A wave number method (WNM) is proposed to deal with the two-dimensional coupled structural-acoustic problem. Based on an indirect Trefftz approach, the displacement and the pressure response are approximated respect...A wave number method (WNM) is proposed to deal with the two-dimensional coupled structural-acoustic problem. Based on an indirect Trefftz approach, the displacement and the pressure response are approximated respectively by a set of wave functions, which exactly satisfy the governing equations and are independent of the size of the coupled system. The wave functions comprise the exact solutions of the homogeneous part of the governing equations and some particular solution functions, which arise from the external excitation. The weighting coefficients of the wave functions can be obtained by enforcing the pressure approximation to satisfy the boundary conditions and it is performed by applying the weighted residual formulation. The example is computed by the WNM and the BEM. The results show that, the WNM can attain the same accuracy and convergence as the BEM with less degrees of freedom.展开更多
This paper analyzes the random response of structural-acoustic coupled systems. Most existing works on coupled structural-acoustic analysis are limited to systems under deterministic excitations due to high computatio...This paper analyzes the random response of structural-acoustic coupled systems. Most existing works on coupled structural-acoustic analysis are limited to systems under deterministic excitations due to high computational cost required by a random response analysis. To reduce the computational burden involved in the coupled random analysis, an iterative procedure based on the Pseudo excitation method has been developed. It is found that this algorithm has an overwhelming advantage in computing efficiency over traditional methods, as demonstrated by some numerical examples given in this paper.展开更多
A periodic pipe system composed of steel pipes and rubber hoses with the same inner radius is designed based on the theory of phononic crystals. Using the transfer matrix method, the band structure of the periodic pip...A periodic pipe system composed of steel pipes and rubber hoses with the same inner radius is designed based on the theory of phononic crystals. Using the transfer matrix method, the band structure of the periodic pipe is calculated considering the structural-acoustic coupling. The results show that longitudinal vibration band gaps and acoustic band gaps can coexist in the fluid-filled periodic pipe. The formation of the band gap mechanism is further analyzed. The band gaps are validated by the sound transmission loss and vibration-frequency response functions calculated using the finite element method. The effect of the damp on the band gap is analyzed by calculating the complex band structure. The periodic pipe system can be used not only in the field of vibration reduction but also for noise elimination.展开更多
For the structural-acoustic radiation optimization problem under external loading,acoustic radiation power was considered to be an objective function in the optimization method. The finite element method(FEM) and boun...For the structural-acoustic radiation optimization problem under external loading,acoustic radiation power was considered to be an objective function in the optimization method. The finite element method(FEM) and boundary element method(BEM) were adopted in numerical calculations,and structural response and the acoustic response were assumed to be de-coupled in the analysis. A genetic algorithm was used as the strategy in optimization. In order to build the relational expression of the pressure objective function and the power objective function,the enveloping surface model was used to evaluate pressure in the acoustic domain. By taking the stiffened panel structural-acoustic optimization problem as an example,the acoustic power and field pressure after optimized was compared. Optimization results prove that this method is reasonable and effective.展开更多
The structural-acoustic coupling model for isotropic thin elastic plate was extended to honeycomb sandwich plate(HSP) by applying Green function method.Then an equivalent circuit model of the weakly-strongly coupled s...The structural-acoustic coupling model for isotropic thin elastic plate was extended to honeycomb sandwich plate(HSP) by applying Green function method.Then an equivalent circuit model of the weakly-strongly coupled system was proposed.Based on that,the estimation formulae of the coupled eigenfrequency were derived.The accuracy of the theoretical predictions was checked against experimental data,with good agreement achieved.Finally,the effects of HSP design parameters on the system coupling degree,the acoustic cavity eigenfrequency,and sound pressure response were analyzed.The results show that mechanical and acoustical characteristics of HSP can be improved by increasing the thickness of face sheet and reducing the mass density of material.展开更多
The continuum structural-acoustic topology optimization with external loading is investigated herein. Finite element method (FEM) is used to obtain the structural frequency response and boundary element method (BEM...The continuum structural-acoustic topology optimization with external loading is investigated herein. Finite element method (FEM) is used to obtain the structural frequency response and boundary element method (BEM) is adopted to perform exterior acoustic radiation analysis. The evolutionary structural optimization (ESO) is served as an optimization method in structural-acoustic radiation topology analysis. The acoustic radiation optimization of a plate under harmonic excitation is given for example. The numerical results show that using ESO solution to analyze structural-acoustic topology optimization is feasible and effective.展开更多
