This paper presents the principle and critical factors of adaptive cancellation of structural vibration in time domain(ACSV-TD).Digital-analog simulations and model tests are conducted on cancelling forced vibration o...This paper presents the principle and critical factors of adaptive cancellation of structural vibration in time domain(ACSV-TD).Digital-analog simulations and model tests are conducted on cancelling forced vibration of a cantilever beam.Filtered-X RLS algorithm is used to get faster convergence speed and stronger adaptability (in comparison with LMS algorithm). The results demonstrate the efficiency and adaptability of the ACSV-TD.展开更多
The electromagnetic mass damper (EMD) control system, as an innovative active control system to reduce structural vibration, offers many advantages over traditional active mass driver/damper (AMD) control systems....The electromagnetic mass damper (EMD) control system, as an innovative active control system to reduce structural vibration, offers many advantages over traditional active mass driver/damper (AMD) control systems. In this paper, studies of several EMD control strategies and bench-scale shaking table tests of a two-story model structure are described. First, two structural models corresponding to uncontrolled and Zeroed cases are developed, and parameters of these models are validated through sinusoidal sweep tests to provide a basis for establishing an accurate mathematical model for further studies. Then, a simplified control strategy for the EMD system based on the pole assignment control algorithm is proposed. Moreover, ideal pole locations are derived and validated through a series of shaking table tests. Finally, three benchmark earthquake ground motions and sinusoidal sweep waves are imposed onto the structure to investigate the effectiveness and feasibility of using this type of innovative active control system for structural vibration control. In addition, the robustness of the EMD system is examined. The test results show that the EMD system is an effective and robust system for the control of structural vibrations.展开更多
-This paper reviews the current methodology for dynamic reanalysis. Rayleigh-Ritz approach and receptance approach are discussed in detail. Based on a general finite element structural analysis program SAPS, an eigenp...-This paper reviews the current methodology for dynamic reanalysis. Rayleigh-Ritz approach and receptance approach are discussed in detail. Based on a general finite element structural analysis program SAPS, an eigenproblem re-analysis prorgram ERP was compiled. With a very small change the program can be implemented readily with any general FEM program. Finally, some numerical examples show that the new algorithm is of high precision and efficiency. In the case of local modification in the offshore platform, the efficiency is raised by 20- 50 times when compared with the re-calculation of the whole model.展开更多
A boundary element method is presented for the coupled motionanalysis of structural vibration with small-amplitude fluid sloshingin two-dimensional space. The linearized Navier-Stokes equations areconsidered in freque...A boundary element method is presented for the coupled motionanalysis of structural vibration with small-amplitude fluid sloshingin two-dimensional space. The linearized Navier-Stokes equations areconsidered in frequency domain and transformed into boundary integralequations. An appropriate fundamental solution for the Helmholtzequation with pure imaginary constant is found. The condition ofzero-stress is imposed on the free surface, and non-slip condition offluid particles is Imposed on the walls of the container. For rigidmotion models, the expressions for added mass and Added damping tothe structural motion equations are obtained. Some typical numericalexamples are Presented.展开更多
In this paper, material properties, geometry parameters and applied loads are assumed to be stochastic and a sensitivity computation of structural vibration is presented. The vibration equation of a system is transfor...In this paper, material properties, geometry parameters and applied loads are assumed to be stochastic and a sensitivity computation of structural vibration is presented. The vibration equation of a system is transformed to a static problem by using the Newmark method. In order to develop computational efficiency and allow for efficient storage, the Preconditioned Conjugate Gradient method (PCG) is also employed. The PCG is an effective method for solving a large system of linear equations and belongs to methods of iteration with rapid convergence and high precision. An example is given and calculated results are compared to validate the proposed methods.展开更多
A recently emerging family of smart materials,photostrictive materials,exhibit large photostriction under uniform illumination of high-energy light.This photostriction mechanism arises from a superposition phenomenon ...A recently emerging family of smart materials,photostrictive materials,exhibit large photostriction under uniform illumination of high-energy light.This photostriction mechanism arises from a superposition phenomenon of photovoltaic and converse piezoelectric effects.A photostrictive type of opto-electromechanical actuator activated by high-energy lights can introduce actuation and control effects without hard-wired connections.The control light intensity applied to the actuator is proportional to the transverse velocity at a positioned point,which is measured by a laser vibrometer.In this paper,photostrictive films are numerically analyzed to evaluate their use as wireless actuators for future remote vibration control of flexible structures.A novel opto-electromechanical solid shell finite element formulation is developed for accurate analysis of the multiple physics effects of photovoltaic,pyroelectric and thermal expansion of photostrictive materials.Available experimental data and analytical solutions have been used to verify the present finite element results.The simulation in this study demonstrates that the present formulation is very reliable,accurate and also computationally efficient and that the use of photostrictive actuators can provide good controllability of structural vibration.展开更多
