Based on controls of structural style and the position in coalbed methane (CBM) development, we used a method of curvatures to study its relations with CBM development parameters. We calculated structural curvatures o...Based on controls of structural style and the position in coalbed methane (CBM) development, we used a method of curvatures to study its relations with CBM development parameters. We calculated structural curvatures of contours of the No.3 coal seam floor of the Shanxi Formation in the Zaoyuan block of the Qinshui Basin and analyzed its relations with development parameters of coalbed methane wells. The results show that structural curvature is negatively related to coal reservoir pressure, while positively related to permeability. With an increase in structural curvature, the average production of coalbed methane wells increases at first and then decreases, reaching the highest production at 0.02 m–1 of structural curvature. Therefore, structural cur-vature can be an important index for potential evaluation of coalbed methane development and provide a basis for siting coalbed methane wells.展开更多
In order to understand how cells respond to concave and convex subcellular surface structures,colloidal crystal array and honeycomb-structured surfaces composed of highly ordered hexagonal units with completely invers...In order to understand how cells respond to concave and convex subcellular surface structures,colloidal crystal array and honeycomb-structured surfaces composed of highly ordered hexagonal units with completely inverse curvature were fabricated via facile self-assembly and breath figure approaches,respectively.The influence of hexagonal surface curvature on cell fate was subsequently investigated.Cells underwent more extensive spreading on the convex colloidal crystal array surface,while adhesive forces were higher on the concave honeycomb surface.The behaviors of cells on the different surfaces were investigated by comparing cell morphology,cellular adhesive force and cytoskeleton structure.The results revealed comprehensive differences in cell behavior between those on concave honeycomb surfaces and convex colloidal crystal arrays.展开更多
基金support for this work, provided by the National Basic Research Program of China (No2009 CB219605)the National Major Research Program for Science and Technology of China (No2008 ZX05033-003)
文摘Based on controls of structural style and the position in coalbed methane (CBM) development, we used a method of curvatures to study its relations with CBM development parameters. We calculated structural curvatures of contours of the No.3 coal seam floor of the Shanxi Formation in the Zaoyuan block of the Qinshui Basin and analyzed its relations with development parameters of coalbed methane wells. The results show that structural curvature is negatively related to coal reservoir pressure, while positively related to permeability. With an increase in structural curvature, the average production of coalbed methane wells increases at first and then decreases, reaching the highest production at 0.02 m–1 of structural curvature. Therefore, structural cur-vature can be an important index for potential evaluation of coalbed methane development and provide a basis for siting coalbed methane wells.
基金supported by the Major Program of Chinese National Programs for Fundamental Research and Development(973 Project,No.2012CB933803)the National Science Foundation of China(No.21574081)
文摘In order to understand how cells respond to concave and convex subcellular surface structures,colloidal crystal array and honeycomb-structured surfaces composed of highly ordered hexagonal units with completely inverse curvature were fabricated via facile self-assembly and breath figure approaches,respectively.The influence of hexagonal surface curvature on cell fate was subsequently investigated.Cells underwent more extensive spreading on the convex colloidal crystal array surface,while adhesive forces were higher on the concave honeycomb surface.The behaviors of cells on the different surfaces were investigated by comparing cell morphology,cellular adhesive force and cytoskeleton structure.The results revealed comprehensive differences in cell behavior between those on concave honeycomb surfaces and convex colloidal crystal arrays.