A time domain finite volume method(TDFVM)based on wave theory is developed to analyze the transient response and natural characteristics of structural-acoustic coupling problems in an enclosed cavity.In the present ...A time domain finite volume method(TDFVM)based on wave theory is developed to analyze the transient response and natural characteristics of structural-acoustic coupling problems in an enclosed cavity.In the present method,the elastic dynamic equations and acoustic equation in heterogeneous medium are solved in solid domains and fluid domains respectively.The structural-acoustic coupling is implemented according to the continuity condition of the particle velocity along the normal direction and the normal traction equilibrium condition on the interface.Several numerical examples are presented to validate the effectiveness and accuracy of the present TDFVM.Then the effects of water depth on the acoustic and vibration characteristics and the natural characteristics of a structural-acoustic coupling system are analyzed.The numerical results show that the increase of water depth leads to a stronger coupling between the water and structure and the decrease of natural frequencies of coupling system,The computational cost and memory of this method are small and it can be applicable to structural-acoustic coupling problems in the heterogeneous fluid.展开更多
The vibration and noise produced by the powertrain and waves inside ship cabins limit working efficiency and crew and passengers’accommodation quality.This paper simplifies ship cabins as cavities and explores active...The vibration and noise produced by the powertrain and waves inside ship cabins limit working efficiency and crew and passengers’accommodation quality.This paper simplifies ship cabins as cavities and explores active control techniques to attenuate sound transmission via multiple parallel-supported flexible subplates.The theoretical formulations of the interaction between multiple subplates and cavities were performed and the coupling relationships between them were analyzed.Based on the multiple subplates and the cavity coupling models,numerical simulations were performed using the derived optimal controller to minimize the transmission of sound into the cavities through two and nine parallel-supported subplates.The various control strategies were explored to minimize the coupling system’s acoustic potential energy,and the control performances were compared and discussed.The mechanism of reducing sound transmission through multiple supported subplates into a cavity is revealed.The simulation results showed that the vibration pattern of the controlled subplate is changed after it is regulated,which increases its radiation to subdue the other subplates’radiation,while increasing vibration of the controlled subplate.The more subplates a cavity has,the more kinetic energy the controlled subplate possess.Furthermore,the noise reduction performance of a cavity with fewer subplates is better than that with more subplates.展开更多
The numerical method of a coupled finite element and indirect boundary element equation for computing both the structural vibration and the acoustic radiation was presented. The coupling matrices were discussed and ph...The numerical method of a coupled finite element and indirect boundary element equation for computing both the structural vibration and the acoustic radiation was presented. The coupling matrices were discussed and physical degrees of freedom of the structure were treated in terms of its modal basis in vacuum to decouple the computation from the entire coupled structural acoustic equations. The numerical results for the ellipsoidal shell immersed in two different fluids indicate that heavy fluid changes greatly structural and acoustic behavior. This method can be applied to analyze acoustic and vibration for arbitrary complex structures in fluids.展开更多
Acoustoelastic coupling occurs when a hollow structure’s in-vacuo mode aligns with an acoustic mode of the internal cavity.The impact of this coupling on the total dynamic response of the structure can be quite sever...Acoustoelastic coupling occurs when a hollow structure’s in-vacuo mode aligns with an acoustic mode of the internal cavity.The impact of this coupling on the total dynamic response of the structure can be quite severe depending on the similarity of the modal frequencies and shapes.Typically,acoustoelastic coupling is not a design feature,but rather an unintended result that must be remedied as modal tests of structures are often used to correlate or validate finite element models of the uncoupled structure.Here,however,a test structure is intentionally designed such that multiple structural and acoustic modes are well-aligned,resulting in a coupled system that allows for an experimental investigation.First,coupling in the system is identified using a measure termed the magnification factor.Next,the structural-acoustic interaction is measured.Modifications to the system demonstrate the dependency of the coupling on changes in the mode shape and frequency proximity.This includes an investigation of several practical techniques used to decouple the system by altering the internal acoustic cavity,as well as the structure itself.These results show that acoustic absorption material effectively decoupled the structure while structural modifications,in their current form,proved unsuccessful.Readily available acoustic absorptive material was effective in reducing the coupled effects while presumably adding negligible mass or stiffness to the structure.展开更多
基金Project supported by the National Natural Science Foundation of China (No.10472035).
