期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
STUDY ON STRUCTURE AND PROPERTY OF Nb-DOPED TiC CERAMIC WITH QUANTUM CHEMISTRY CALCULATIONS
1
作者 闵新民 蔡克峰 +1 位作者 南策文 袁润章 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 1994年第4期63-71,共9页
Nb-doped TiC ceramic,or (NbyTi1-y) Cx,in which amount of Nb element added is increased from zero to 40Wt. %, synthisized -with self-propagating high temperature synthesis,is studied with SCF-Xa-DV,a quantum chemistry ... Nb-doped TiC ceramic,or (NbyTi1-y) Cx,in which amount of Nb element added is increased from zero to 40Wt. %, synthisized -with self-propagating high temperature synthesis,is studied with SCF-Xa-DV,a quantum chemistry cal-culating method. The chemical bonding is studied to discuss the relation between structrues and properties. Several classes of models in which there is no vacancy,one vacancy or two vacan-cies have been calculated. From the calculated results of bond or-der, a measure of covalent bond strength,and molecule orbital contour map, it is concluded that when Nb element added in-creases, the vacancies increase correspondingly,the covalent com-ponent of chemical bonds of the samples decreases -while the met-al-bonding component increases, so the hardness and resistance of the samples decrease. 展开更多
关键词 TiC ceramic structure and property quan- tum chemistry
下载PDF
Local Structure Analysis of Lead Zinc Niobate-Barium Titanate Ceramic by X-Ray Absorption Spectroscopy and Density Functional Calculation
2
作者 Kanokwan Kanchiang Phakkhananan Pakawanit Rattikorn Yimnirun 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第8期113-116,共4页
The local structure of an alternative Pb(Zn1/3Nb2/3)O3-based perovskite ceramic is investigated. The 0.07BaTiO33-0.93Pb(Zn1/3Nb2/3)O3 ceramic is synthesized using a combination of Zn3Nb2O8 B-site precursor and BaT... The local structure of an alternative Pb(Zn1/3Nb2/3)O3-based perovskite ceramic is investigated. The 0.07BaTiO33-0.93Pb(Zn1/3Nb2/3)O3 ceramic is synthesized using a combination of Zn3Nb2O8 B-site precursor and BaTiO33 perovskite phase stabilizer. Then, x-ray absorption spectroscopy and density functional theory are employed to calculate the local structure configuration and formation energy of the prepared samples. Ba2+ is found to replace Pb2+ in AA-site with Zn2+ occupying BB-site in Pb(Zn1/3Nb2/3)O3, while in the neighboring structure, Ti4+4+ replaces Nb5+5+ in BB-site with Pb2+2+ occupying AA-site. With the substitution of BaTiO33 in Pb(Zn1/3Nb2/3)O3, the bond length between Zn2+ and Pb2+ is longer than that of the typical perovskite phase of Pb(Zn1/3Nb2/3)O3. This indicates the key role of BaTiO33 in decreasing the steric hindrance of Pb2+ lone pair, and the mutual interactions between Pb2+ lone pair and Zn2+ and the formation energy is seen to decrease. This finding of the formation energy and local structure configuration relationship can further extend a fundamental understanding of the role of BaTiO33 in stabilizing the perovskite phase in PbZn13Nb23O3-based materials, which in turn will lead to an improved preparation technique for desired electrical properties. 展开更多
关键词 PB Local structure Analysis of Lead Zinc Niobate-Barium Titanate ceramic by X-Ray Absorption Spectroscopy and Density Functional Calculation EXAFS BA XANES Zn
下载PDF
Strengthening Steel Joint of Architectural Structure under Loading Condition 被引量:1
3
作者 方胜利 张联盟 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第2期256-259,共4页
Through the comparative analysis of steel plate reinforced, ceramics reinforced and non- reinforced joints under loading condition, the feasibility of strengthening steel joint of architectural structure was studied. ... Through the comparative analysis of steel plate reinforced, ceramics reinforced and non- reinforced joints under loading condition, the feasibility of strengthening steel joint of architectural structure was studied. By using element birth and death technology simulation of the finite element software ANSYS, it is found that when the reinforced structure is 10 mm in thickness and using steel structure to reinforce the concemed areas, the equivalent stress in concerned regionals reduces by 31.1% compared with that when the structure is not reinforced. When reinforced with ceramics, the equivalent stress in concerned regionals reduces by 24.1% compared with that reinforced with steels; when the reinforced structure is 20 mm in thickness using steels to reinforce the concerned area, the equivalent stress in concerned regionals reduces by 39.4% compared with that when the structure is not reinforced. When using ceramics to reinforce the concerned areas, the eauivalent stress only decreases by 3.7% compared with that reinforced with steels. 展开更多
