in propane dehydrogenation wereinvestigated.The incorporation of Sn into the SBA‐15matrix led to strong interactions between Snspecies and the support,and these helped to maintain the oxidation states of Sn species during thereaction.Substitution with Sn changed the interfacial properties of the Pt species and improved thefunction and effect of the Sn promoter.The catalytic activities and stabilities of the Pt catalysts supportedon Sn‐incorporated SBA‐15were better than those of the impregnated sample.However,thecatalytic performance deteriorated when an excessive amount of Sn was introduced and the interactionsamong Pt,Sn species,and the support became weaker.The Pt/0.5Sn‐SBA‐15catalyst gavethe best propene selectivity,i.e.,98.5%,with a corresponding propane conversion of about43.8%.展开更多
Since the two seminal papers were published independently in 2004, high-entropy-alloys(HEAs) have been applied to structural and functional materials due to the enhanced mechanical properties, thermal stability, and e...Since the two seminal papers were published independently in 2004, high-entropy-alloys(HEAs) have been applied to structural and functional materials due to the enhanced mechanical properties, thermal stability, and electrical conductivity. In recent years, HEA nanoparticles(HEA-NPs) were paid much attention to in the field of catalysis for the promoted catalytic activity. Furthermore, the various ratios among the metal components and tunable bulk and surface structures enable HEAs have big room to enhance the catalytic performance. Especially, noble-metal-based HEAs displayed significantly improved performance in electrocatalysis, where the ‘core effects’ were employed to explain the superior catalytic activity. However, it is insufficient to understand the essential mechanism or further guide the design of electrocatalysts. Structure–property relationship should be disclosed for the catalysis on HEA-NPs to accelerate the process of seeking high effective and efficient electrocatalysts. Therefore, we summarized the recent advances of noble-metal-based HEA-NPs applied to electrocatalysis, such as hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, methanol oxidation reaction, ethanol oxidation reaction, formic acid oxidation reaction, hydrogen oxidation reaction, carbon dioxide reduction reaction and nitrogen reduction reaction. For each electrocatalytic reaction, the reaction mechanism and catalyst structure were presented, and then the structure–property relationship was elaborated. The review begins with the development, concept, four ‘core effect’ and synthesis methods of HEAs. Next,the electrocatalytic reactions on noble-metal-based HEA-NPs are summarized and discussed independently. Lastly, the main views and difficulties pertaining to structure–property relationship for HEAs are discussed.展开更多
Many structure-property/activity studies use graph theoretical indices, which are based on the topological properties of a molecule viewed as a graph. Since topological indices can be derived directly from the molecul...Many structure-property/activity studies use graph theoretical indices, which are based on the topological properties of a molecule viewed as a graph. Since topological indices can be derived directly from the molecular structure without any experimental effort, they provide a simple and straightforward method for property prediction. In this work the flash point of alkanes was modeled by a set of molecular connectivity indices (Х), modified molecular connectivity indices ( ^mХ^v ) and valance molecular connectivity indices ( ^mХ^v ), with ^mХ^v calculated using the hydrogen perturbation. A stepwise Multiple Linear Regression (MLR) method was used to select the best indices. The predicted flash points are in good agreement with the experimental data, with the average absolute deviation 4.3 K.展开更多
A series of nano-size gold catalysts were prepared by deposition-precipitation method using silica material promoted with different amounts of MgO as the carrier. The influences of MgO addition on the structure and pr...A series of nano-size gold catalysts were prepared by deposition-precipitation method using silica material promoted with different amounts of MgO as the carrier. The influences of MgO addition on the structure and property of the nano-size gold catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), O2 temperature-programmed desorption (O2-TPD), and inductively coupled with plasma atomic emission spectroscopy (ICP-AES) techniques. The total oxidation of CO was chosen as the probe reaction. The results suggest that for the gold catalysts supported on the silica material after MgO modification, the size of the gold particles is pronouncedly reduced, the oxygen mobility is enhanced, and the catalytic activity for low-temperature CO oxidation is greatly improved. The gold catalyst modified by 6 wt% MgO (Mg/SiO2 weight ratio) shows higher CO oxidation activity, over which the temperature of CO total oxidation is lower about 150 K than that over the silica directly supported gold catalyst.展开更多
文摘The Archean North China Craton is composed of the Western Block,Eastern Block and the intervening Central Orogenic Belt.A 4-10 km wide and 85 km long tectonic mélange belt informally called the Zanhuang tectonic
基金the National Natural Science Founda-tion of China(62062062)hosted by Gulila Altenbek.