The unsteady behaviors of cloud cavitating flow would lead to structural vibration and deformation that conversely affect its development. The present paper aims to preliminarily discuss the influences of structural v...The unsteady behaviors of cloud cavitating flow would lead to structural vibration and deformation that conversely affect its development. The present paper aims to preliminarily discuss the influences of structural vibration on the development of the cavitating flow. Simulations of a slender body are carried out under different vibration amplitudes and frequencies. The results show that the structural vibration causes alternate variation of local attack angle at the head of the body, and thus changes the development of cavitation and re-entrant jet. On the downstream side, the length and thickness of the cavity are larger than that on the upstream side due to larger area of negative pressure. For a large vibration amplitude, alternate variations of the local attack angle change the adverse pressure gradient at the closure of the cavity, and then affect the development of the re-entrant jet, so that the phenomena of local shedding of the cavitation happen, compared with global shedding in the case of no structural vibration. For a frequency larger than 0.05, transverse speed of the vibration is suggested to be a dominant factor in controlling the behavior of the cavitating flow besides the local attack angle, since it causes local cavitating phenomena.展开更多
This paper attempts to develop a scaling procedure to measure structural vibration caused simultaneously by wall pressure fluctuations and the thermal load of hypersonic flow by a wind tunnel test. However, simulating...This paper attempts to develop a scaling procedure to measure structural vibration caused simultaneously by wall pressure fluctuations and the thermal load of hypersonic flow by a wind tunnel test. However, simulating the effect of thermal load is difficult with a scaled model in a wind tunnel due to the nonlinear effect of thermal load on a structure. In this work, the temperature variation of a structure is proposed to indicate the nonlinear effect of the thermal load,which provides a means to simulate both the thermal load and wall pressure fluctuations of a hypersonic Turbulent Boundary Layer(TBL) in a wind tunnel test. To validate the scaling procedure,both numerical computations and measurements are performed in this work. Theoretical results show that the scaling procedure can also be adapted to the buckling temperature of a structure even though the scaling procedure is derived from a reference temperature below the critical temperature of the structure. For the measurement, wall pressure fluctuations and thermal environment are simulated by creating hypersonic flow in a wind tunnel. Some encouraging results demonstrate the effectiveness of the scaling procedure for assessing structural vibration generated by hypersonic flow. The scaling procedure developed in this study will provide theoretical support to develop a new measurement technology to evaluate vibration of aircraft due to hypersonic flow.展开更多
This paper describes experimental and theoretical investigations of Tuned Liquid Damper (TLD) characteristics for suppressing the wave-excited structural vibration. The structural model for the experiments is scaled a...This paper describes experimental and theoretical investigations of Tuned Liquid Damper (TLD) characteristics for suppressing the wave-excited structural vibration. The structural model for the experiments is scaled according to a full size offshore platform by matching their dynamic properties. Rectangular TLDs of different sizes with partially filled liquid are examined. By observing the performance and behavior of TLDs through laboratory experiments, the Study investigates the influence of a number of parameters, including container size, container shape, frequency ratio, and incident wave characteristics. In an analytical study, a mathematical model that describes the nonlinear behavior of liquid in TLD and the interaction of TLD and structure is prerequisite. The validity of the model is evaluated and simulating results can reasonably match the corresponding experimental results.展开更多
Localized nature of damage in structures requires local measurements for structural health monitoring. The local measurement means to measure the local, usually higher modes of the vibration in a structure. Three fund...Localized nature of damage in structures requires local measurements for structural health monitoring. The local measurement means to measure the local, usually higher modes of the vibration in a structure. Three fundamental issues about the local measurement for structural health monitoring including (1) the necessity of making local measurement, (2) the difficulty of making local measurement and (3) how to make local measurement are addressed in this paper. The results from both the analysis and the tests show that the local measurement can successfully monitor the structural health status as long as the local modes are excited. Unfortunately, the results also illustrate that it is difficult to excite local modes in a structure. Therefore, in order to carry structural health monitoring into effect, we must (1) ensure that the local modes are excited, and (2) deploy enough sensors in a structure so that the local modes can be monitored.展开更多