关键词 structural ceramics steel connections in service strengthening
下载PDF
Damage from Particle Impact for Structural Ceramics
4
作者 Zhongzhe JIN and Yiwang BAO(China Building Materials Academy, Beijing, 100024, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1994年第1期54-58,共5页
In this study, the relationship between the maximum impact force and velocity of partjcle has been derived on the basis of elastic theory and energy principle. Critical impact force and critical speed which cause init... In this study, the relationship between the maximum impact force and velocity of partjcle has been derived on the basis of elastic theory and energy principle. Critical impact force and critical speed which cause initial damage is anaIVsed and its analytical expression is presented. The impact force for six dlfferent materials was measu red at the same condition to investigate the v8riation of impact pararneter with material properties. The authors provide a simple test method and experimental de vice to imitate the impact of moving particle, A series of experiments on ceramics and gIass were car ried out to study the dependence of residual strength on the impulse. 展开更多
关键词 Damage from Particle Impact for Structural ceramics
下载PDF
Microstructure and properties of nano-laminated Y_(3)Si_(2)C_(2) ceramics fabricated via in situ reaction by spark plasma sintering 被引量:4
5
作者 Lin-Kun SHI Xiaobing ZHOU +3 位作者 Jian-Qing DAI Ke CHEN Zhengren HUANG Qing HUANG 《Journal of Advanced Ceramics》 SCIE CAS CSCD 2021年第3期578-586,共9页
A nano-laminated Y_(3)Si_(2)C_(2) ceramic material was successfully synthesized via an in situ reaction between YH_(2)and SiC using spark plasma sintering technology.A MAX phase-like ternary layered structure of Y_(3)... A nano-laminated Y_(3)Si_(2)C_(2) ceramic material was successfully synthesized via an in situ reaction between YH_(2)and SiC using spark plasma sintering technology.A MAX phase-like ternary layered structure of Y_(3)Si_(2)C_(2) was observed at the atomic-scale by high resolution transmission electron microscopy.The lattice parameters calculated from both X-ray diffraction and selected area electron diffraction patterns are in good agreement with the reported theoretical results.The nano-laminated fracture of kink boundaries,delamination,and slipping were observed at the tip of the Vickers indents.The elastic modulus and Vickers hardness of Y_(3)Si_(2)C_(2) ceramics(with 5.5 wt%Y_(2)O_(3)) sintered at 1500℃were 156 and 6.4 GPa,respectively.The corresponding values of thermal and electrical conductivity were 13.7 W·m^(-1)·K^(-1) and 6.3×10^(5)S·m^(-1),respectively. 展开更多
关键词 Y3Si_(2)C_(2) rare earth silicide carbides spark plasma sintering(SPS) ternary layered structure ceramic properties
原文传递
A Green Biocompatible Fabrication of Highly Porous Functional Ceramics with High Strength and Controllable Pore Structures 被引量:4
6
作者 Changlu Xu Haoran Liu +1 位作者 Huilin Yang Lei Yang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第8期729-732,共4页
A green biocompatible foaming method utilizing natural coconut oil and cornstarch was developed to fabricate highly porous functional ceramics with controllable strengths and pore structures. The poros- ity of A1203 c... A green biocompatible foaming method utilizing natural coconut oil and cornstarch was developed to fabricate highly porous functional ceramics with controllable strengths and pore structures. The poros- ity of A1203 ceramics prepared via this method reached 79.6%-86.9% while these ceramics maintained high compressive strengths of 2.2-5.5 MPa. More importantly, porous A1203 ceramic with a pore size gra- dient was also readily fabricated by casting serial layers of foams that were set for different time periods. The potential applications of porous Al2O3 and HA ceramics fabricated by this green foaming method in- cluding scaffolds for oil cleaning and cell culture, respectively, were also demonstrated. 展开更多
