Rana kunyuensis is a species of brown frog that lives exclusively on Kunyu Mountain,Yantai,China.In the current study,a 279-bp cDNA sequence encoding a novel antimicrobial peptide (AMP),designated as amurin-9KY,was cl...Rana kunyuensis is a species of brown frog that lives exclusively on Kunyu Mountain,Yantai,China.In the current study,a 279-bp cDNA sequence encoding a novel antimicrobial peptide (AMP),designated as amurin-9KY,was cloned from synthesized double-strand skin cDNA of R.kunyuensis.The amurin-9KY precursor was composed of 62 amino acid (aa) residues,whereas the mature peptide was composed of 14 aa and contained two cysteines forming a C-terminal heptapeptide ring (Rana box domain) and an amidated C-terminus.These structural characters represent a novel amphibian AMP family.Although amurin-9KY exhibited high similarity to the already identified amurin-9AM from R.amurensis,little is known about the structures and activities of amurin-9 family AMPs so far.Therefore,amurin-9KY and its three derivatives (amurin-9KY1-3) were designed and synthesized.The structures and activities were examined to evaluate the influence of C-terminal amidation and the heptapeptide ring on the activities and structure of amurin-9KY..Results indicated that C-terminal amidation was essential for antimicrobial activity,whereas both C-terminal amidation and the heptapeptide ring played roles in the low hemolytic activity.Circular dichroism (CD) spectra showed that the four peptides adopted an α-helical conformation in THF/H2O (v/v 1∶1) solution,but a random coil in aqueous solution.Elimination of the C-terminal heptapeptide ring generated two free cysteine residues with unpaired thiol groups,which greatly increased the concentration-dependent anti-oxidant activity.Scanning electron microscopy (SEM) was also performed to determine the possible bactericidal mechanisms.展开更多
The human pregnane X receptor(hPXR) plays a critical role in the metabolism, transport and clearance of xenobiotics in the liver and intestine. The hPXR can be activated by a structurally diverse of drugs to initiat...The human pregnane X receptor(hPXR) plays a critical role in the metabolism, transport and clearance of xenobiotics in the liver and intestine. The hPXR can be activated by a structurally diverse of drugs to initiate clinically relevant drug-drug interactions. In this article, in silico investigation was performed on a structurally diverse set of drugs to identify critical structural features greatly related to their agonist activity towards h PXR. Heuristic method(HM)-Best Subset Modeling(BSM) and HM-Polynomial Neural Networks(PNN) were utilized to develop the linear and non-linear quantitative structure-activity relationship models. The applicability domain(AD) of the models was assessed by Williams plot. Statistically reliable models with good predictive power and explain were achieved(for HM-BSM, r^2=0.881, q^2_(LOO)=0.797, q^2_(EXT)=0.674; for HM-PNN, r^2=0.882, q^2_(LOO)=0.856, q^2_(EXT)=0.655). The developed models indicated that molecular aromatic and electric property, molecular weight and complexity may govern agonist activity of a structurally diverse set of drugs to h PXR.展开更多
Von Willebrand Factor(VWF),a multimeric plasma glycoprotein,is synthesized in endothelial cells and megakaryocytes.In adhesion and aggregation of circulating platelets towards to the sites of vascular injury,VWF captu...Von Willebrand Factor(VWF),a multimeric plasma glycoprotein,is synthesized in endothelial cells and megakaryocytes.In adhesion and aggregation of circulating platelets towards to the sites of vascular injury,VWF captures and activates the circulating platelets through interaction with platelet GPlba.As a triplet complex of A1A2A3,the VWF-A domain is a closed conformation with a low affinity to GPlba,but mutations or pathological hemodynamic environment of high fluid shear stress can induce the closed A domain to become an extended one.However,the key events in the force-and/or mutation-induced activation of VWF-A under flows remains unclear.Therefore,with techniques of AFM and PPFC,we here examined transformation of conformation and function of VWF-A under various wall shear stresses,for understanding regulation of force on VWF-A activation.Interesting,AFM scanning imaging data showed that VWF-A molecules on substrate pretreated by perfusing distilled water at various wall shear stresses shortened first and then lengthened as increasing of the pre-loaded wall shear stress,and the threshold of the wall shear stress is about 100 dyn/cm2,demonstrating that increasing pre-loaded wall shear stress would make the treated-A1A2A3 conformation gradually transform from a loose spherical structure to a compact one first and then become an open or extended one.The adhesion frequency of GPlba-coated Polystyrene microspheres(3-μm radius)on the VWF-A-coated substrates decreased first and then increased with the preloaded wall shear