文摘Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurrent Temporal Graph Convolution Networks(IndRT-GCNets)framework to efficiently and accurately capture event attribute information.The framework models the knowledge graph sequences to learn the evolutionary represen-tations of entities and relations within each period.Firstly,by utilizing the temporal graph convolution module in the evolutionary representation unit,the framework captures the structural dependency relationships within the knowledge graph in each period.Meanwhile,to achieve better event representation and establish effective correlations,an independent recurrent neural network is employed to implement auto-regressive modeling.Furthermore,static attributes of entities in the entity-relation events are constrained andmerged using a static graph constraint to obtain optimal entity representations.Finally,the evolution of entity and relation representations is utilized to predict events in the next subsequent step.On multiple real-world datasets such as Freebase13(FB13),Freebase 15k(FB15K),WordNet11(WN11),WordNet18(WN18),FB15K-237,WN18RR,YAGO3-10,and Nell-995,the results of multiple evaluation indicators show that our proposed IndRT-GCNets framework outperforms most existing models on knowledge reasoning tasks,which validates the effectiveness and robustness.
基金supported by the National Natural Science Foundation of China(U1905202,31972017,and 31771922)the National Key R&D Program of China(2018YFD0901006)+2 种基金the Fujian Major Project of Provincial Science&Technology Hall,China(2020NZ010008)the Open Project of the Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing,Ministry of Agriculture and Rural Affairs,China(KLRCAPP2021-03)the Quanzhou Science&Technology Project,China(2019C085R)。
文摘Peptides are functional active fragments of proteins which can provide nutrients needed for human growth and development,and they also have unique physiological activity characteristics relative to proteins.Bioactive peptides contain a great deal of development potential.More specifically,food-derived bioactive peptides have the advantages of a wide variety of sources,unique structures,high efficiency and safety,so they have broad development prospects.This review provides an overview of the current advances regarding the preparation,functional characteristics,and structure–activity relationships of food-derived bioactive peptides.Moreover,the prospects for the future development and application of food-derived bioactive peptides are discussed.This review may provide a better understanding of foodderived bioactive peptides,and some constructive inspirations for further research and applications in the food industry.
基金supported by the Youth Foundation of Education Bureau, Sichuan Province (09ZB036)Technology Bureau, Sichuan Province (2006j13-141)
文摘The molecular electronegativity interaction vector (MEIV) was used to describe the molecular structure of 30 selected esters. Two excellent QSTR models were built up by using multiple linear regression (MLR) and partial least-squares regression (PLS). The correlation coefficients (R) of the two models were 0.945 and 0.941, respectively. The models were evaluated by performing the cross validation with the leave-one-out (LOO) procedure. The cross-verification correlation coefficients (RCV) of the two models were 0.921 and 0.919, respectively. The results showed that the models constructed in this work could provide estimation stability and favorable predictive ability.
基金supported by the Youth Foundation of Education Bureau,Sichuan Province(13ZB0003)
文摘New descriptors were constructed and structures of some oxygen-containing organic compounds were parameterized. The multiple linear regression(MLR) and partial least squares regression(PLS) methods were employed to build two relationship models between the structures and octanol/water partition coefficients(LogP) of the compounds. The modeling correlation coefficients(R) were 0.976 and 0.922, and the "leave one out" cross validation correlation coefficients(R(CV)) were 0.973 and 0.909, respectively. The results showed that the structural descriptors could well characterize the molecular structures of the compounds; the stability and predictive power of the models were good.
