The spherulitic structure and morphology development of poly(ethylene succinate)/poly(ethylene oxide) (PES/PEO) blends with one-step crystallization behavior were observed by means of polarizing optical microscope.It ...The spherulitic structure and morphology development of poly(ethylene succinate)/poly(ethylene oxide) (PES/PEO) blends with one-step crystallization behavior were observed by means of polarizing optical microscope.It was found that the pure PES spherulite in which the adequate quantity of PEO melt existed in the interlamellar regions,and the blending spherulite formed by both PES and PEO lamellae could form simultaneously.When the two types of spherulites contacted with each other the front of the blending ...展开更多
Boron has high mass and volume calorific values,but it is difficult to ignite and has low combustion efficiency.This literature review summarizes the strategies that are used to solve the above-mentioned problems,whic...Boron has high mass and volume calorific values,but it is difficult to ignite and has low combustion efficiency.This literature review summarizes the strategies that are used to solve the above-mentioned problems,which include coatings of boron by using fluoride compounds,energetic composites,metal fuels,and metal oxides.Coating techniques include recrystallization,dual-solvent,phase transfer,electrospinning,etc.As one of the effective coating agents,the fluorine compounds can react with the oxide shell of boron powder.In comparison,the energetic composites can effectively improve the flame temperature of boron powder and enhance the evaporation efficiency of oxide film as a condensed product.Metals and metal oxides would react with boron powder to form metal borides with a lower ignition point,which could reduce its ignition temperature.展开更多
Developments of economic systems are critical for bio-regenerative life support systems in manned space missions.In this work we report on the feasibility of using two direct sunlight powered processes sequentially fo...Developments of economic systems are critical for bio-regenerative life support systems in manned space missions.In this work we report on the feasibility of using two direct sunlight powered processes sequentially for the recovery of water and nutrients from urine.The work presents experimental evidence on nutrient and water recovery achieved using the proto-type designed and developed.We report the design and testing of a solar still which would serve on the nutrient recovery front.The cooled condensate from the solar still is fed into a solar powered electrolysis unit where nano-structured indium sulphide(In_(2)S_(3))thin films coated over fluorine doped tin oxide(SnO_(2):F)substrate serve as one of the working electrodes.The electrolysis takes place in the absence of an electrolyte which manifests as a technical achievement of our work.Our results show that the COD level in the recycled water is very low.The In_(2)S_(3)photo-electrodes are stable without any physical damage after the process.展开更多
Hydroxyapatite(HAP) has been widely used to immobilize many cationic metals in water and soils. The specific reason why an increase in the surface area of HAP enhances cadmium(Cd) uptake, but has no effect on lead...Hydroxyapatite(HAP) has been widely used to immobilize many cationic metals in water and soils. The specific reason why an increase in the surface area of HAP enhances cadmium(Cd) uptake, but has no effect on lead(Pb) uptake, is not clear. The aim of this study was to determine the factors causing the differences in sorption behavior between Cd and Pb by evaluating HAPs with different surface areas. We synthesized HAPs with two different surface areas, which were characterized by X-ray diffraction, N2 adsorption, and scanning electron microscopy, and then evaluated them as sorbents for Cd and Pb removal by testing in single and binary systems. The sorption capacity of large surface area HAP(1.85 mmol/g) for Cd in the single-metal system was higher than that of small surface area HAP(0.64 mmol/g), but there were no differences between single- and binary-metal solutions containing Pb. After the Cd experiments, the HAP retained a stable structure and intact morphology, which promotes the accessibility of reactive sites for Cd. However, a newly formed precipitate covered the surface and blocked the channels in the presence of Pb, which reduced the number of potential adsorption sites on HAP for Cd and Pb.Remediation experiments using Cd- and Pb-contaminated soil produced similar results to the solution tests. These results indicate that alterations of the structure and morphology during the reaction is an important factor influencing metal sorption to HAP.展开更多
