Cloud structure and evolution of Mesoscale Convective Systems (MCSs) retrieved from the Tropical Rainfall Measuring Mission Microwave Imager (TRMM TMI) and Precipitation Radar (PR) were investigated and compared...Cloud structure and evolution of Mesoscale Convective Systems (MCSs) retrieved from the Tropical Rainfall Measuring Mission Microwave Imager (TRMM TMI) and Precipitation Radar (PR) were investigated and compared with some pioneer studies based on soundings and models over the northern South China Sea (SCS). The impacts of Convective Available Potential Energy (CAPE) and environmental vertical wind shear on MCSs were also explored. The main features of MCSs over the SCS were captured well by both TRMM PR and TMI. However, the PR-retrieved surface rainfall in May was less than that in June, and the reverse for TMI. TRMM-retrieved rainfall amounts were generally consistent with those estimated from sounding and models. However, rainfall amounts from sounding-based and PR-based estimates were relatively higher than those retrieved from TRMM-TMI data. The Weather Research and Forecasting (WRF) modeling simulation underestimated the maximum rain rate by 22% compared to that derived from TRMM-PR, and underestimated mean rainfall by 10.4% compared to the TRMM-TMI estimate, and by 12.5% compared to the sounding-based estimate. The warm microphysical processes modeled from both the WRF and the Goddard Cumulus Ensemble (GCE) models were quite close to those based on TMI, but the ice water contents in the models were relatively less compared to that derived from TMI. The CAPE and wind shear induced by the monsoon circulation were found to play critical roles in maintaining and developing the intense convective clouds over SCS. The latent heating rate increased more than twofold during the monsoon period and provided favorable conditions for the upward transportation of energy from the ocean, giving rise to the possibility of inducing large-scale interactions.展开更多
The USMTArray was completed on June 27,2024,comprising a network of 1779 transportable long-period magnetotelluric(MT)stations(Fig.1)with nominal 70-km grid spacing spanning the conterminous United States,an area of 8...The USMTArray was completed on June 27,2024,comprising a network of 1779 transportable long-period magnetotelluric(MT)stations(Fig.1)with nominal 70-km grid spacing spanning the conterminous United States,an area of 8.1×10^(6)km^(2).Each station operated for weeksto-months,as required to meet data quality standards over the period band of 10–10000 s.The USMTArray shares similarities with the planned SinoProbe-II MT Array,with its 1-degree station spacing(~111 km in the latitudinal direction)spanning an area of 9.6×10^(6)km^(2).展开更多
The asymmetrical structure of typhoon-induced ocean eddies(TIOEs) in the East China Sea(including the Yellow Sea)and the accompanying air–sea interaction are studied using reanalysis products. Thirteen TIOEs are ...The asymmetrical structure of typhoon-induced ocean eddies(TIOEs) in the East China Sea(including the Yellow Sea)and the accompanying air–sea interaction are studied using reanalysis products. Thirteen TIOEs are analyzed and divided into three groups with the k-prototype method: Group A with typhoons passing through the central Yellow Sea; Group B with typhoons re-entering the sea from the western Yellow Sea after landing on continental China; and Group C with typhoons occurring across the eastern Yellow Sea near to the Korean Peninsula. The study region is divided into three zones(Zones Ⅰ, Ⅱ and Ⅲ) according to water depth and the Kuroshio position. The TIOEs in Group A are the strongest and could reverse part of the Kuroshio stream, while TIOEs in the other two groups are easily deformed by topography. The strong currents of the TIOEs impact on the latent heat flux distribution and upward transport, which facilitates the typhoon development. The strong divergence within the TIOEs favors an upwelling-induced cooling. A typical TIOE analysis shows that the intensity of the upwelling of TIOEs is proportional to the water depth, but its magnitude is weaker than the upwelling induced by the topography. In Zones Ⅰ and Ⅱ, the vertical dimensions of TIOEs and their strong currents are much less than the water depths.In shallow water Zone Ⅲ, a reversed circulation appears in the lower layer. The strong currents can lead to a greater, faster,and deeper energy transfer downwards than at the center of TIOEs.展开更多
The internal solar structure predicted by the standard solar model disagrees with the helioseismic observations even by utilizing the most updated physical inputs, such as the opacity and element abundances. By increa...The internal solar structure predicted by the standard solar model disagrees with the helioseismic observations even by utilizing the most updated physical inputs, such as the opacity and element abundances. By increasing the Rosseland mean, the decade-old open problem of the missing opacity can be resolved. Herein, we propose that the continuum electrons in the radiative processes lose phases and coherence as matter waves, giving rise to a phenomenon of transient spatial localization. It not only enhances the continuum opacity but also increases the line widths of the bound-bound transitions. We demonstrate our theoretical formulation by investigating the opacity of solar mixtures in the interior. The Rosseland mean demonstrates an increase of 10%-26% in the range of 0.3 R⊙-0.75 R⊙. The results are compared with the recent experimental data and the existing theoretical models. Our findings provide novel clues to the open problem of the missing opacity in the solar interior and new insight on the radiative opacity in the hot dense-plasma regime.展开更多
