Ever since 2005, the US' shale oil and gas production growth and effective adjustment of domestic energy consumption mix have made it possible for the country to be less dependent upon imported energy and gain ene...Ever since 2005, the US' shale oil and gas production growth and effective adjustment of domestic energy consumption mix have made it possible for the country to be less dependent upon imported energy and gain energy independence. What should we learn from it to guarantee energy supply security? This paper tried to answer the question.展开更多
Modularity is the key to improving the cost-variety trade-off in product development. To achieve the functional independency and structural independency of modules, a method of clustering components to identify module...Modularity is the key to improving the cost-variety trade-off in product development. To achieve the functional independency and structural independency of modules, a method of clustering components to identify modules based on functional and structural analysis was presented. Two stages were included in the method. In the first stage the products’ function was analyzed to determine the primary level of modules. Then the objective function for modules identifying was formulated to achieve functional independency of modules. Finally the genetic algorithm was used to solve the combinatorial optimization problem in modules identifying to form the primary modules of products. In the second stage the cohesion degree of modules and the coupling degree between modules were analyzed. Based on this structural analysis the modular scheme was refined according to the thinking of structural independency. A case study on the gear reducer was conducted to illustrate the validity of the presented method.展开更多
Learning Bayesian network structure is one of the most exciting challenges in machine learning. Discovering a correct skeleton of a directed acyclic graph(DAG) is the foundation for dependency analysis algorithms fo...Learning Bayesian network structure is one of the most exciting challenges in machine learning. Discovering a correct skeleton of a directed acyclic graph(DAG) is the foundation for dependency analysis algorithms for this problem. Considering the unreliability of high order condition independence(CI) tests, and to improve the efficiency of a dependency analysis algorithm, the key steps are to use few numbers of CI tests and reduce the sizes of conditioning sets as much as possible. Based on these reasons and inspired by the algorithm PC, we present an algorithm, named fast and efficient PC(FEPC), for learning the adjacent neighbourhood of every variable. FEPC implements the CI tests by three kinds of orders, which reduces the high order CI tests significantly. Compared with current algorithm proposals, the experiment results show that FEPC has better accuracy with fewer numbers of condition independence tests and smaller size of conditioning sets. The highest reduction percentage of CI test is 83.3% by EFPC compared with PC algorithm.展开更多
文摘Ever since 2005, the US' shale oil and gas production growth and effective adjustment of domestic energy consumption mix have made it possible for the country to be less dependent upon imported energy and gain energy independence. What should we learn from it to guarantee energy supply security? This paper tried to answer the question.
基金National Basic Research Programme of China (973 Program) (No. 2003CB317005)Key Project of Chinese Ministry of Educa-tion (No. 105065)
文摘Modularity is the key to improving the cost-variety trade-off in product development. To achieve the functional independency and structural independency of modules, a method of clustering components to identify modules based on functional and structural analysis was presented. Two stages were included in the method. In the first stage the products’ function was analyzed to determine the primary level of modules. Then the objective function for modules identifying was formulated to achieve functional independency of modules. Finally the genetic algorithm was used to solve the combinatorial optimization problem in modules identifying to form the primary modules of products. In the second stage the cohesion degree of modules and the coupling degree between modules were analyzed. Based on this structural analysis the modular scheme was refined according to the thinking of structural independency. A case study on the gear reducer was conducted to illustrate the validity of the presented method.
基金Supported by the National Natural Science Foundation of China(61403290,11301408,11401454)the Foundation for Youths of Shaanxi Province(2014JQ1020)+1 种基金the Foundation of Baoji City(2013R7-3)the Foundation of Baoji University of Arts and Sciences(ZK15081)
文摘Learning Bayesian network structure is one of the most exciting challenges in machine learning. Discovering a correct skeleton of a directed acyclic graph(DAG) is the foundation for dependency analysis algorithms for this problem. Considering the unreliability of high order condition independence(CI) tests, and to improve the efficiency of a dependency analysis algorithm, the key steps are to use few numbers of CI tests and reduce the sizes of conditioning sets as much as possible. Based on these reasons and inspired by the algorithm PC, we present an algorithm, named fast and efficient PC(FEPC), for learning the adjacent neighbourhood of every variable. FEPC implements the CI tests by three kinds of orders, which reduces the high order CI tests significantly. Compared with current algorithm proposals, the experiment results show that FEPC has better accuracy with fewer numbers of condition independence tests and smaller size of conditioning sets. The highest reduction percentage of CI test is 83.3% by EFPC compared with PC algorithm.