ne purpose of this study is to investigate the effectiveness of multi-tuned mass dampers (MTMD) on mitigating vibration of an offshore oil platform subjected to ocean wave loading. An optimal design method is used to ...ne purpose of this study is to investigate the effectiveness of multi-tuned mass dampers (MTMD) on mitigating vibration of an offshore oil platform subjected to ocean wave loading. An optimal design method is used to determine the optimal damper parameters under ocean wave loading. The force on the structure is determined by use of the linearized Morison equation. Investigation on the deck motion with and without MTMD on the structure is made under design conditions. The results show that MTMD with the optimized parameters suppress the response of each structural mode. The sensitivity of optimum values of MTMD to characteristic wave parameters is also analyzed. It is indicated that a single, TMD on the deck of a platform can have the best performance, and the small the damping value of TMD, the better the vibration control.展开更多
With the purpose of efficiently predicting structural radiated noise of internal combustion engine(I.C.E.),a new simulation technique is introduced,which is an approach based on boundary element method (BEM),acous...With the purpose of efficiently predicting structural radiated noise of internal combustion engine(I.C.E.),a new simulation technique is introduced,which is an approach based on boundary element method (BEM),acoustic transfer vector(ATV) technique and coupled boundary element model and finite element model (BEM-FEM) approach.Analyses of vibration exciting loads,computing structural dynamic characteristics and dynamic responses have led to theoretical results,which are tested on an L6 diesel engine to validate this proposed technique in engineering practice.展开更多
In this work we present the results of the optical evaluation of vibrations of a conventional concrete column with a metal frame.In a previous work[1]we reported the optical evaluation of a pure concrete column,withou...In this work we present the results of the optical evaluation of vibrations of a conventional concrete column with a metal frame.In a previous work[1]we reported the optical evaluation of a pure concrete column,without a metal framework.In this evaluation we expected to obtain a noticeably different result,but that was not the case,then the obtained results are surprisingly similar.From the LPD evaluations,the first 12 vibration resonances were found,which fit very well with the basic applied theory(the cantilever theory).Using known average values,we estimate the corresponding column effective length,obtaining an average value of 2.5 m.As in the former case of the concrete column,we find a discrepancy with respect to the length value,measurable from the ground(1.75 m),which can be explained again by the fact that the column and its base were built on inconsistent terrain.展开更多
We present a statistical investigation of the degree of influence that assumptions made in relation to the mechanical parameters of a pylon have on its ground-induced vibrations.The study is set up by using as a key k...We present a statistical investigation of the degree of influence that assumptions made in relation to the mechanical parameters of a pylon have on its ground-induced vibrations.The study is set up by using as a key kinematic variable the displacement at the top of a reference,a stand-alone pylon with a uniform cross-section and fixity at its base.Next,statistics are produced using a dimensionless displacement ratio defined between the‘parental’and the‘subsidiary’cases,the latter defined for the pylon(a)resting on compliant soil,(b)having an attached top mass,and(c)being non-uniform with height.Furthermore,two materials are examined,namely,steel and reinforced concrete(R/C).More specifically,this displacement ratio is independent of the excitation and plays the role of a transfer function between the base and the top of the pylon.Both horizontal and vertical motions are considered,and the equations of motion are solved in the frequency domain.The ensuing statistical analysis is conducted for the following parameter combinations:(a)pylon founded on soft,intermediate,and stiff soil;(b)low,intermediate,and high-mass ratios of the attached mass to the pylon′s mass;(c)a constant and quadratic degree of pylon tapering with height.Spearman correlation coefficients are calculated for all the above combinations to arrive at statistical results that establish validity bounds and quantify the degree of influence of each assumption on the pylon′s response.展开更多