基金the support of the National Natural Science Foundation of China(Nos.51774329 and 51904337)the High Performance Computing Center of Central South University,China。
文摘The relationships between the structure of oxime compounds(R^(1)R^(2)C=NOH,R^(1)/R^(2)=alkyl groups) with different substituents and their corresponding flotation performances were studied. The analyses of density functional theory(DFT) calculations illustrated that the introduced phenyl group at the R^(1) position could enhance the acidity,while the heptyl group could effectively increase the hydrophobicity and benefit van der Waals interactions. Meanwhile,the introduced amino group at the R^(2) position could provide cationic sites to interact with negatively charged surfaces of minerals, while the introduced hydroxyl group could provide additional action sites to form stable chelates with metal ions. Based on the structure-activity relationships, structural optimization was carried out to obtain three efficient collectors, which possessed superior flotation separation performances, proving the effectiveness of the structural modification to oxime compounds in this work.
基金supported by Zhejiang Normal University (YS304320035, YS304320036)
文摘Selective hydrogenation of 1,3‐butadiene is an essential process in the upgrading of the crude C4 cut from the petroleum chemical sector.Catalyst design is crucial to achieve a virtually alkadiene‐free product while avoiding over‐hydrogenating valuable olefins.In addition to the great industrial relevance,this demanding selectivity pattern renders 1,3‐butadiene hydrogenation a widely used model reaction to discriminate selective hydrogenation catalysts in academia.Nonetheless,critical reviews on the catalyst development are extremely lacking in literature.In this review,we aim to provide the reader an in‐depth overview of different catalyst families,particularly the precious metal‐based monometallic catalysts(Pd,Pt,and Au),developed in the last half century.The emphasis is placed on the development of new strategies to design high‐performance architectures,the establishment of structure‐performance relationships,and the reaction and deactivation mechanisms.Thrilling directions for future optimization of catalyst formulations and engineering aspect are also provided.
基金supported by the Foundation of Education Bureau,Sichuan Province (09ZB036)Technology Bureau,Sichuan Province (2006j13-141)
文摘A new molecular structural characterization(MSC)method called molecular vertexes correlative index(MVCI)was constructed in this paper.The index was used to describe the structures of 45 compounds and a quantitative structure-activity relationship(QSAR)model of toxicity(–lgEC50)was obtained through multiple linear regression(MLR)and stepwise multiple regression(SMR).The correlation coefficient(R)of the model was 0.912,and the standard deviation(SD)of the model was 0.525.The estimation stability and prediction ability of the model were strictly analyzed by both internal and external validations.The Leave-One-Out(LOO)Cross-Validation(CV)correlation coefficient(RCV)was 0.816 and the standard deviation(SDCV)was 0.739,respectively.For the external validation,the correlation coefficient(Rtest)was 0.905 and the standard deviation(SDtest)was 0.520,respectively.The results showed that the index was superior in molecular structural representation.The stability and predictability of the model were good.
文摘A quantitative structure–activity relationship(QSAR) was performed to analyze antimalarial activities against the D10 strains of Plasmodium falciparum of triazole-linked chalcone and dienone hybrid derivatives using partial least squares regression coupled with stepwise forward–backward variable selection method. QSAR analyses were performed on the available IC50 D10 strains of Plasmodium falciparum data based on theoretical molecular descriptors. The QSAR model developed gave good predictive correlation coefficient(r2) of 0.8994, significant cross validated correlation coefficient(q2) of 0.7689, r2 for external test set)(2predr of 0.8256, coefficient of correlation of predicted data set)(2sepred,r of 0.3276. The model shows that antimalarial activity is greatly affected by donor and electron-withdrawing substituents. The study implicates that chalcone and dienone rings should have strong donor and electron-withdrawing substituents as they increase the activity of chalcone. Results show that the predictive ability of the model is satisfactory, and it can be used for designing similar group of antimalarial compounds. The findings derived from this analysis along with other molecular modeling studies will be helpful in designing of the new potent antimalarial activity of clinical utility.