In order to provide a novel biomimetic composite substrate for tissue engineering and explore the interaction between cells and this type of material,we developed chitosan/liquid crystal(CS/LC)composite hydrogel with ...In order to provide a novel biomimetic composite substrate for tissue engineering and explore the interaction between cells and this type of material,we developed chitosan/liquid crystal(CS/LC)composite hydrogel with embedded LC phases by composing of cholesterol hydroxypropyl cellulose ester liquid crystalline material and CS.The micromorphology of CS/LC composite hydrogels exhibited‘islands-sea’phase separation structures similar to the‘fluid mosaic model’of biomembrane.In vitro cell compatibility study suggested that 3T3 is fibroblasts exhibited better initial cell adhesions and higher proliferation rates on the composite hydrogel than on the polystyrene control plate and the pure LC membrane.This novel CS/LC composite hydrogel provides more favorable interface for cell growth and proliferation and may serve as potentially active substrate for engineering interfaces to live cells.展开更多
Temperature-re s ponsive resistance transition behaviors of the melamine sponges wrapped with different graphene oxide derivatives(i.e.nanoribbon,wide-ribbon and sheet)were investigated.Melamine sponge composites coat...Temperature-re s ponsive resistance transition behaviors of the melamine sponges wrapped with different graphene oxide derivatives(i.e.nanoribbon,wide-ribbon and sheet)were investigated.Melamine sponge composites coated by three types of GO derivatives were prepared by a simple dip-coating approach.All these composites show good mechanical flexibility and reliability(almost unchanged compressive stress at 70%strain after 100 cycles),high hydrophobicity(water contact angle>120°),excellent flame resistance(self-extinguishing)and structural stability even after burning,which was used to construct the resistance-based fire alarm/warning sensor.Notably,the different resistance response behaviors of such sensors are strongly dependent on the GO size and network formed on the MF skeleton surface.Typically,at a fixed high temperature of~350℃,the three fire alarm sensors show different response time(to trigger the alarm light)of 6.3,8.4 and 11.1 s for nanoribbon,wide-ribbon and sheet at the same concentration,respectively.The structural observation and chemical analysis demonstrated that the discrepancy of temperature-responsive resistance transition behaviors of various GO derivatives was strongly determined by their different thermal reduction degrees during the high-tempe rature or flame treating process.This work offers a design and development for construction of smart fire alarm device for potential fire prevention and safety applications.展开更多
基金supported by Key Science Foundation of Education Ministry of China (No.207051)Key Lab Foundation of Anhui (No.2005383).
文摘The spherulitic structure and morphology development of poly(ethylene succinate)/poly(ethylene oxide) (PES/PEO) blends with one-step crystallization behavior were observed by means of polarizing optical microscope.It was found that the pure PES spherulite in which the adequate quantity of PEO melt existed in the interlamellar regions,and the blending spherulite formed by both PES and PEO lamellae could form simultaneously.When the two types of spherulites contacted with each other the front of the blending ...
基金funded by Shaanxi Provincial Key Research and Development Program of China(Grant No.2021ZDLGY11)partially supported by NSAF Project of China(Grant No.U2030202)。
文摘Boron has high mass and volume calorific values,but it is difficult to ignite and has low combustion efficiency.This literature review summarizes the strategies that are used to solve the above-mentioned problems,which include coatings of boron by using fluoride compounds,energetic composites,metal fuels,and metal oxides.Coating techniques include recrystallization,dual-solvent,phase transfer,electrospinning,etc.As one of the effective coating agents,the fluorine compounds can react with the oxide shell of boron powder.In comparison,the energetic composites can effectively improve the flame temperature of boron powder and enhance the evaporation efficiency of oxide film as a condensed product.Metals and metal oxides would react with boron powder to form metal borides with a lower ignition point,which could reduce its ignition temperature.
基金R.Jayakrishnan thanks KSCSTE for funding this work under the SPYTiS scheme(Grant No.25/SPYTiS III/2017/KSCSTE)also thanks DoECC,Government of Kerala for supporting the work(Grant No.DoECC/E3/R&D/1751/2017).
文摘Developments of economic systems are critical for bio-regenerative life support systems in manned space missions.In this work we report on the feasibility of using two direct sunlight powered processes sequentially for the recovery of water and nutrients from urine.The work presents experimental evidence on nutrient and water recovery achieved using the proto-type designed and developed.We report the design and testing of a solar still which would serve on the nutrient recovery front.The cooled condensate from the solar still is fed into a solar powered electrolysis unit where nano-structured indium sulphide(In_(2)S_(3))thin films coated over fluorine doped tin oxide(SnO_(2):F)substrate serve as one of the working electrodes.The electrolysis takes place in the absence of an electrolyte which manifests as a technical achievement of our work.Our results show that the COD level in the recycled water is very low.The In_(2)S_(3)photo-electrodes are stable without any physical damage after the process.