Traditional control strategies have difficulty handling nonlinear behavior of structures, time variable features and parameter uncertainties of structural control systems under seismic excitation. An off-and-towardseq...Traditional control strategies have difficulty handling nonlinear behavior of structures, time variable features and parameter uncertainties of structural control systems under seismic excitation. An off-and-towardsequilibrium (OTE) strategy combined with fuzzy control is presented in this paper to overcome these difficulties. According to the OTE strategy, the control force is designed from the viewpoint of a mechanical relationship between the motions of the structure, the exciting force and the control force. The advantage of the OTE strategy is that it can be used for a variety of control systems. In order to evaluate the performance of the proposed strategy, the seismic performance of a three-story shear building with an Active Tendon System (ATS) using a Fuzzy Logic Controller (FLC) is studied. The main advantage of the fuzzy controller is its inherent robustness and ability to handle any nonlinear behavior of structures. However, there are no design guidelines to set up the corresponding control rule table for a FLC. Based on the proposed strategy for the FLC, a control rule table associated with the building under study is developed, which then allows formation of a detailed algorithm. The results obtained in this study show that the proposed strategy performs slightly better than the linear quadratic regulator (LQR) strategy, while possessing several advantages over the LQR controller. Consequently, the feasibility and validity of the proposed strategy are verified.展开更多
A new type of vibration structure (i.e. supporting system, called swing frame cus- tomarily) of vertical dynamic balancing machine has been designed, which is based on an analysis for the swing frame of a traditiona...A new type of vibration structure (i.e. supporting system, called swing frame cus- tomarily) of vertical dynamic balancing machine has been designed, which is based on an analysis for the swing frame of a traditional double-plane vertical dynamic balancing machine. The static unbalance and couple unbalance can be e?ectively separated by using the new dynamic balancing machine with the new swing frame. By building the dynamics model, the advantages of the new structure are discussed in detail. The modal and harmonic response are analyzed by using the ANSYS7.0. By comparing the ?nite element modal analysis with the experimental modal analy- sis, the natural frequencies and vibration modes are found. There are many spring boards in the new swing frame. Their sti?nesses are di?erent and assorted with each other. Furthermore, there are three sensors on the measuring points. Therefore, the new dynamic balancing machine can measure static unbalance and coupling unbalance directly, and the interaction between them is faint. The result shows that the new vertical dynamic balancing machine is suitable for inertial measurement of ?ying objects, and can overcome the shortcomings of traditional double-plane vertical dynamic balancing machines, which the e?ect of plane-separation is inferior. The vertical dynamic balancing machine with the new vibration structure can ?nd wide application in the future. The modelling and analysis of the new vibration structure will provide theoretical basis and practical experience for designing new-type vertical dynamic balancing machines.展开更多
The present study focuses on the analysis of free vibrations of axisymmetric functionally graded hollow spheres. The material is assumed to be graded in radial di- rection with a simple power law. Matrix Frrbenious me...The present study focuses on the analysis of free vibrations of axisymmetric functionally graded hollow spheres. The material is assumed to be graded in radial di- rection with a simple power law. Matrix Frrbenious method of extended power series is employed to derive the analytical solutions for displacement, temperature, and stresses. The dispersion relations for the existence of various types of pos- sible modes of vibrations in the considered hollow sphere are derived in a compact form. In order to explore the character- istics of vibrations, the secular equations are further solved by using fixed point iteration numerical technique with the help of MATLAB software. The numerical results have been presented graphically for polymethyl methecrylate materials in respect of natural frequencies, frequency shift, inverse quality factor, displacement, temperature change, and radial stress.展开更多
Seismic random vibration analysis of stochastic truss structures is presented. A new method called random factor method is used for dynamic analysis of structures with uncertain parameters, due to variability in their...Seismic random vibration analysis of stochastic truss structures is presented. A new method called random factor method is used for dynamic analysis of structures with uncertain parameters, due to variability in their material properties and geometry. Using the random factor method, the natural frequencies and modeshapes of a stochastic structure can be respectively described by the product of two parts, corresponding to the random factors of the structural parameters with uncertainty, and deterministic values of the natural frequencies and modeshapes obtained by conventional finite element analysis. The stochastic truss structure is subjected to stationary or non-stationary random earthquake excitation. Computational expressions for the mean and standard deviation of the mean square displacement and mean square stress are developed by means of the random variable's functional moment method and the algebra synthesis method. An antenna and a truss bridge are used as practical engineering examples to illustrate the application of the random factor method in the seismic response analysis of random structures under stationary or non-stationary random earthquake excitation.展开更多