基金financially sponsored by the National Natural Science Foundation of China(Grant Nos.22075223,22179104)the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(Wuhan University of Technology)(2022-ZD-4)。
文摘Precisely tuning the spacing of the active centers on the atomic scale is of great significance to improve the catalytic activity and deepen the understanding of the catalytic mechanism,but still remains a challenge.Here,we develop a strategy to dilute catalytically active metal interatomic spacing(d_(M-M))with light atoms and discover the unusual adsorption patterns.For example,by elevating the content of boron as interstitial atoms,the atomic spacing of osmium(d_(Os-Os))gradually increases from 2.73 to 2.96?.More importantly,we find that,with the increase in dOs-Os,the hydrogen adsorption-distance relationship is reversed via downshifting d-band states,which breaks the traditional cognition,thereby optimizing the H adsorption and H_2O dissociation on the electrode surface during the catalytic process;this finally leads to a nearly linear increase in hydrogen evolution reaction activity.Namely,the maximum dOs-Os of 2.96?presents the optimal HER activity(8 mV@10 mA cm^(-2))in alkaline media as well as suppressed O adsorption and thus promoted stability.It is believed that this novel atomic-level distance modulation strategy of catalytic sites and the reversed hydrogen adsorption-distance relationship can shew new insights for optimal design of highly efficient catalysts.
基金supported by two grants(UIC202007 and UIC202107)from BNU-HKBU United International College.
文摘The isolated secondary metabolites from 39 edible mushrooms are reported,among which 107 compounds were active,61 demonstrated antitubercular activities with IC_(50) range of 0.2-50μg/mL and 46 manifested antimalarial effects with IC_(50) range of 0.061-36μg/mL.While more than 2000 strains of edible mushrooms are identified,this review shows the paucity of research in these rich organisms featuring a vital culinary ingredient worldwide.A thorough search was conducted on basidiomycetes to discuss the chemistry and biology of the isolated compounds,structure activity relationships(SAR)as well as the cytotoxicity profiles of,primarily,the active anti-plasmodial and antitubercular molecules.With a safe cellular profile,lanostane triterpenoids were found to be the only molecules with combined activities against both diseases.SAR correlations reviewed here indicated the significance of 3β-and 7α-hydroxylation in the anti-tuberculosis activity and the terminal unsaturated moiety between C-4 and C-28 in the antimalarial activity in the same terpene skeleton.This review will attract the attention of medicinal chemists,and food scientists to optimize and rationalize the use of mushrooms both as unexploited sources of novel molecules and as nutraceuticals to treat two of the deadliest infectious diseases,malaria,and tuberculosis.
基金the National Natural Science Foundation of China(No.32272575)National College Student Innovation and Entrepreneurship Training Program(No.202210459164)for financial support.
文摘Methicillin-resistant Staphylococcus aureus (MRSA), the most common pathogen in hospital and community environments, can cause serious and even fatal infections. The antibiotics currently used for clinical treatment of MRSA have developed resistance, and there is an urgent need to develop new antimicrobials to treat infections caused by MRSA strains. Quinoline analogues play an important role in the development of antimicrobials. Herein, we discussed the current development of antibacterial activities of quinoline analogues, mainly for anti-MRSA activity, and their structure-activity relationships (SARs) from the perspective of using the quinoline nucleus to search for novel potential anti-MRSA candidates. Additionally, the mechanisms of some representative quinoline analogues against MRSA were clarified. Altogether, this review could provide further insights for the rational development of quinoline-based antibacterial drugs, especially against MRSA.
基金financially supported by the National Natural Science Foundation of China(Nos.82104281,81922070,81973286,81801818 and 82273897)Shanghai Municipal Health Commission’s TCM research project(No.2022CX005)+1 种基金Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine(No.ZYYCXTD-D-202004)Three-year Action Plan for Shanghai TCM Development and Inheritance Program[No.ZY(2021–2023)-0401]。
文摘Human Notum(hNotum)inhibitors could be used for treating Wnt signalling-associated diseases including colorectal cancer.Herein,two series of chalcone derivatives were designed and synthesized aiming to find selective and potent hNotum inhibitors.Structure–activity relationship(SAR)studies showed that 2-methoxyl and 5-bromine substitutions on A-ring significantly enhanced anti-hNotum effect,while 4’-ethoxyl and 3’-alkyl substitutions on B-ring were beneficial for hNotum inhibition.Among all tested chalcones,B11 displayed the most potent anti-Notum effect(IC_(50)=3.6 nmol/L),good selectivity,excellent chemical stability and suitable metabolic stability.Further investigations showed that B11 acted as a competitive inhibitor of hNotum,while this agent(5μmol/L)significantly weaken the migration abilities of colorectal cancer cells.Collectively,this study deciphers the SARs of chalcones as hNotum inhibitors and reports a novel and potent hNotum inhibitor with the anti-migration effect on colorectal cancer cells,which offers a promising lead compound to develop novel anti-cancer agents.