文摘A wave number method (WNM) is proposed to deal with the two-dimensional coupled structural-acoustic problem. Based on an indirect Trefftz approach, the displacement and the pressure response are approximated respectively by a set of wave functions, which exactly satisfy the governing equations and are independent of the size of the coupled system. The wave functions comprise the exact solutions of the homogeneous part of the governing equations and some particular solution functions, which arise from the external excitation. The weighting coefficients of the wave functions can be obtained by enforcing the pressure approximation to satisfy the boundary conditions and it is performed by applying the weighted residual formulation. The example is computed by the WNM and the BEM. The results show that, the WNM can attain the same accuracy and convergence as the BEM with less degrees of freedom.
基金supported by the National Natural Science Foundation of China (11072049,10772038)the Key Project of Chinese National Programs for Fundamental Research and Development (2010CB832703)+1 种基金the National Key Technology Support Program (2009BAG12A04)the Program for New Century Excellent Talents in University
文摘This paper analyzes the random response of structural-acoustic coupled systems. Most existing works on coupled structural-acoustic analysis are limited to systems under deterministic excitations due to high computational cost required by a random response analysis. To reduce the computational burden involved in the coupled random analysis, an iterative procedure based on the Pseudo excitation method has been developed. It is found that this algorithm has an overwhelming advantage in computing efficiency over traditional methods, as demonstrated by some numerical examples given in this paper.
基金Supported by the National Natural Science Foundation of China under Grant No 11372346
文摘A periodic pipe system composed of steel pipes and rubber hoses with the same inner radius is designed based on the theory of phononic crystals. Using the transfer matrix method, the band structure of the periodic pipe is calculated considering the structural-acoustic coupling. The results show that longitudinal vibration band gaps and acoustic band gaps can coexist in the fluid-filled periodic pipe. The formation of the band gap mechanism is further analyzed. The band gaps are validated by the sound transmission loss and vibration-frequency response functions calculated using the finite element method. The effect of the damp on the band gap is analyzed by calculating the complex band structure. The periodic pipe system can be used not only in the field of vibration reduction but also for noise elimination.
文摘For the structural-acoustic radiation optimization problem under external loading,acoustic radiation power was considered to be an objective function in the optimization method. The finite element method(FEM) and boundary element method(BEM) were adopted in numerical calculations,and structural response and the acoustic response were assumed to be de-coupled in the analysis. A genetic algorithm was used as the strategy in optimization. In order to build the relational expression of the pressure objective function and the power objective function,the enveloping surface model was used to evaluate pressure in the acoustic domain. By taking the stiffened panel structural-acoustic optimization problem as an example,the acoustic power and field pressure after optimized was compared. Optimization results prove that this method is reasonable and effective.
基金Project(51105375)supported by the National Natural Science Foundation of ChinaProject(CSTC2010BB8204)supported by Chongqing Natural Science Foundation,China
文摘The structural-acoustic coupling model for isotropic thin elastic plate was extended to honeycomb sandwich plate(HSP) by applying Green function method.Then an equivalent circuit model of the weakly-strongly coupled system was proposed.Based on that,the estimation formulae of the coupled eigenfrequency were derived.The accuracy of the theoretical predictions was checked against experimental data,with good agreement achieved.Finally,the effects of HSP design parameters on the system coupling degree,the acoustic cavity eigenfrequency,and sound pressure response were analyzed.The results show that mechanical and acoustical characteristics of HSP can be improved by increasing the thickness of face sheet and reducing the mass density of material.