This study proposes a micro vibration mitigation system using viscous dampers to solve the problem of vibration in a high-tech building. Due to the operating frequency of the air conditioners and fundamental mode of t...This study proposes a micro vibration mitigation system using viscous dampers to solve the problem of vibration in a high-tech building. Due to the operating frequency of the air conditioners and fundamental mode of the floors, a resonant phenomenon is occasionally experienced at the upper levels of the structure. Several strategies were considered, and viscous dampers combined with a suspension system were chosen to mitigate this annoying situation. A theoretical analysis was first executed to determine the optimal design value of the damper and the suspension spring. An efficient reduction in floor velocity of approximately 50 % was achieved by the proposed system. Practical verifications including a performance test of the micro-vibration-oriented dampers, the pragmatic application result, and a comparison in one-third octave spectrum was then carried out. The performance of the system was demonstrated by the data measured. It alleviated more trembling than was numerically expected. The energy absorbed by the viscous dampers is illustrated by the hysteresis loops and the one-third octave spectrum. It is found that with the proposed system, the vibration can be effectively captured by the viscous damper and converted to lower frequency-content tremors. The success of this project greatly supports the proposed standard two-stage analysis procedure for mitigating micro-vibration problems in practice. This research extends the use of viscous dampers to a new field.展开更多
The reduction approaches are presented for vibration control of symmetric, cyclic periodic and linking structures. The condensation of generalized coordinates, the locations of sensors and actuators, and the relation ...The reduction approaches are presented for vibration control of symmetric, cyclic periodic and linking structures. The condensation of generalized coordinates, the locations of sensors and actuators, and the relation between system inputs and control forces are assumed to be set in a symmetric way so that the control system posses the same repetition as the structure considered. By employing proper transformations of condensed generalized coordinates and the system inputs, the vibration control of an entire system can be implemented by carrying out the control of a number of sub-structures, and thus the dimension of the control problem can be significantly reduced.展开更多
文摘This paper presents the principle and critical factors of adaptive cancellation of structural vibration in time domain(ACSV-TD).Digital-analog simulations and model tests are conducted on cancelling forced vibration of a cantilever beam.Filtered-X RLS algorithm is used to get faster convergence speed and stronger adaptability (in comparison with LMS algorithm). The results demonstrate the efficiency and adaptability of the ACSV-TD.
基金The National Natural Science Foundation of China Under Grant. No.50608026The National Major Foundamental Program (973 Program) of China Under Grant No. 2007CB714204
文摘The electromagnetic mass damper (EMD) control system, as an innovative active control system to reduce structural vibration, offers many advantages over traditional active mass driver/damper (AMD) control systems. In this paper, studies of several EMD control strategies and bench-scale shaking table tests of a two-story model structure are described. First, two structural models corresponding to uncontrolled and Zeroed cases are developed, and parameters of these models are validated through sinusoidal sweep tests to provide a basis for establishing an accurate mathematical model for further studies. Then, a simplified control strategy for the EMD system based on the pole assignment control algorithm is proposed. Moreover, ideal pole locations are derived and validated through a series of shaking table tests. Finally, three benchmark earthquake ground motions and sinusoidal sweep waves are imposed onto the structure to investigate the effectiveness and feasibility of using this type of innovative active control system for structural vibration control. In addition, the robustness of the EMD system is examined. The test results show that the EMD system is an effective and robust system for the control of structural vibrations.
文摘-This paper reviews the current methodology for dynamic reanalysis. Rayleigh-Ritz approach and receptance approach are discussed in detail. Based on a general finite element structural analysis program SAPS, an eigenproblem re-analysis prorgram ERP was compiled. With a very small change the program can be implemented readily with any general FEM program. Finally, some numerical examples show that the new algorithm is of high precision and efficiency. In the case of local modification in the offshore platform, the efficiency is raised by 20- 50 times when compared with the re-calculation of the whole model.
文摘A boundary element method is presented for the coupled motionanalysis of structural vibration with small-amplitude fluid sloshingin two-dimensional space. The linearized Navier-Stokes equations areconsidered in frequency domain and transformed into boundary integralequations. An appropriate fundamental solution for the Helmholtzequation with pure imaginary constant is found. The condition ofzero-stress is imposed on the free surface, and non-slip condition offluid particles is Imposed on the walls of the container. For rigidmotion models, the expressions for added mass and Added damping tothe structural motion equations are obtained. Some typical numericalexamples are Presented.