基金supported by the National Natural Science Foundation of China(No.41301347)the Anhui Provincial Natural Science Foundation(No.1408085MKL61)+1 种基金the Scientific and Technical Key Research Program of Auhui(No.1501031088)the Natural Science Foundation of Anhui Academy of Agricultural Sciences(No.16A1029)
文摘Hydroxyapatite(HAP) has been widely used to immobilize many cationic metals in water and soils. The specific reason why an increase in the surface area of HAP enhances cadmium(Cd) uptake, but has no effect on lead(Pb) uptake, is not clear. The aim of this study was to determine the factors causing the differences in sorption behavior between Cd and Pb by evaluating HAPs with different surface areas. We synthesized HAPs with two different surface areas, which were characterized by X-ray diffraction, N2 adsorption, and scanning electron microscopy, and then evaluated them as sorbents for Cd and Pb removal by testing in single and binary systems. The sorption capacity of large surface area HAP(1.85 mmol/g) for Cd in the single-metal system was higher than that of small surface area HAP(0.64 mmol/g), but there were no differences between single- and binary-metal solutions containing Pb. After the Cd experiments, the HAP retained a stable structure and intact morphology, which promotes the accessibility of reactive sites for Cd. However, a newly formed precipitate covered the surface and blocked the channels in the presence of Pb, which reduced the number of potential adsorption sites on HAP for Cd and Pb.Remediation experiments using Cd- and Pb-contaminated soil produced similar results to the solution tests. These results indicate that alterations of the structure and morphology during the reaction is an important factor influencing metal sorption to HAP.
基金This work was supported by the Fundamental Research Funds for the Central Universities(21615436)the Science and Technology Program of Guangzhou,China(201508020035)the Science and Technology Program of Guangdong,China(2016B090913004).
文摘In order to provide a novel biomimetic composite substrate for tissue engineering and explore the interaction between cells and this type of material,we developed chitosan/liquid crystal(CS/LC)composite hydrogel with embedded LC phases by composing of cholesterol hydroxypropyl cellulose ester liquid crystalline material and CS.The micromorphology of CS/LC composite hydrogels exhibited‘islands-sea’phase separation structures similar to the‘fluid mosaic model’of biomembrane.In vitro cell compatibility study suggested that 3T3 is fibroblasts exhibited better initial cell adhesions and higher proliferation rates on the composite hydrogel than on the polystyrene control plate and the pure LC membrane.This novel CS/LC composite hydrogel provides more favorable interface for cell growth and proliferation and may serve as potentially active substrate for engineering interfaces to live cells.
基金the funding support from the Natural Science Foundation of China(Nos.51973047 and 12002112)the Natural Science Foundation of Zhejiang Province(Nos.LY18E030005 and LY15E030015)+1 种基金the Science and Technology Project of Zhejiang Province(No.LGG20B040002)the Science and Technology Program of Hangzhou(Nos.20191203B16 and 20180533B01)。
文摘Temperature-re s ponsive resistance transition behaviors of the melamine sponges wrapped with different graphene oxide derivatives(i.e.nanoribbon,wide-ribbon and sheet)were investigated.Melamine sponge composites coated by three types of GO derivatives were prepared by a simple dip-coating approach.All these composites show good mechanical flexibility and reliability(almost unchanged compressive stress at 70%strain after 100 cycles),high hydrophobicity(water contact angle>120°),excellent flame resistance(self-extinguishing)and structural stability even after burning,which was used to construct the resistance-based fire alarm/warning sensor.Notably,the different resistance response behaviors of such sensors are strongly dependent on the GO size and network formed on the MF skeleton surface.Typically,at a fixed high temperature of~350℃,the three fire alarm sensors show different response time(to trigger the alarm light)of 6.3,8.4 and 11.1 s for nanoribbon,wide-ribbon and sheet at the same concentration,respectively.The structural observation and chemical analysis demonstrated that the discrepancy of temperature-responsive resistance transition behaviors of various GO derivatives was strongly determined by their different thermal reduction degrees during the high-tempe rature or flame treating process.This work offers a design and development for construction of smart fire alarm device for potential fire prevention and safety applications.