期刊文献+
共找到408篇文章
< 1 2 21 >
每页显示 20 50 100
Three dimensional shear wave velocity structure of the crust and upper mantle beneath China from ambient noise surface wave tomography 被引量:28
1
作者 Xinlei Sun Xiaodong Song +2 位作者 Sihua Zheng Yingjie Yang Michael H. Ritzwoller 《Earthquake Science》 CSCD 2010年第5期449-463,共15页
We determine the three-dimensional shear wave velocity structure of the crust and upper mantle in China using Green's functions obtained from seismic ambient noise cross-correlation. The data we use are from the Chin... We determine the three-dimensional shear wave velocity structure of the crust and upper mantle in China using Green's functions obtained from seismic ambient noise cross-correlation. The data we use are from the China National Seismic Network, global and regional networks and PASSCAL stations in the region. We first acquire cross-correlation seismograms between all possible station pairs. We then measure the Rayleigh wave group and phase dispersion curves using a frequency-time analysis method from 8 s to 60 s. After that, Rayleigh wave group and phase velocity dispersion maps on 1°by 1°spatial grids are obtained at different periods. Finally, we invert these maps for the 3-D shear wave velocity structure of the crust and upper mantle beneath China at each grid node. The inversion results show large-scale structures that correlate well with surface geology. Near the surface, velocities in major basins are anomalously slow, consistent with the thick sediments. East-west contrasts are striking in Moho depth. There is also a fast mid-to-lower crust and mantle lithosphere beneath the major basins surrounding the Tibetan plateau (TP) and Tianshan (Junggar, Tarim, Ordos, and Sichuan). These strong blocks, therefore, appear to play an important role in confining the deformation of the TP and constraining its geometry to form its current triangular shape. In northwest TP in Qiangtang, slow anomalies extend from the crust to the mantle lithosphere. Meanwhile, widespread, a prominent low-velocity zone is observed in the middle crust beneath most of the central, eastern and southeastern Tibetan plateau, consistent with a weak (and perhaps mobile) middle crust. 展开更多
关键词 ambient noise surface wave TOMOGRAPHY crust and upper mantle China
下载PDF
Group velocity distribution of Rayleigh waves and crustal and upper mantle velocity structure of the Chinese mainland and its vicinity 被引量:5
2
作者 何正勤 丁志峰 +2 位作者 叶太兰 孙为国 张乃铃 《Acta Seismologica Sinica(English Edition)》 CSCD 2002年第3期269-275,共7页
Based on the long period digital surface wave data recorded by 11 CDSN stations and 11 IRIS stations, the dispersion curves of the group velocities of fundamental mode Rayleigh waves along 647 paths, with the periods ... Based on the long period digital surface wave data recorded by 11 CDSN stations and 11 IRIS stations, the dispersion curves of the group velocities of fundamental mode Rayleigh waves along 647 paths, with the periods from 10 s to 92 s, were measured by multi-filter. Their distribution at 25 central periods within the region of 18~54N, 70~140E was inverted by Dimtar-Yanovskaya method. Within the period from 10 s to 15.9 s, the group velocity distribution is laterally inhomogeneous and is closely related to geotectonic units, with two low velocity zones located in the Tarim basin and the East China Sea and its north regions, respectively. From 21 s to 33 s, the framework of tectonic blocks is revealed. From 36.6 s to 40 s, the lithospheric subdivision of the Chinese mainland is obviously uncovered, with distinct boundaries among the South-North seismic belt, the Tibetan plateau, the North China, the South China and the Northeast China. Four cross-sections of group velocity distribution with period along 30N, 38N, 90E and 120E, are discussed, respectively, which display the basic features of the crust and upper mantle of the Chinese mainland and its neighboring regions. There are distinguished velocity differences among the different tectonic blocks. There are low-velocity-zones (LVZ) in the middle crust of the eastern Tibetan plateau, high velocity featured as stable platform in the Tarim basin and the Yangtze platform, shallow and thick low-velocity-zone in the upper mantle of the North China. The upper mantle LVZ in the East China Sea and the Japan Sea is related to the frictional heat from the subduction of the Philippine slab and the strong extension since the Himalayan orogenic period. 展开更多