基金supported by National Natural Science Foundation under Grant No.10202016
文摘In this paper, material properties, geometry parameters and applied loads are assumed to be stochastic and a sensitivity computation of structural vibration is presented. The vibration equation of a system is transformed to a static problem by using the Newmark method. In order to develop computational efficiency and allow for efficient storage, the Preconditioned Conjugate Gradient method (PCG) is also employed. The PCG is an effective method for solving a large system of linear equations and belongs to methods of iteration with rapid convergence and high precision. An example is given and calculated results are compared to validate the proposed methods.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10872090, 50830201)NUAA Research Funding (Grant No. NJ2010011)
文摘A recently emerging family of smart materials,photostrictive materials,exhibit large photostriction under uniform illumination of high-energy light.This photostriction mechanism arises from a superposition phenomenon of photovoltaic and converse piezoelectric effects.A photostrictive type of opto-electromechanical actuator activated by high-energy lights can introduce actuation and control effects without hard-wired connections.The control light intensity applied to the actuator is proportional to the transverse velocity at a positioned point,which is measured by a laser vibrometer.In this paper,photostrictive films are numerically analyzed to evaluate their use as wireless actuators for future remote vibration control of flexible structures.A novel opto-electromechanical solid shell finite element formulation is developed for accurate analysis of the multiple physics effects of photovoltaic,pyroelectric and thermal expansion of photostrictive materials.Available experimental data and analytical solutions have been used to verify the present finite element results.The simulation in this study demonstrates that the present formulation is very reliable,accurate and also computationally efficient and that the use of photostrictive actuators can provide good controllability of structural vibration.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11402276,11772340 and No.11332011)
文摘The unsteady behaviors of cloud cavitating flow would lead to structural vibration and deformation that conversely affect its development. The present paper aims to preliminarily discuss the influences of structural vibration on the development of the cavitating flow. Simulations of a slender body are carried out under different vibration amplitudes and frequencies. The results show that the structural vibration causes alternate variation of local attack angle at the head of the body, and thus changes the development of cavitation and re-entrant jet. On the downstream side, the length and thickness of the cavity are larger than that on the upstream side due to larger area of negative pressure. For a large vibration amplitude, alternate variations of the local attack angle change the adverse pressure gradient at the closure of the cavity, and then affect the development of the re-entrant jet, so that the phenomena of local shedding of the cavitation happen, compared with global shedding in the case of no structural vibration. For a frequency larger than 0.05, transverse speed of the vibration is suggested to be a dominant factor in controlling the behavior of the cavitating flow besides the local attack angle, since it causes local cavitating phenomena.
基金support of the Equipment Priority Research Field Foundation of China(No.6140246030216ZK01001)
文摘This paper attempts to develop a scaling procedure to measure structural vibration caused simultaneously by wall pressure fluctuations and the thermal load of hypersonic flow by a wind tunnel test. However, simulating the effect of thermal load is difficult with a scaled model in a wind tunnel due to the nonlinear effect of thermal load on a structure. In this work, the temperature variation of a structure is proposed to indicate the nonlinear effect of the thermal load,which provides a means to simulate both the thermal load and wall pressure fluctuations of a hypersonic Turbulent Boundary Layer(TBL) in a wind tunnel test. To validate the scaling procedure,both numerical computations and measurements are performed in this work. Theoretical results show that the scaling procedure can also be adapted to the buckling temperature of a structure even though the scaling procedure is derived from a reference temperature below the critical temperature of the structure. For the measurement, wall pressure fluctuations and thermal environment are simulated by creating hypersonic flow in a wind tunnel. Some encouraging results demonstrate the effectiveness of the scaling procedure for assessing structural vibration generated by hypersonic flow. The scaling procedure developed in this study will provide theoretical support to develop a new measurement technology to evaluate vibration of aircraft due to hypersonic flow.
基金This research was financially supported partially by the National Science Foundation of Japan under grant No.10555173 This work was partially supported by the Scholarship from Japan Ministry of Education,Science and Culture.
文摘This paper describes experimental and theoretical investigations of Tuned Liquid Damper (TLD) characteristics for suppressing the wave-excited structural vibration. The structural model for the experiments is scaled according to a full size offshore platform by matching their dynamic properties. Rectangular TLDs of different sizes with partially filled liquid are examined. By observing the performance and behavior of TLDs through laboratory experiments, the Study investigates the influence of a number of parameters, including container size, container shape, frequency ratio, and incident wave characteristics. In an analytical study, a mathematical model that describes the nonlinear behavior of liquid in TLD and the interaction of TLD and structure is prerequisite. The validity of the model is evaluated and simulating results can reasonably match the corresponding experimental results.
文摘Localized nature of damage in structures requires local measurements for structural health monitoring. The local measurement means to measure the local, usually higher modes of the vibration in a structure. Three fundamental issues about the local measurement for structural health monitoring including (1) the necessity of making local measurement, (2) the difficulty of making local measurement and (3) how to make local measurement are addressed in this paper. The results from both the analysis and the tests show that the local measurement can successfully monitor the structural health status as long as the local modes are excited. Unfortunately, the results also illustrate that it is difficult to excite local modes in a structure. Therefore, in order to carry structural health monitoring into effect, we must (1) ensure that the local modes are excited, and (2) deploy enough sensors in a structure so that the local modes can be monitored.