Foreshock cavitons are transient phenomena observed in the terrestrial foreshock region.They are characterized by a simultaneous depression of magnetic field magnitude and plasma density,which are bounded with enhance...Foreshock cavitons are transient phenomena observed in the terrestrial foreshock region.They are characterized by a simultaneous depression of magnetic field magnitude and plasma density,which are bounded with enhancements of these two parameters and surrounded by ultralow frequency(ULF)waves.Previous studies focused on the interplanetary magnetic field(IMF)conditions,solar wind(SW)conditions,and the growth of the foreshock waves related to the generation of foreshock cavitons.Previously,a multipoint spacecraft analysis method using Cluster data was applied to analyze only two foreshock cavitons,and this method did not consider uncertainties.In this study,multipoint spacecraft analysis methods,including the timing method,the minimum directional derivative(MDD)method,and the spatiotemporal difference(STD)method are applied to determine the velocity in both spacecraft and solar wind frames.The propagation properties show good agreement with previous results from simulations and observations that most cavitons move sunward in the solar wind frame,with the velocities larger than the Alfvén speed.The propagation properties of foreshock cavitons support the formation mechanism of cavitons in previous simulations,which suggested that cavitons are formed due to the nonlinear evolution of compressive ULF waves.We find that there is clear decreasing trend between the size of cavitons and their velocity in the solar wind frame.In addition,the timing method considering errors has been applied to study the evolution properties by comparing the velocities with errors of the leading and trailing edges,and we identify three stable cavitons and one contracting caviton,which has not been studied before.Most cavitons should remain stable when they travel toward the Earth’s bow shock.The relationship between the size of foreshock cavitons and their distance from the bow shock is also discussed.展开更多
基金sponsored by the Chinese Natural Science Foundation (Grant Nos. 40575003 and 40333033)the special foundation of the Chinese Academy of Meteorological Sciences (2011Z005)
文摘Cloud structure and evolution of Mesoscale Convective Systems (MCSs) retrieved from the Tropical Rainfall Measuring Mission Microwave Imager (TRMM TMI) and Precipitation Radar (PR) were investigated and compared with some pioneer studies based on soundings and models over the northern South China Sea (SCS). The impacts of Convective Available Potential Energy (CAPE) and environmental vertical wind shear on MCSs were also explored. The main features of MCSs over the SCS were captured well by both TRMM PR and TMI. However, the PR-retrieved surface rainfall in May was less than that in June, and the reverse for TMI. TRMM-retrieved rainfall amounts were generally consistent with those estimated from sounding and models. However, rainfall amounts from sounding-based and PR-based estimates were relatively higher than those retrieved from TRMM-TMI data. The Weather Research and Forecasting (WRF) modeling simulation underestimated the maximum rain rate by 22% compared to that derived from TRMM-PR, and underestimated mean rainfall by 10.4% compared to the TRMM-TMI estimate, and by 12.5% compared to the sounding-based estimate. The warm microphysical processes modeled from both the WRF and the Goddard Cumulus Ensemble (GCE) models were quite close to those based on TMI, but the ice water contents in the models were relatively less compared to that derived from TMI. The CAPE and wind shear induced by the monsoon circulation were found to play critical roles in maintaining and developing the intense convective clouds over SCS. The latent heating rate increased more than twofold during the monsoon period and provided favorable conditions for the upward transportation of energy from the ocean, giving rise to the possibility of inducing large-scale interactions.
文摘The USMTArray was completed on June 27,2024,comprising a network of 1779 transportable long-period magnetotelluric(MT)stations(Fig.1)with nominal 70-km grid spacing spanning the conterminous United States,an area of 8.1×10^(6)km^(2).Each station operated for weeksto-months,as required to meet data quality standards over the period band of 10–10000 s.The USMTArray shares similarities with the planned SinoProbe-II MT Array,with its 1-degree station spacing(~111 km in the latitudinal direction)spanning an area of 9.6×10^(6)km^(2).