关键词 Rayleigh wave group velocity distribution crust and upper mantle velocity structure
下载PDF
P-wave velocity structure in the crust and the uppermost mantle of Chao Lake region of the Tan-Lu Fault inferred from teleseismic arrival time tomography 被引量:1
3
作者 Bem Shadrach Terhemba Huajian Yao +3 位作者 Song Luo Lei Gao Haijiang Zhang Junlun Li 《Earthquake Science》 2022年第6期427-447,共21页
Chao Lake is a Geoheritage site on the active Tan-Lu Fault between the Yangtze craton,the North China craton,and the Dabie orogenic belt in the southeast.This segment of the fault is not well constrained at depth part... Chao Lake is a Geoheritage site on the active Tan-Lu Fault between the Yangtze craton,the North China craton,and the Dabie orogenic belt in the southeast.This segment of the fault is not well constrained at depth partly due to the overprinting of the fault zone by intrusive materials and its relatively low seismic activity and sparse seismic station coverage.This study took advantage of a dense seismic array deployed around Chao Lake to delineate the P-wave velocity variations in the crust and uppermost mantle using teleseismic earthquake arrival time tomography.The station-pair double-difference with waveform crosscorrelation technique was employed.We used a multiscale resolution 3-D initial model derived from the combination of highresolution 3-D v S models within the region of interest to account for the lateral heterogeneity in the upper crust.The results revealed that the velocity of the upper crust is segmented with structures trending in the direction of the strike of the fault.Sedimentary basins are delineated on both sides of the fault with slow velocities,while the fault zone is characterized by high velocity in the crust and uppermost mantle.The high-velocity structure in the fault zone shows characteristics of magma intrusion that may be connected to the Mesozoic magmatism in and around the Middle and Lower Yangtze River Metallogenic Belt(MLYMB),implying that the Tan-Lu fault might have formed a channel for magma intrusion.Magmatic material in Chao Lake is likely connected to the partial melting,assimilation,storage,and homogenization of the uppermost mantle and the lower crustal rocks.The intrusions,however,seem to have suffered severe regional extension along the Tan-Lu fault driven by the eastward Paleo-Pacific plate subduction,thereby losing its deep trail due to extensional erosion. 展开更多
关键词 teleseismic arrival time tomography v P velocity structure crust and uppermost mantle Tan-Lu Fault Chao Lake
下载PDF
Velocity structure of the crust and upper mantle in Xingtai earthquake region and its adjacent area
4
作者 祝治平 张称康 +5 位作者 盖玉杰 张建狮 聂文英 石金虎 张成科 阮红 《Acta Seismologica Sinica(English Edition)》 CSCD 1995年第3期405-412,共8页
Two seismic refraction profiles which are perpendicular to each other, running through Xingtai earthquake region,reveal the anomalous variations of crust-mantle velocity structure and deep tectonics. Pg wave attenuate... Two seismic refraction profiles which are perpendicular to each other, running through Xingtai earthquake region,reveal the anomalous variations of crust-mantle velocity structure and deep tectonics. Pg wave attenuatesrapidly with distance in the earthquake region. A group of strong reflections from a depth of 21. 0 km can be identified along the section from Longyao to the piedmont of Taihang Mountain, but P. waves characterized generally by strong amplitude are not obvious. Under the earthquake region and its western neighboring region, thecrustal velocity structure features high and low velocities changed alternatively. From North China plain toShanxi plateau, the velocity at the top of the upper mantle decreases progressively, while crustal thickness increases by 11 km. Moho uplifts locally in the earthquake region. The crustal fault stretching deeply to Moho andthe discontinuous sections of Moho in the earthquake region are supposed to be the channels and zones for magmatic intrusion. The uplifting of upper mantle and magmatic intrusion are responsible for the formation ofanomalous crust-mantle structures and extending basins, and for the occurrence of Xingtai earthquake as well. 展开更多
关键词 velocity structure lower crust upper crust upper mantle REFRACTION
下载PDF
3-D seismic tomography for velocity and interface structure of the crust and upper mantle(theoreticalpart)
5
作者 郑需要 张先康 《Acta Seismologica Sinica(English Edition)》 EI CSCD 1998年第5期32-40,共9页