stress,which has a same threshold mentioned above.These results suggested that,force-induced activation of VWF-A occurs just at high wall shear stresses(>100 dyn/cm2).The mechanical stability of the closed A1A2A3 conformation would be weakened by the gain of function(GOF)mutant R1 308 L of A1 and enhanced by the loss of function(LOF)mutant G1324S,as it should be.To further reveal the molecular mechanism of the force-induced enhancing or weakening of VWF-A activation,we performed AFM experiment to investigate interaction of A1(WT A1 and its two mutants,the GOF mutant R1 308 L and the LOF mutant G1324S)with A2 and A3,respectively.The adhesive frequency of A1 with A2was larger than that of A1 with A3,showing that A1 was in favor of A2 rather than A3.And,the lifetimes of A1-A2 and A1-A3bond were biphasic force-dependent,showing a'Catch-slip bond'transform in binding of A1 to A2 or A3.It suggested that under the low wall shear stresses,force could inhibit VWF activity through a catch bond mechanism,which enhanced the stability of the closed A1A2A3 conformation,but under high wall shear stresses,the force would enhance VWF activity through a slip bond mechanism,which promoted conformational transform of VWF-A from closed to extended one through reducing the stability of the closed A1A2A3 structure.Our results showed that the GOF mutant R1 308 L would down-regulate the binding affinity of A1 to A2,leading to a low barrier in opening of the closed VWF-A structure.In contrast,the LOF mutant G1324S would enhance the stability of the closed VWF-A conformation by up-regulating the binding affinity of A1 to A2,leading to inhibition of VWF activity.展开更多
The Tacheng basin has been identified as a Carboniferous basement with a central uplift, sur- rounded by orogenic belts. This identification was based on the comprehensive analysis of field outcrops, regional magnetic...The Tacheng basin has been identified as a Carboniferous basement with a central uplift, sur- rounded by orogenic belts. This identification was based on the comprehensive analysis of field outcrops, regional magnetic and gravimetric data, skeleton seismic profiles, magnetotelluric profiles and drilling data. Here, we present gravimetric and magnetic data analyses of the basement structures of the Tacheng basin and its base formation. We also provide a magnetotelluric profile analysis of the structural features and tectonic framework of basin-mountain patterns. We use local geology, drilling data, and other comprehensive information to document the tectonic framework of the basement of the basin. Small-scale nappe structures are found in the northern basin, whereas stronger and more pronounced thrusting structures are found to the south and east of the basin. The basin is divided into four first-order tectonic units: a central uplift, a northern depression, a southeastern depression and a western depression. In addition, the Emin sag is suggested as a possible reservoir for oil and gas.展开更多
基金supported by grants from the National Natural Science Foundation of China(31772455)Natural Science Foundation of Jiangsu Province(BK20160336and BK20171214)+1 种基金Natural Science Foundation of College in Jiangsu Province(16KJB350004)Suzhou Science and Technology Development Project(SYN201504 and SNG2017045)
文摘Rana kunyuensis is a species of brown frog that lives exclusively on Kunyu Mountain,Yantai,China.In the current study,a 279-bp cDNA sequence encoding a novel antimicrobial peptide (AMP),designated as amurin-9KY,was cloned from synthesized double-strand skin cDNA of R.kunyuensis.The amurin-9KY precursor was composed of 62 amino acid (aa) residues,whereas the mature peptide was composed of 14 aa and contained two cysteines forming a C-terminal heptapeptide ring (Rana box domain) and an amidated C-terminus.These structural characters represent a novel amphibian AMP family.Although amurin-9KY exhibited high similarity to the already identified amurin-9AM from R.amurensis,little is known about the structures and activities of amurin-9 family AMPs so far.Therefore,amurin-9KY and its three derivatives (amurin-9KY1-3) were designed and synthesized.The structures and activities were examined to evaluate the influence of C-terminal amidation and the heptapeptide ring on the activities and structure of amurin-9KY..Results indicated that C-terminal amidation was essential for antimicrobial activity,whereas both C-terminal amidation and the heptapeptide ring played roles in the low hemolytic activity.Circular dichroism (CD) spectra showed that the four peptides adopted an α-helical conformation in THF/H2O (v/v 1∶1) solution,but a random coil in aqueous solution.Elimination of the C-terminal heptapeptide ring generated two free cysteine residues with unpaired thiol groups,which greatly increased the concentration-dependent anti-oxidant activity.Scanning electron microscopy (SEM) was also performed to determine the possible bactericidal mechanisms.