基金supported by the National Natural Science Foundation of China (Grant Nos. 41276033 and 41276032)the Jiangsu Science and Technology Support Project (Grant No. BE2014729)+2 种基金project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe 2015 Jiangsu Program for Innovation Research and Entrepreneurship Groupsthe National Program on Global Change and Air-Sea Interaction (GASI-IPOVAI-06)
文摘The asymmetrical structure of typhoon-induced ocean eddies(TIOEs) in the East China Sea(including the Yellow Sea)and the accompanying air–sea interaction are studied using reanalysis products. Thirteen TIOEs are analyzed and divided into three groups with the k-prototype method: Group A with typhoons passing through the central Yellow Sea; Group B with typhoons re-entering the sea from the western Yellow Sea after landing on continental China; and Group C with typhoons occurring across the eastern Yellow Sea near to the Korean Peninsula. The study region is divided into three zones(Zones Ⅰ, Ⅱ and Ⅲ) according to water depth and the Kuroshio position. The TIOEs in Group A are the strongest and could reverse part of the Kuroshio stream, while TIOEs in the other two groups are easily deformed by topography. The strong currents of the TIOEs impact on the latent heat flux distribution and upward transport, which facilitates the typhoon development. The strong divergence within the TIOEs favors an upwelling-induced cooling. A typical TIOE analysis shows that the intensity of the upwelling of TIOEs is proportional to the water depth, but its magnitude is weaker than the upwelling induced by the topography. In Zones Ⅰ and Ⅱ, the vertical dimensions of TIOEs and their strong currents are much less than the water depths.In shallow water Zone Ⅲ, a reversed circulation appears in the lower layer. The strong currents can lead to a greater, faster,and deeper energy transfer downwards than at the center of TIOEs.
基金supported by the Science Challenge Project(Grant No.TZ2018005)the National Key R&D Program of China(Grant Nos.2019YFA0307700,and 2017YFA0403202)the National Natural Science Foundation of China(Grant Nos.12174343,and 11774322)。
文摘The internal solar structure predicted by the standard solar model disagrees with the helioseismic observations even by utilizing the most updated physical inputs, such as the opacity and element abundances. By increasing the Rosseland mean, the decade-old open problem of the missing opacity can be resolved. Herein, we propose that the continuum electrons in the radiative processes lose phases and coherence as matter waves, giving rise to a phenomenon of transient spatial localization. It not only enhances the continuum opacity but also increases the line widths of the bound-bound transitions. We demonstrate our theoretical formulation by investigating the opacity of solar mixtures in the interior. The Rosseland mean demonstrates an increase of 10%-26% in the range of 0.3 R⊙-0.75 R⊙. The results are compared with the recent experimental data and the existing theoretical models. Our findings provide novel clues to the open problem of the missing opacity in the solar interior and new insight on the radiative opacity in the hot dense-plasma regime.
基金supported by the National Natural Science Foundation of China(Grant Nos.41574157,41628402&41774153)partially supported by National Science Foundation(Grant No.AGS-1352669)+1 种基金the International Space Science Institute-Beijing for supporting the international team “Dayside Transient Phenomena and Their Impact on the Magnetosphere-Ionosphere”supported by the specialized research fund for State Key Laboratories
文摘Foreshock cavitons are transient phenomena observed in the terrestrial foreshock region.They are characterized by a simultaneous depression of magnetic field magnitude and plasma density,which are bounded with enhancements of these two parameters and surrounded by ultralow frequency(ULF)waves.Previous studies focused on the interplanetary magnetic field(IMF)conditions,solar wind(SW)conditions,and the growth of the foreshock waves related to the generation of foreshock cavitons.Previously,a multipoint spacecraft analysis method using Cluster data was applied to analyze only two foreshock cavitons,and this method did not consider uncertainties.In this study,multipoint spacecraft analysis methods,including the timing method,the minimum directional derivative(MDD)method,and the spatiotemporal difference(STD)method are applied to determine the velocity in both spacecraft and solar wind frames.The propagation properties show good agreement with previous results from simulations and observations that most cavitons move sunward in the solar wind frame,with the velocities larger than the Alfvén speed.The propagation properties of foreshock cavitons support the formation mechanism of cavitons in previous simulations,which suggested that cavitons are formed due to the nonlinear evolution of compressive ULF waves.We find that there is clear decreasing trend between the size of cavitons and their velocity in the solar wind frame.In addition,the timing method considering errors has been applied to study the evolution properties by comparing the velocities with errors of the leading and trailing edges,and we identify three stable cavitons and one contracting caviton,which has not been studied before.Most cavitons should remain stable when they travel toward the Earth’s bow shock.The relationship between the size of foreshock cavitons and their distance from the bow shock is also discussed.