关键词 Porous ceramic Pore structure Bioceramics Hydroxyapatite Alumina
原文传递
Mechanical properties of additively-manufactured cellular ceramic structures:A comprehensive study 被引量:1
7
作者 Xueqin ZHANG Keqiang ZHANG +2 位作者 Bin ZHANG Ying LI Rujie HE 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2022年第12期1918-1931,共14页
Cellular ceramic structures(CCSs)are promising candidates for structural components in aerospace and modern industry because of their extraordinary physical and chemical properties.Herein,the CCSs with different struc... Cellular ceramic structures(CCSs)are promising candidates for structural components in aerospace and modern industry because of their extraordinary physical and chemical properties.Herein,the CCSs with different structural parameters,i.e.,relative density,layer,size of unit cells,and structural configuration,were designed and prepared by digital light processing(DLP)-based additive manufacturing(AM)technology to investigate their responses under compressive loading systematically.It was demonstrated that as the relative density increased and the size of the unit cells decreased,the mechanical properties of one-layer CCSs increased.The mechanical properties of three-layer CCSs were more outstanding than those of the CCSs with one and two layers.In addition,structural configurations also played a vital role in the mechanical properties of the CCSs.Overall,the mechanical properties of the CCSs from superior to inferior were that with the structural configurations of modified body-centered cubic(MBCC),Octet,SchwarzP,IWP,and body-centered cubic(BCC).Furthermore,structural parameters also had significant impacts on the failure mode of the CCSs under compressive loading.As the relative density increased,the failure mode of the one-layer CCSs changed from parallel-vertical-inclined mode to parallel-vertical mode.It was worth noting that the size of the unit cells did not alter the failure mode.Inclined fracture took a greater proportion in the failure mode of the multi-layer CCSs.But it could be suppressed by the increased relative density.Similarly,the proportions of the parallel-vertical mode and the fracture along a specific plane always changed with the variation of the structural configurations.This study will serve as the base for investigating the mechanical properties of the CCSs. 展开更多
关键词 cellular ceramic structures(CCSs) mechanical properties failure mode structural parameters
原文传递
Synthesis and characterization of sodium-lithium niobate ceramic structures and their composites with biopolymers
8
作者 Thomas V.MATHEW Sunny KURIAKOSE 《Journal of Advanced Ceramics》 SCIE CAS 2013年第1期11-20,共10页
Ceramic powders of Na_(1−x)Li_(x)NbO_(3)(LNN)have been synthesized by an aqueous sol-gel route.These solid solutions were prepared from Na-Li-Nb precursor gel.The precursor was synthesized from Na-EDTA,Li-EDTA and Nb-... Ceramic powders of Na_(1−x)Li_(x)NbO_(3)(LNN)have been synthesized by an aqueous sol-gel route.These solid solutions were prepared from Na-Li-Nb precursor gel.The precursor was synthesized from Na-EDTA,Li-EDTA and Nb-citrate complexes and they acted as the source of Na,Li and Nb,respectively.Citric acid and ethylenediaminetetraacetic acid(EDTA)were used as the chelating agents for Na,Li and Nb.The precursor gel was calcinated on a muffle furnace at 750℃for one hour and this provided the ceramic structures.Composites of LNN-biopolymers were prepared by the encapsulation of the ceramic structures into the biopolymeric scaffolds.The ceramic structures and composites were characterized by FTIR,NMR,TG and SEM analysis. 展开更多
关键词 ceramic structures sol-gel chemistry ENCAPSULATION thermo gravimetric analysis(TGA)