A method of three dimensional (3-D) model parameterization is presented that makes forward and inverse problems become easy. The velocity and interface structure of crust and upper mantle are described by a set of hig... A method of three dimensional (3-D) model parameterization is presented that makes forward and inverse problems become easy. The velocity and interface structure of crust and upper mantle are described by a set of highly smoothed functions. Shooting ray tracing method is chosen to calculate the ray paths for both forward and inverse problems. The partial derivatives of traveltime with respect to parameters of the model grids are calculated analytically while rays are being traced. Because velocity and interface functions have second-order continuous partial derivatives, the geometrical shadow zones at the surface caused by scattering and focusing of ray paths can be prevented. After ray tracing, an equation consisting of matrix and vectors for inverse problem is obtained. We use singular value decomposition method with damped factor to solve the equation. A synthetic data set which consists of several in-line profiles is used to test the methods. The results show that the methods are robust. Compared with the two dimensional method, the 3-D inversion method can give the right position of interfaces and the velocity structure when the crustal model is complicated. 展开更多
关键词 model parameterization ray tracing 3-D inversion crust and upper mantle structure
下载PDF
QβstructureofthecrustanduppermantleintheeasternSino┐Koreanparaplatform
6
作者 何正勤 叶太兰 孙为国 《Acta Seismologica Sinica(English Edition)》 CSCD 1996年第1期122-128,共7页
Based on the long period surface wave data recorded by the China Digital Seismograph Network (CDSN), the Q R of fundamental mode Rayleigh wave with periods from 10 s to 146 s is determined for the eastern Sino ... Based on the long period surface wave data recorded by the China Digital Seismograph Network (CDSN), the Q R of fundamental mode Rayleigh wave with periods from 10 s to 146 s is determined for the eastern Sino Korean paraplatform in this paper. The Q β models of the crust and upper mantle are respectively obtained for the 4 paths, with the aid of stochastic inverse method. It shows that in the eastern Sino Korean paraplatform, the average crustal Q β is about 200, and that there exists a weak attenuation layer in the middle crust (about 10~20 km deep) which is possibly related to earthquake prone layer. A strong attenuation layer (low Q ) of 70 km thick extensively exists in the uppermost mantle, with the buried depth about 80 km. The average Q R of fundamental mode Rayleigh wave is between the value of stable tectonic region and that of active tectonic region, and much close to the latter. 展开更多
关键词 surface wave upper mantle crustal structure surface wave Q R Sino Korean paraplatform the upper mantle Q β structure.
下载PDF
Structure of the Crust and Upper Mantle Beneath the Zhangbei-Shangyi Earthquake Area and Its Surroundings
7
作者 Zhao Guoze, Zhan Yan, Liu Guodong, Jiang Zhao, Liu Tiesheng, Tang Ji, Wang Jijun, Li Wenjun, and Liang JinggeInstitute of Geology, CSB, Beijing 100029, China 《Earthquake Research in China》 1999年第1期15-26,共12页
The study of deep-seated structure in the Zhangbei-Shangyi earthquake area and its surroundings indicates that in comparison with the Shanxi rift system, the North China rifted basin, the Yanshanian fold belt on both ... The study of deep-seated structure in the Zhangbei-Shangyi earthquake area and its surroundings indicates that in comparison with the Shanxi rift system, the North China rifted basin, the Yanshanian fold belt on both sides, and the Zhangjiakou-Penglai tectonic belt have lower resistivity, and a distinctly different velocity interface in the crust and depth distribution of Moho discontinuity. The Yanqing- Huai’lai basin bisects the Zhangjiakou-Penglai tectonic belt into two segments, the northwestern and the southeastern segments. The latest magnetotelluric sounding and investigation indicate that the electrical structure within the Zhangbei-Shangyi earthquake area is different to a certain degree from that in its surroundings. There exists a nearly NNW-trending structure in the crust. The main shock and most aftershocks occurred above the low-resistivity zone in the crust. 展开更多
关键词 crust upper mantle Magnctotelluric SOUNDING Zhangjiakou-Penglai TECTONIC belt Zhangbei-Shangyi earthquake.