基金by the National Natural Science Foundation of China(Grant No.50179014)
文摘ne purpose of this study is to investigate the effectiveness of multi-tuned mass dampers (MTMD) on mitigating vibration of an offshore oil platform subjected to ocean wave loading. An optimal design method is used to determine the optimal damper parameters under ocean wave loading. The force on the structure is determined by use of the linearized Morison equation. Investigation on the deck motion with and without MTMD on the structure is made under design conditions. The results show that MTMD with the optimized parameters suppress the response of each structural mode. The sensitivity of optimum values of MTMD to characteristic wave parameters is also analyzed. It is indicated that a single, TMD on the deck of a platform can have the best performance, and the small the damping value of TMD, the better the vibration control.
基金Sponsored by the National Natural Science Foundation of China (50505047)Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi
文摘With the purpose of efficiently predicting structural radiated noise of internal combustion engine(I.C.E.),a new simulation technique is introduced,which is an approach based on boundary element method (BEM),acoustic transfer vector(ATV) technique and coupled boundary element model and finite element model (BEM-FEM) approach.Analyses of vibration exciting loads,computing structural dynamic characteristics and dynamic responses have led to theoretical results,which are tested on an L6 diesel engine to validate this proposed technique in engineering practice.
文摘In this work we present the results of the optical evaluation of vibrations of a conventional concrete column with a metal frame.In a previous work[1]we reported the optical evaluation of a pure concrete column,without a metal framework.In this evaluation we expected to obtain a noticeably different result,but that was not the case,then the obtained results are surprisingly similar.From the LPD evaluations,the first 12 vibration resonances were found,which fit very well with the basic applied theory(the cantilever theory).Using known average values,we estimate the corresponding column effective length,obtaining an average value of 2.5 m.As in the former case of the concrete column,we find a discrepancy with respect to the length value,measurable from the ground(1.75 m),which can be explained again by the fact that the column and its base were built on inconsistent terrain.
基金support of the German Research Foundation (DFG) through Grant SM 281/20-1the Hellenic Foundation for Research and Innovation (HFRI) under the 3rd Call for PhD fellowships (Fellowship Number: 6522)
文摘We present a statistical investigation of the degree of influence that assumptions made in relation to the mechanical parameters of a pylon have on its ground-induced vibrations.The study is set up by using as a key kinematic variable the displacement at the top of a reference,a stand-alone pylon with a uniform cross-section and fixity at its base.Next,statistics are produced using a dimensionless displacement ratio defined between the‘parental’and the‘subsidiary’cases,the latter defined for the pylon(a)resting on compliant soil,(b)having an attached top mass,and(c)being non-uniform with height.Furthermore,two materials are examined,namely,steel and reinforced concrete(R/C).More specifically,this displacement ratio is independent of the excitation and plays the role of a transfer function between the base and the top of the pylon.Both horizontal and vertical motions are considered,and the equations of motion are solved in the frequency domain.The ensuing statistical analysis is conducted for the following parameter combinations:(a)pylon founded on soft,intermediate,and stiff soil;(b)low,intermediate,and high-mass ratios of the attached mass to the pylon′s mass;(c)a constant and quadratic degree of pylon tapering with height.Spearman correlation coefficients are calculated for all the above combinations to arrive at statistical results that establish validity bounds and quantify the degree of influence of each assumption on the pylon′s response.
基金National Natural Science Foundation of China Under Grants No. 50508003 and No.50478042, and A Municipal New Star Plan Program Approved by Beijing Municipal Science & Technology Commission
文摘Traditional control strategies have difficulty handling nonlinear behavior of structures, time variable features and parameter uncertainties of structural control systems under seismic excitation. An off-and-towardsequilibrium (OTE) strategy combined with fuzzy control is presented in this paper to overcome these difficulties. According to the OTE strategy, the control force is designed from the viewpoint of a mechanical relationship between the motions of the structure, the exciting force and the control force. The advantage of the OTE strategy is that it can be used for a variety of control systems. In order to evaluate the performance of the proposed strategy, the seismic performance of a three-story shear building with an Active Tendon System (ATS) using a Fuzzy Logic Controller (FLC) is studied. The main advantage of the fuzzy controller is its inherent robustness and ability to handle any nonlinear behavior of structures. However, there are no design guidelines to set up the corresponding control rule table for a FLC. Based on the proposed strategy for the FLC, a control rule table associated with the building under study is developed, which then allows formation of a detailed algorithm. The results obtained in this study show that the proposed strategy performs slightly better than the linear quadratic regulator (LQR) strategy, while possessing several advantages over the LQR controller. Consequently, the feasibility and validity of the proposed strategy are verified.
基金Project supported by the National Natural Science Foundation of China (No.10176011).