原文传递
Ultra-high-temperature application of MXene: Stabilization of 2D Ti_(3)C_(2)T_(x) for cross-scale strengthening and toughening of 3D TiC
9
作者 Lu Liu Guobing Ying +6 位作者 Quanguo Jiang Dong Wen Peng Wang Meng Wu Ziying Ji Yongting Zheng Xiang Wang 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2024年第1期1-10,共10页
Transition metal carbide/nitride cores within MXenes make them considerably useful for ultra-high-temperature reinforcement.However,extensive research on Ti_(3)C_(2)T_(x) MXene has revealed its tendency to undergo a p... Transition metal carbide/nitride cores within MXenes make them considerably useful for ultra-high-temperature reinforcement.However,extensive research on Ti_(3)C_(2)T_(x) MXene has revealed its tendency to undergo a phase transition to TiCy at temperatures above 800℃due to high activity of a superficial Ti atomic layer.Herein,spark plasma sintering of Ti_(3)C_(2)T_(x) and TiC is performed to prevent the Ti_(3)C_(2)T_(x) phase transition at temperatures up to 1900℃through the fabrication of composites at a pressure of 50 MPa.Using a focused ion beam scanning electron microscope to separate layered substances in the composites and examining selected area diffraction spots in a transmission electron microscope enabled identification of non-phase-transitioned MXene.First-principles calculations based on density functional theory indicated the formation of strong chemical bonding interfaces between Ti_(3)C_(2)T_(x) and TiC,which imposed a stability constraint on the Ti atomic layer at the Ti_(3)C_(2)T_(x) surface.Mechanical performance tests,such as three-point bending and fracture toughness analysis,demonstrated that the addition of Ti_(3)C_(2)T_(x) can effectively improve the cross-scale strengthening and toughening of the TiC matrix,providing a new path for designing and developing two-dimensional(2D)carbides cross-scale-enhanced three-dimensional(3D)carbides with the same elements relying on a wide variety of MXenes. 展开更多
关键词 MXene ultra-high-temperature phase stability interface bonding cross-scale strengthening and toughening structural ceramic composites
原文传递
Progress and challenges towards additive manufacturing of SiC ceramic 被引量:18
10
作者 Rujie HE Niping ZHOU +4 位作者 Keqiang ZHANG Xueqin ZHANG Lu ZHANG Wenqing WANG Daining FANG 《Journal of Advanced Ceramics》 SCIE CAS CSCD 2021年第4期637-674,共38页
Silicon carbide(SiC)ceramic and related materials are widely used in various military and engineering fields.The emergence of additive manufacturing(AM)technologies provides a new approach for the fabrication of SiC c... Silicon carbide(SiC)ceramic and related materials are widely used in various military and engineering fields.The emergence of additive manufacturing(AM)technologies provides a new approach for the fabrication of SiC ceramic products.This article systematically reviews the additive manufacturing technologies of SiC ceramic developed in recent years,including Indirect Additive Manufacturing(Indirect AM)and Direct Additive Manufacturing(Direct AM)technologies.This review also summarizes the key scientific and technological challenges for the additive manufacturing of SiC ceramic,and also forecasts its possible future opportunities.This paper aims to provide a helpful guidance for the additive manufacturing of SiC ceramic and other structural ceramics. 展开更多
关键词 silicon carbide(SiC) additive manufacturing(AM) structural ceramics
原文传递
Preliminary Investigation of Preparing High Burn-Up Structure in Nuclear Fuel by Flash Sintering Using CeO_(2) as a Surrogate
11
作者 Tongye Li Jing Yang +3 位作者 Chong Yu Yihan Liang Yang Li Xinfang Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2021年第12期1758-1768,共11页