基金supported by grants from the Natural Science Research Project of Institution of Higher Education of Jiangsu Province(No.11KJB180006)National Natural Science Foundation of China(No.21277074 and No.81302458)
文摘The human pregnane X receptor(hPXR) plays a critical role in the metabolism, transport and clearance of xenobiotics in the liver and intestine. The hPXR can be activated by a structurally diverse of drugs to initiate clinically relevant drug-drug interactions. In this article, in silico investigation was performed on a structurally diverse set of drugs to identify critical structural features greatly related to their agonist activity towards h PXR. Heuristic method(HM)-Best Subset Modeling(BSM) and HM-Polynomial Neural Networks(PNN) were utilized to develop the linear and non-linear quantitative structure-activity relationship models. The applicability domain(AD) of the models was assessed by Williams plot. Statistically reliable models with good predictive power and explain were achieved(for HM-BSM, r^2=0.881, q^2_(LOO)=0.797, q^2_(EXT)=0.674; for HM-PNN, r^2=0.882, q^2_(LOO)=0.856, q^2_(EXT)=0.655). The developed models indicated that molecular aromatic and electric property, molecular weight and complexity may govern agonist activity of a structurally diverse set of drugs to h PXR.
基金supported by the National Natural Science Foundation of China ( 116272109,11432006)
文摘Von Willebrand Factor(VWF),a multimeric plasma glycoprotein,is synthesized in endothelial cells and megakaryocytes.In adhesion and aggregation of circulating platelets towards to the sites of vascular injury,VWF captures and activates the circulating platelets through interaction with platelet GPlba.As a triplet complex of A1A2A3,the VWF-A domain is a closed conformation with a low affinity to GPlba,but mutations or pathological hemodynamic environment of high fluid shear stress can induce the closed A domain to become an extended one.However,the key events in the force-and/or mutation-induced activation of VWF-A under flows remains unclear.Therefore,with techniques of AFM and PPFC,we here examined transformation of conformation and function of VWF-A under various wall shear stresses,for understanding regulation of force on VWF-A activation.Interesting,AFM scanning imaging data showed that VWF-A molecules on substrate pretreated by perfusing distilled water at various wall shear stresses shortened first and then lengthened as increasing of the pre-loaded wall shear stress,and the threshold of the wall shear stress is about 100 dyn/cm2,demonstrating that increasing pre-loaded wall shear stress would make the treated-A1A2A3 conformation gradually transform from a loose spherical structure to a compact one first and then become an open or extended one.The adhesion frequency of GPlba-coated Polystyrene microspheres(3-μm radius)on the VWF-A-coated substrates decreased first and then increased with the preloaded wall shear stress,which has a same threshold mentioned above.These results suggested that,force-induced activation of VWF-A occurs just at high wall shear stresses(>100 dyn/cm2).The mechanical stability of the closed A1A2A3 conformation would be weakened by the gain of function(GOF)mutant R1 308 L of A1 and enhanced by the loss of function(LOF)mutant G1324S,as it should be.To further reveal the molecular mechanism of the force-induced enhancing or weakening of VWF-A activation,we performed AFM experiment to investigate interaction of A1(WT A1 and its two mutants,the GOF mutant R1 308 L and the LOF mutant G1324S)with A2 and A3,respectively.The adhesive frequency of A1 with A2was larger than that of A1 with A3,showing that A1 was in favor of A2 rather than A3.And,the lifetimes of A1-A2 and A1-A3bond were biphasic force-dependent,showing a'Catch-slip bond'transform in binding of A1 to A2 or A3.It suggested that under the low wall shear stresses,force could inhibit VWF activity through a catch bond mechanism,which enhanced the stability of the closed A1A2A3 conformation,but under high wall shear stresses,the force would enhance VWF activity through a slip bond mechanism,which promoted conformational transform of VWF-A from closed to extended one through reducing the stability of the closed A1A2A3 structure.Our results showed that the GOF mutant R1 308 L would down-regulate the binding affinity of A1 to A2,leading to a low barrier in opening of the closed VWF-A structure.In contrast,the LOF mutant G1324S would enhance the stability of the closed VWF-A conformation by up-regulating the binding affinity of A1 to A2,leading to inhibition of VWF activity.
文摘The Tacheng basin has been identified as a Carboniferous basement with a central uplift, sur- rounded by orogenic belts. This identification was based on the comprehensive analysis of field outcrops, regional magnetic and gravimetric data, skeleton seismic profiles, magnetotelluric profiles and drilling data. Here, we present gravimetric and magnetic data analyses of the basement structures of the Tacheng basin and its base formation. We also provide a magnetotelluric profile analysis of the structural features and tectonic framework of basin-mountain patterns. We use local geology, drilling data, and other comprehensive information to document the tectonic framework of the basement of the basin. Small-scale nappe structures are found in the northern basin, whereas stronger and more pronounced thrusting structures are found to the south and east of the basin. The basin is divided into four first-order tectonic units: a central uplift, a northern depression, a southeastern depression and a western depression. In addition, the Emin sag is suggested as a possible reservoir for oil and gas.