文摘A new type of vibration structure (i.e. supporting system, called swing frame cus- tomarily) of vertical dynamic balancing machine has been designed, which is based on an analysis for the swing frame of a traditional double-plane vertical dynamic balancing machine. The static unbalance and couple unbalance can be e?ectively separated by using the new dynamic balancing machine with the new swing frame. By building the dynamics model, the advantages of the new structure are discussed in detail. The modal and harmonic response are analyzed by using the ANSYS7.0. By comparing the ?nite element modal analysis with the experimental modal analy- sis, the natural frequencies and vibration modes are found. There are many spring boards in the new swing frame. Their sti?nesses are di?erent and assorted with each other. Furthermore, there are three sensors on the measuring points. Therefore, the new dynamic balancing machine can measure static unbalance and coupling unbalance directly, and the interaction between them is faint. The result shows that the new vertical dynamic balancing machine is suitable for inertial measurement of ?ying objects, and can overcome the shortcomings of traditional double-plane vertical dynamic balancing machines, which the e?ect of plane-separation is inferior. The vertical dynamic balancing machine with the new vibration structure can ?nd wide application in the future. The modelling and analysis of the new vibration structure will provide theoretical basis and practical experience for designing new-type vertical dynamic balancing machines.
基金support provided by CSIR New Delhi via project grant No.25 (0184)/10/EMR–II
文摘The present study focuses on the analysis of free vibrations of axisymmetric functionally graded hollow spheres. The material is assumed to be graded in radial di- rection with a simple power law. Matrix Frrbenious method of extended power series is employed to derive the analytical solutions for displacement, temperature, and stresses. The dispersion relations for the existence of various types of pos- sible modes of vibrations in the considered hollow sphere are derived in a compact form. In order to explore the character- istics of vibrations, the secular equations are further solved by using fixed point iteration numerical technique with the help of MATLAB software. The numerical results have been presented graphically for polymethyl methecrylate materials in respect of natural frequencies, frequency shift, inverse quality factor, displacement, temperature change, and radial stress.
文摘Seismic random vibration analysis of stochastic truss structures is presented. A new method called random factor method is used for dynamic analysis of structures with uncertain parameters, due to variability in their material properties and geometry. Using the random factor method, the natural frequencies and modeshapes of a stochastic structure can be respectively described by the product of two parts, corresponding to the random factors of the structural parameters with uncertainty, and deterministic values of the natural frequencies and modeshapes obtained by conventional finite element analysis. The stochastic truss structure is subjected to stationary or non-stationary random earthquake excitation. Computational expressions for the mean and standard deviation of the mean square displacement and mean square stress are developed by means of the random variable's functional moment method and the algebra synthesis method. An antenna and a truss bridge are used as practical engineering examples to illustrate the application of the random factor method in the seismic response analysis of random structures under stationary or non-stationary random earthquake excitation.
文摘This study proposes a micro vibration mitigation system using viscous dampers to solve the problem of vibration in a high-tech building. Due to the operating frequency of the air conditioners and fundamental mode of the floors, a resonant phenomenon is occasionally experienced at the upper levels of the structure. Several strategies were considered, and viscous dampers combined with a suspension system were chosen to mitigate this annoying situation. A theoretical analysis was first executed to determine the optimal design value of the damper and the suspension spring. An efficient reduction in floor velocity of approximately 50 % was achieved by the proposed system. Practical verifications including a performance test of the micro-vibration-oriented dampers, the pragmatic application result, and a comparison in one-third octave spectrum was then carried out. The performance of the system was demonstrated by the data measured. It alleviated more trembling than was numerically expected. The energy absorbed by the viscous dampers is illustrated by the hysteresis loops and the one-third octave spectrum. It is found that with the proposed system, the vibration can be effectively captured by the viscous damper and converted to lower frequency-content tremors. The success of this project greatly supports the proposed standard two-stage analysis procedure for mitigating micro-vibration problems in practice. This research extends the use of viscous dampers to a new field.
基金Project supported by the National Natural Science Foundation of China (No.60034010) the Australia Research Council Discovery-Projects Grant (No.DP0210716)
文摘The reduction approaches are presented for vibration control of symmetric, cyclic periodic and linking structures. The condensation of generalized coordinates, the locations of sensors and actuators, and the relation between system inputs and control forces are assumed to be set in a symmetric way so that the control system posses the same repetition as the structure considered. By employing proper transformations of condensed generalized coordinates and the system inputs, the vibration control of an entire system can be implemented by carrying out the control of a number of sub-structures, and thus the dimension of the control problem can be significantly reduced.