文摘The continuum structural-acoustic topology optimization with external loading is investigated herein. Finite element method (FEM) is used to obtain the structural frequency response and boundary element method (BEM) is adopted to perform exterior acoustic radiation analysis. The evolutionary structural optimization (ESO) is served as an optimization method in structural-acoustic radiation topology analysis. The acoustic radiation optimization of a plate under harmonic excitation is given for example. The numerical results show that using ESO solution to analyze structural-acoustic topology optimization is feasible and effective.
基金supported by the Fundamental Research Funds for the Central Universities(HEUCF100307)the National Natural Science Foundation of China(51279035)
文摘A time domain finite volume method(TDFVM)based on wave theory is developed to analyze the transient response and natural characteristics of structural-acoustic coupling problems in an enclosed cavity.In the present method,the elastic dynamic equations and acoustic equation in heterogeneous medium are solved in solid domains and fluid domains respectively.The structural-acoustic coupling is implemented according to the continuity condition of the particle velocity along the normal direction and the normal traction equilibrium condition on the interface.Several numerical examples are presented to validate the effectiveness and accuracy of the present TDFVM.Then the effects of water depth on the acoustic and vibration characteristics and the natural characteristics of a structural-acoustic coupling system are analyzed.The numerical results show that the increase of water depth leads to a stronger coupling between the water and structure and the decrease of natural frequencies of coupling system,The computational cost and memory of this method are small and it can be applicable to structural-acoustic coupling problems in the heterogeneous fluid.
文摘The vibration and noise produced by the powertrain and waves inside ship cabins limit working efficiency and crew and passengers’accommodation quality.This paper simplifies ship cabins as cavities and explores active control techniques to attenuate sound transmission via multiple parallel-supported flexible subplates.The theoretical formulations of the interaction between multiple subplates and cavities were performed and the coupling relationships between them were analyzed.Based on the multiple subplates and the cavity coupling models,numerical simulations were performed using the derived optimal controller to minimize the transmission of sound into the cavities through two and nine parallel-supported subplates.The various control strategies were explored to minimize the coupling system’s acoustic potential energy,and the control performances were compared and discussed.The mechanism of reducing sound transmission through multiple supported subplates into a cavity is revealed.The simulation results showed that the vibration pattern of the controlled subplate is changed after it is regulated,which increases its radiation to subdue the other subplates’radiation,while increasing vibration of the controlled subplate.The more subplates a cavity has,the more kinetic energy the controlled subplate possess.Furthermore,the noise reduction performance of a cavity with fewer subplates is better than that with more subplates.
文摘The numerical method of a coupled finite element and indirect boundary element equation for computing both the structural vibration and the acoustic radiation was presented. The coupling matrices were discussed and physical degrees of freedom of the structure were treated in terms of its modal basis in vacuum to decouple the computation from the entire coupled structural acoustic equations. The numerical results for the ellipsoidal shell immersed in two different fluids indicate that heavy fluid changes greatly structural and acoustic behavior. This method can be applied to analyze acoustic and vibration for arbitrary complex structures in fluids.
文摘Acoustoelastic coupling occurs when a hollow structure’s in-vacuo mode aligns with an acoustic mode of the internal cavity.The impact of this coupling on the total dynamic response of the structure can be quite severe depending on the similarity of the modal frequencies and shapes.Typically,acoustoelastic coupling is not a design feature,but rather an unintended result that must be remedied as modal tests of structures are often used to correlate or validate finite element models of the uncoupled structure.Here,however,a test structure is intentionally designed such that multiple structural and acoustic modes are well-aligned,resulting in a coupled system that allows for an experimental investigation.First,coupling in the system is identified using a measure termed the magnification factor.Next,the structural-acoustic interaction is measured.Modifications to the system demonstrate the dependency of the coupling on changes in the mode shape and frequency proximity.This includes an investigation of several practical techniques used to decouple the system by altering the internal acoustic cavity,as well as the structure itself.These results show that acoustic absorption material effectively decoupled the structure while structural modifications,in their current form,proved unsuccessful.Readily available acoustic absorptive material was effective in reducing the coupled effects while presumably adding negligible mass or stiffness to the structure.