The high burn-up structure(HBS)is characterized by the grain size of 100-300 nm and a porosity of up to 20%,which is formed at the rim of the nuclear fuel pellet due to 2-3 times higher local burn-up during the in-pil... The high burn-up structure(HBS)is characterized by the grain size of 100-300 nm and a porosity of up to 20%,which is formed at the rim of the nuclear fuel pellet due to 2-3 times higher local burn-up during the in-pile irradiation.HBS is considered a new potential structure for high-performance fuels.However,it is difficult to prepare HBS by conventional sintering methods.In this study,flash sintering was used to prepare HBS using CeO_(2)as a surrogate for a preliminary investigation.A new experimental configuration for rapid sintering of CeO_(2)pellets was provided,in which the green body can be rapidly preheated and pressure-assisted by the induction heating electrodes.An insulated quartz tube was used as the die for the flash sintered samples,allowing the current to flow through the sample and providing a stable condition for applying an external pressure of approximately 5.3-7.0 MPa during flash sintering process.Using an initial electric field of 141 V cm-1 and holding for 1-7 min at the maximum current density of~98 mA mm^(-2),CeO_(2)ceramics with a grain size of 114-282 nm and a relative density of 75.4-99.7%were prepared.The densification and microstructure evolution behaviors during flash sintering in this new experimental configuration have been discussed in detail.This new experimental configuration may provide a promising approach for preparing UO_(2)ceramics and their HBS. 展开更多
关键词 High burn-up structure Flash sintering CeO_(2)ceramic Grain growth
原文传递
Shear anisotropy: Tuning high temperature metal hexaborides from soft to extremely hard 被引量:2
12
作者 Yanchun Zhou Fuzhi Dai +2 位作者 Huimin Xiang Bin Liu Zhihai Feng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第11期1371-1377,共7页
Easy machining into sharp lending edge, nose tip and complex shape components plays a pivotal role in the application of ultrahigh temperature ceramics in hypersonic vehicles, wherein low and controllable hardness is ... Easy machining into sharp lending edge, nose tip and complex shape components plays a pivotal role in the application of ultrahigh temperature ceramics in hypersonic vehicles, wherein low and controllable hardness is a necessary parameter to ensure the easy machinability. However, the mechanism that driving the hardness of metal hexaborides is not clear. Here, using a combination of the empirical hardness model for polycrystalline materials and density functional theory investigation, the hardness dependence on shear anisotropic factors of high temperature metal hexaborides has been established. It has come to light that through controlling the shear anisotropic factors the hardness of polycrystalline metal hexaborides can be tailored from soft and ductile to extremely hard and brittle, which is underpinned by the degree of chemical bonding anisotropy, i.e., the difference of B-B bond within the B;octahedron and that connecting the B;octahedra. 展开更多
关键词 Microhardness Electronic structure Elastic constant Borides Structural ceramics
原文传递
Cross-polarization suppression in C-shaped microstrip patch antenna employing anisotropic dielectrics
13
作者 Hongyu Shi Shitao Zhu +2 位作者 Jianxing Li Anxue Zhang Zhuo Xu 《Journal of Advanced Dielectrics》 CAS 2017年第4期29-33,共5页
An anisotropic dielectric realized by layered ceramic structures was adopted to design a low cross-polarization C-shaped patch antenna.The anisotropic dielectric performs as a substrate and can cause additional cross-... An anisotropic dielectric realized by layered ceramic structures was adopted to design a low cross-polarization C-shaped patch antenna.The anisotropic dielectric performs as a substrate and can cause additional cross-polarized fields which are able to cancel the cross-polarized fields generated by the C-shaped patch itself,and then reduce the cross-polarization level.Compared to the C-shaped patch antenna with an isotropic substrate,the cross-polarization of the proposed antenna is suppressed by more than 15 dB with a little gain enhancement at 2.4 GHz.The anisotropic dielectric has a little impact on the direction of the C-shaped patch antenna.The gain of the proposed C-shaped patch antenna is 6.8 dB with a cross-polarization of28 dB. 展开更多
关键词 Anisotropic dielectrics layered ceramic structures low cross-polarization patch antennas
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部