The approach of Obukhov assuming a constant skewness was used to obtain analytical corrections to the scaling of the second order structure function, starting from Kolmogorov's 4/5 law. These corrections can be used ...The approach of Obukhov assuming a constant skewness was used to obtain analytical corrections to the scaling of the second order structure function, starting from Kolmogorov's 4/5 law. These corrections can be used in model applications in which explicit expressions, rather than numerical solutions are needed. The comparison with an interpolation formula proposed by Batchelor, showed that the latter gives surprisingly precise results. The modification of the same method to obtain analytical corrections to the scaling law, taking into account the possible corrections induced by intermittency, is also proposed.展开更多
In this paper, we will introduce how to apply Green's function method to get the pointwise estimates for the solutions of Cauchy problem of nonlinear evolution equations with dissipative structure. First of all, we i...In this paper, we will introduce how to apply Green's function method to get the pointwise estimates for the solutions of Cauchy problem of nonlinear evolution equations with dissipative structure. First of all, we introduce the pointwise estimates of the time-asymptotic shape of the solutions of the isentropic Navier-Stokes equations and show to exhibit the generalized Huygen's principle. Then, for other nonlinear dissipative evolution equations, we will only introduce the result and give some brief explanations. Our approach is based on the detailed analysis of the Green's function of the linearized system and micro-local analysis, such as frequency decomposition and so on.展开更多
In this article, we mainly discuss the asymptotic behavior for multi-dimensional continuous-time random walk in random environment with holding times. By constructing a renewal structure and using the point "environm...In this article, we mainly discuss the asymptotic behavior for multi-dimensional continuous-time random walk in random environment with holding times. By constructing a renewal structure and using the point "environment viewed from the particle", under General Kalikow's Condition, we show the law of large numbers (LLN) and central limit theorem (CLT) for the escape speed of random walk.展开更多
基金supported by the National Natural Science Foundation of China(10828204 and A020401)BUAA SJP 111 program
文摘The approach of Obukhov assuming a constant skewness was used to obtain analytical corrections to the scaling of the second order structure function, starting from Kolmogorov's 4/5 law. These corrections can be used in model applications in which explicit expressions, rather than numerical solutions are needed. The comparison with an interpolation formula proposed by Batchelor, showed that the latter gives surprisingly precise results. The modification of the same method to obtain analytical corrections to the scaling law, taking into account the possible corrections induced by intermittency, is also proposed.
基金supported by National Science Foundation of China(11071162)Shanghai Municipal Natural Science Foundation (09ZR1413500)
文摘In this paper, we will introduce how to apply Green's function method to get the pointwise estimates for the solutions of Cauchy problem of nonlinear evolution equations with dissipative structure. First of all, we introduce the pointwise estimates of the time-asymptotic shape of the solutions of the isentropic Navier-Stokes equations and show to exhibit the generalized Huygen's principle. Then, for other nonlinear dissipative evolution equations, we will only introduce the result and give some brief explanations. Our approach is based on the detailed analysis of the Green's function of the linearized system and micro-local analysis, such as frequency decomposition and so on.
基金Project supported by National Natural ScienceFoundation of China(10531070)Research Foundation for Outstanding Young Teachers of China University of Geoscience(Wuhan) (CUGQNL0816)
文摘In this article, we mainly discuss the asymptotic behavior for multi-dimensional continuous-time random walk in random environment with holding times. By constructing a renewal structure and using the point "environment viewed from the particle", under General Kalikow's Condition, we show the law of large numbers (LLN) and central limit theorem (CLT) for the escape speed of random walk.