The structural and tectonic evolution of the Bengal Basin is characterized by a complex interplay of factors, including sedimentation, the rise of the Himalayan Mountains, and the movements of Jurassic syn-rift faults...The structural and tectonic evolution of the Bengal Basin is characterized by a complex interplay of factors, including sedimentation, the rise of the Himalayan Mountains, and the movements of Jurassic syn-rift faults. This study aims to comprehend the progression of growth faults inside the basin by examining fault geometry, basin development, and structural relief patterns. We used high-quality 2D seismic lines from the PK-MY-8403, classical seismic interpretation techniques and modeling were carried out to reveal the plate tectonic conditions, stratigraphy, and sedimentation history of the basin. The break-up unconformity, Paleocene and Eocene submerged conditions, and crucial geological formations including the Sylhet Limestone, Barail Group, and Surma Group were among the notable features recognized in seismic section. With an emphasis on growth strata and pre-growth strata, significant variations in layer thickness and relief were remarked in different stratigraphic levels. Basin development events like the evolution of the Miocene remnant ocean basin, sedimentation in Oligocene, Eocene Himalayan collision, and the Pliocene reverse fault development are analyzed. In the early the Pliocene compressional forces outpaced sedimentation rates and syn-depositional normal faults of Oligocene time began to move in opposite direction. Syn-depositional growth faults may have formed in the Bengal Basin as a result of this reversal. This research provides a detailed comprehensive knowledge of growth fault development in the Bengal Basin following the seismic interpretation, modelling, and thickness/relief analysis. The outcomes point to a substantial hydrocarbon potential, especially in regions like the Eocene Hinge Zone, where the prospectivity of the area is enhanced by carbonate reefs and Jalangi shale. However, the existence of petroleum four-way closure in the investigated region requires further investigation.展开更多
This study examines the use of the geographic information systems (GIS) in structural geomorphology to build the model of the crust based on fractal analysis of relief. Fractal theory, developed by B. Mandelbrot, us...This study examines the use of the geographic information systems (GIS) in structural geomorphology to build the model of the crust based on fractal analysis of relief. Fractal theory, developed by B. Mandelbrot, used to determination morpho-bloc divisibility of the Earth's surface. There is the traceable statistically recurring relief structure indicate the appropriate tiered hierarchy of crustal blocks forming the tectonic and kinematic layers. This hypothesis tested on a digital elevation model (DEM) of the White Sea-Kuloi Plateau -- an area of tectonic and magmatic activity of the Paleozoic era. Found the correlation of position the kimberlite magmatic bodies with the tectonic blocks certain depth according to a flactal analysis.展开更多
文摘The structural and tectonic evolution of the Bengal Basin is characterized by a complex interplay of factors, including sedimentation, the rise of the Himalayan Mountains, and the movements of Jurassic syn-rift faults. This study aims to comprehend the progression of growth faults inside the basin by examining fault geometry, basin development, and structural relief patterns. We used high-quality 2D seismic lines from the PK-MY-8403, classical seismic interpretation techniques and modeling were carried out to reveal the plate tectonic conditions, stratigraphy, and sedimentation history of the basin. The break-up unconformity, Paleocene and Eocene submerged conditions, and crucial geological formations including the Sylhet Limestone, Barail Group, and Surma Group were among the notable features recognized in seismic section. With an emphasis on growth strata and pre-growth strata, significant variations in layer thickness and relief were remarked in different stratigraphic levels. Basin development events like the evolution of the Miocene remnant ocean basin, sedimentation in Oligocene, Eocene Himalayan collision, and the Pliocene reverse fault development are analyzed. In the early the Pliocene compressional forces outpaced sedimentation rates and syn-depositional normal faults of Oligocene time began to move in opposite direction. Syn-depositional growth faults may have formed in the Bengal Basin as a result of this reversal. This research provides a detailed comprehensive knowledge of growth fault development in the Bengal Basin following the seismic interpretation, modelling, and thickness/relief analysis. The outcomes point to a substantial hydrocarbon potential, especially in regions like the Eocene Hinge Zone, where the prospectivity of the area is enhanced by carbonate reefs and Jalangi shale. However, the existence of petroleum four-way closure in the investigated region requires further investigation.
文摘This study examines the use of the geographic information systems (GIS) in structural geomorphology to build the model of the crust based on fractal analysis of relief. Fractal theory, developed by B. Mandelbrot, used to determination morpho-bloc divisibility of the Earth's surface. There is the traceable statistically recurring relief structure indicate the appropriate tiered hierarchy of crustal blocks forming the tectonic and kinematic layers. This hypothesis tested on a digital elevation model (DEM) of the White Sea-Kuloi Plateau -- an area of tectonic and magmatic activity of the Paleozoic era. Found the correlation of position the kimberlite magmatic bodies with the tectonic blocks certain depth according to a flactal analysis.