Objective video quality assessment plays a very important role in multimedia signal processing. Several extensions of the structural similarity (SSIM) index could not predict the quality of the video sequence effect...Objective video quality assessment plays a very important role in multimedia signal processing. Several extensions of the structural similarity (SSIM) index could not predict the quality of the video sequence effectively. In this paper we propose a structural similarity quality metric for videos based on a spatial-temporal visual attention model. This model acquires the motion attended region and the distortion attended region by computing the motion features and the distortion contrast. It mimics the visual attention shifting between the two attended regions and takes the burst of error into account by introducing the non-linear weighting fimctions to give a much higher weighting factor to the extremely damaged frames. The proposed metric based on the model renders the final object quality rating of the whole video sequence and is validated using the 50 Hz video sequences of Video Quality Experts Group Phase I test database.展开更多
蝗虫显微切片图像在获取的过程中不可避免地会受到噪声污染,其纹理、边缘与噪声又都属于高频分量,单独使用小波变换或偏微分方程(partial differential equation,PDE)扩散的方法都不能在有效去噪的同时保持边缘、纹理等。针对这一问题,...蝗虫显微切片图像在获取的过程中不可避免地会受到噪声污染,其纹理、边缘与噪声又都属于高频分量,单独使用小波变换或偏微分方程(partial differential equation,PDE)扩散的方法都不能在有效去噪的同时保持边缘、纹理等。针对这一问题,提出了基于自适应小波PDE的去噪算法。首先对蝗虫切片含噪图像进行sym5小波软阈值去噪,分解层数根据去噪后图像的PSNR(peak signal to noise ratio)值自适应地选择,阈值门限使用Birge-Massart处罚算法获取。然后在此去噪的基础上进行Perona-Malik(PM)模型去噪,迭代次数根据去噪后图像的PSNR值自适应地选择,梯度阈值根据图像自身的2范数获取。为了验证所提出算法的去噪性能,进行了与常用去噪算法的对比试验。试验结果表明:视觉上,采用本文算法去噪后的图像噪声点较少且边缘、纹理清晰;客观上,采用该文算法去噪后的图像PSNR值比使用维纳滤波高出2 d B左右,比使用中值滤波高出3 d B左右,比使用小波阈值去噪高出2 d B左右,比使用PM模型去噪高出1 d B左右,并且在结构相似性(structural similarity image measurement,SSIM)上采用该文算法去噪后的图像与原始图像的相似度最高。因此,将自适应小波PDE的算法应用于蝗虫切片去噪是可行的、有效的,为其后续处理提供了技术支持。展开更多
文摘Objective video quality assessment plays a very important role in multimedia signal processing. Several extensions of the structural similarity (SSIM) index could not predict the quality of the video sequence effectively. In this paper we propose a structural similarity quality metric for videos based on a spatial-temporal visual attention model. This model acquires the motion attended region and the distortion attended region by computing the motion features and the distortion contrast. It mimics the visual attention shifting between the two attended regions and takes the burst of error into account by introducing the non-linear weighting fimctions to give a much higher weighting factor to the extremely damaged frames. The proposed metric based on the model renders the final object quality rating of the whole video sequence and is validated using the 50 Hz video sequences of Video Quality Experts Group Phase I test database.
文摘蝗虫显微切片图像在获取的过程中不可避免地会受到噪声污染,其纹理、边缘与噪声又都属于高频分量,单独使用小波变换或偏微分方程(partial differential equation,PDE)扩散的方法都不能在有效去噪的同时保持边缘、纹理等。针对这一问题,提出了基于自适应小波PDE的去噪算法。首先对蝗虫切片含噪图像进行sym5小波软阈值去噪,分解层数根据去噪后图像的PSNR(peak signal to noise ratio)值自适应地选择,阈值门限使用Birge-Massart处罚算法获取。然后在此去噪的基础上进行Perona-Malik(PM)模型去噪,迭代次数根据去噪后图像的PSNR值自适应地选择,梯度阈值根据图像自身的2范数获取。为了验证所提出算法的去噪性能,进行了与常用去噪算法的对比试验。试验结果表明:视觉上,采用本文算法去噪后的图像噪声点较少且边缘、纹理清晰;客观上,采用该文算法去噪后的图像PSNR值比使用维纳滤波高出2 d B左右,比使用中值滤波高出3 d B左右,比使用小波阈值去噪高出2 d B左右,比使用PM模型去噪高出1 d B左右,并且在结构相似性(structural similarity image measurement,SSIM)上采用该文算法去噪后的图像与原始图像的相似度最高。因此,将自适应小波PDE的算法应用于蝗虫切片去噪是可行的、有效的,为其后续处理提供了技术支持。