基金TheNationalKeyBasicResearchFoundationofChina (No .G1 9990 4 571 1 )
文摘The theoretical linear solvation energy relationship(TLSER) approach was adopted to predict the aqueous solubility and n -octanol/water partition coefficient of three groups of environmentally important chemicals-polychlorinated biphenyls(PCBs), polychlorinated dibenzodioxins and dibenzofurans(PCDDs and PCDFs). For each compound, five quantum parameters were calculated using AM1 semiempirical molecular orbital methods and used as structure descriptors: average molecular polarizability(α), energy of the lowest unoccupied molecular orbit( E _ LUMO ), energy of the highest occupied molecular orbit( E _ HOMO ), the most positive charge on a hydrogen atom( q _+), and the most negative atomic partial charge( q _-) in the solute molecule. Then standard independent variables in TLSER equation was extracted and two series of quantitative equations between these quantum parameters and aqueous solubility and n -octanol/water partition coefficient were obtained by stepwise multiple linear regression(MLR) method. The developed equations have both quite high accuracy and explicit meanings. And the cross-validation test illustrated the good predictive power and stability of the established models. The results showed that TLSER could be used as a promising approach in the estimation of partition and solubility properties of macromolecular chemicals, such as persistent organic pollutants.
基金supported by the National Natural Science Foundation of China (No. 82074277 and 81773911)the Development Project of Shanghai Peak Disciplines-Integrated Medicine (No. 20180101)
文摘To utilize themultiple functions and give full play of ginsenosides,a variety of ginsenosides with different structures were prepared into liposomes and evaluated for their effect on the stability,pharmacokinetics and tumor targeting capability of liposomes.The results showed that the position and number of glycosyl groups of ginsenosides have significant effect on the in vitro and in vivo properties of their liposomes.The pharmacokinetics of ginsenosides liposomes indicated that the C-3 sugar group of ginsenosides is beneficial to their liposomes for longer circulation in vivo.The C-3 and C-6 glycosyls can enhance the uptake of their liposomes by 4T1 cells,and the glycosyls at C-3 position can enhance the tumor active targeting ability significantly,based on the specific binding capacity to Glut 1 expressed on the surface of 4T1 cells.According to the results in the study,ginsenoside Rg3 and ginsenoside Rh2 are potential for exploiting novel liposomes because of their cholesterol substitution,long blood circulation and tumor targeting capabilities.The results provide a theoretical basis for further development of ginsenoside based liposome delivery systems.
基金supported by the Natural Scientific Foundation of China (21825501)National Key Research and Development Program (2016YFA0202500 and 2016YFA0200102)+1 种基金Australian Research Council (DP160103107, FT170100224)Tsinghua University Initiative Scientific Research Program。
文摘The demand for efficient and environmentally-benign electrocatalysts that help availably harness the renewable energy resources is growing rapidly. In recent years, increasing insights into the design of water electrolysers, fuel cells, and metal–air batteries emerge in response to the need for developing sustainable energy carriers, in which the oxygen evolution reaction and the oxygen reduction reaction play key roles. However, both reactions suffer from sluggish kinetics that restricts the reactivity. Therefore, it is vital to probe into the structure of the catalysts to exploit high-performance bifunctional oxygen electrocatalysts. Spinel-type catalysts are a class of materials with advantages of versatility, low toxicity, low expense, high abundance, flexible ion arrangement, and multivalence structure. In this review, we afford a basic overview of spinel-type materials and then introduce the relevant theoretical principles for electrocatalytic activity, following that we shed light on the structure–property relationship strategies for spinel-type catalysts including electronic structure, microstructure, phase and composition regulation,and coupling with electrically conductive supports. We elaborate the relationship between structure and property, in order to provide some insights into the design of spinel-type bifunctional oxygen electrocatalysts.
基金supported by the Science & Technology Support Plan Projects of Sichuan Province (2016GZ0371)National Natural Science Foun-dation of China (NNSFC,21476145,21506111)~~
文摘A series of Sn‐incorporated SBA‐15materials with high specific surface areas and highly orderedmesoporous structures were synthesized by a facile one‐pot method and used as catalyst supports.A reference sample was also prepared using a conventional impregnation method.The catalystswere characterized using various methods,and their activities in propane dehydrogenation wereinvestigated.The incorporation of Sn into the SBA‐15matrix led to strong interactions between Snspecies and the support,and these helped to maintain the oxidation states of Sn species during thereaction.Substitution with Sn changed the interfacial properties of the Pt species and improved thefunction and effect of the Sn promoter.The catalytic activities and stabilities of the Pt catalysts supportedon Sn‐incorporated SBA‐15were better than those of the impregnated sample.However,thecatalytic performance deteriorated when an excessive amount of Sn was introduced and the interactionsamong Pt,Sn species,and the support became weaker.The Pt/0.5Sn‐SBA‐15catalyst gavethe best propene selectivity,i.e.,98.5%,with a corresponding propane conversion of about43.8%.
基金supported by the National Natural Science Foundation of China (21676100, 22008076)the Guangdong Natural Science Foundation (2017A030312005)。
文摘Since the two seminal papers were published independently in 2004, high-entropy-alloys(HEAs) have been applied to structural and functional materials due to the enhanced mechanical properties, thermal stability, and electrical conductivity. In recent years, HEA nanoparticles(HEA-NPs) were paid much attention to in the field of catalysis for the promoted catalytic activity. Furthermore, the various ratios among the metal components and tunable bulk and surface structures enable HEAs have big room to enhance the catalytic performance. Especially, noble-metal-based HEAs displayed significantly improved performance in electrocatalysis, where the ‘core effects’ were employed to explain the superior catalytic activity. However, it is insufficient to understand the essential mechanism or further guide the design of electrocatalysts. Structure–property relationship should be disclosed for the catalysis on HEA-NPs to accelerate the process of seeking high effective and efficient electrocatalysts. Therefore, we summarized the recent advances of noble-metal-based HEA-NPs applied to electrocatalysis, such as hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, methanol oxidation reaction, ethanol oxidation reaction, formic acid oxidation reaction, hydrogen oxidation reaction, carbon dioxide reduction reaction and nitrogen reduction reaction. For each electrocatalytic reaction, the reaction mechanism and catalyst structure were presented, and then the structure–property relationship was elaborated. The review begins with the development, concept, four ‘core effect’ and synthesis methods of HEAs. Next,the electrocatalytic reactions on noble-metal-based HEA-NPs are summarized and discussed independently. Lastly, the main views and difficulties pertaining to structure–property relationship for HEAs are discussed.
文摘Many structure-property/activity studies use graph theoretical indices, which are based on the topological properties of a molecule viewed as a graph. Since topological indices can be derived directly from the molecular structure without any experimental effort, they provide a simple and straightforward method for property prediction. In this work the flash point of alkanes was modeled by a set of molecular connectivity indices (Х), modified molecular connectivity indices ( ^mХ^v ) and valance molecular connectivity indices ( ^mХ^v ), with ^mХ^v calculated using the hydrogen perturbation. A stepwise Multiple Linear Regression (MLR) method was used to select the best indices. The predicted flash points are in good agreement with the experimental data, with the average absolute deviation 4.3 K.
基金supported by the Youth Fund Project(2002B25)of Sichuan Department of Educationthe Scientific Research Foundation for Doctor from Yibin College of China(2010B12)
文摘A series of nano-size gold catalysts were prepared by deposition-precipitation method using silica material promoted with different amounts of MgO as the carrier. The influences of MgO addition on the structure and property of the nano-size gold catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), O2 temperature-programmed desorption (O2-TPD), and inductively coupled with plasma atomic emission spectroscopy (ICP-AES) techniques. The total oxidation of CO was chosen as the probe reaction. The results suggest that for the gold catalysts supported on the silica material after MgO modification, the size of the gold particles is pronouncedly reduced, the oxygen mobility is enhanced, and the catalytic activity for low-temperature CO oxidation is greatly improved. The gold catalyst modified by 6 wt% MgO (Mg/SiO2 weight ratio) shows higher CO oxidation activity, over which the temperature of CO total oxidation is lower about 150 K than that over the silica directly supported gold catalyst.