下载PDF
Deep Background of Wenchuan Earthquake and the Upper Crust Structure beneath the Longmen Shan and Adjacent Areas 被引量:12
8
作者 LI Qiusheng GAO Rui +5 位作者 WANG Haiyan ZHANG Jisheng LU Zhanwu LI Pengwu GUAN Ye HE Rizheng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2009年第4期733-739,共7页
By analyzing the deep seismic sounding profiles across the Longmen Shan, this paper focuses on the study of the relationship between the upper crust structure of the Longmen Shan area and the Wenchuan earthquake. The ... By analyzing the deep seismic sounding profiles across the Longmen Shan, this paper focuses on the study of the relationship between the upper crust structure of the Longmen Shan area and the Wenchuan earthquake. The Longmen Shan thrust belt marks not only the topographical change, but also the lateral velocity variation between the eastern Tibetan Plateau and the Sichuan Basin. A low-velocity layer has consistently been found in the crust beneath the eastern edge of the Tibetan Plateau, and ends beneath the western Sichuan Basin. The low-velocity layer at a depth of -20 km beneath the eastern edge of the Tibetan Plateau has been considered as the deep condition for favoring energy accumulation that formed the great Wenchuan earthquake. 展开更多
关键词 the Longmen Shan deep seismic sounding profile upper crust structure Wenchuan Earthquake
下载PDF
Surface wave tomography of the crust and upper mantle of Chinese mainland and its neighboring region 被引量:5
9
作者 何正勤 丁志峰 +2 位作者 叶太兰 孙为国 张乃铃 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2001年第6期634-641,共8页
The three dimensional S wave velocity structure of the crust and upper mantle of Chinese mainland and its neighboring region is obtained by genetic algorithm of surface wave tomography, with smoothness constraint, bas... The three dimensional S wave velocity structure of the crust and upper mantle of Chinese mainland and its neighboring region is obtained by genetic algorithm of surface wave tomography, with smoothness constraint, based on 25 wave group velocities for the periods from 10 s to 92 s, measured from long period Rayleigh waves recorded by 11 stations of CDSN and 12 digital seismometers surrounding China. The S wave velocity image is shown on two latitudinal sections along 30°N and 38°N, two longitudinal sections along 90°E and 120°E, and four horizontal slices at the different depths. 展开更多
关键词 Rayleigh wave seismic tomography the Chinese mainland crust and upper mantle velocity structure
下载PDF
Study on crust-mantle tectonics and its velocity structure along the Beijing-Huailai-Fengzhen profile 被引量:4
10
作者 祝治平 张先康 +3 位作者 张建狮 张成科 赵金仁 徐朝凡 《Acta Seismologica Sinica(English Edition)》 CSCD 1997年第5期62-70,共9页
In order to investigate the interrelations of crust and upper mantle tectonics and its velocity distribution as well as seismicity in the Yanhuai basin and its surrounding area, a nearly EW trending Beijing Huailai ... In order to investigate the interrelations of crust and upper mantle tectonics and its velocity distribution as well as seismicity in the Yanhuai basin and its surrounding area, a nearly EW trending Beijing Huailai Fengzhen wide angle reflection/refraction profile, which obliquely passes through seismic zone of Zhangjiakou Bohai Sea and coincides with a deep reflection profile in the Yanhuai basin, was completed recently. The results show: The crust presents layered structures and its thickness gradually increases from 35.0 km in Shunyi to 42.0 km in the west end of the profile; the interior crustal interfaces appear approximately horizontal or slowly sloping down from east to west; In the Yanhuai basin, the crust presents the characteristics of higher velocities alternating with the lower ones and the low velocity bodies obviously exist in the lower part of upper crust. Moreover, there are two deep crustal fault zones which stretch to the Moho discontinuity, are closely related with the seismicity in the Yanhuai area. 展开更多
关键词 crust mantle velocity structure deep crustal fault wide angle reflection/refraction
下载PDF
Study on the crust-mantle structure in the central and southern parts of Shanxi 被引量:3
11
作者 祝治平 张建狮 +7 位作者 张成科 赵金仁 刘明清 唐周琼 盖玉杰 任青芳 聂文英 杨清 《Acta Seismologica Sinica(English Edition)》 CSCD 1999年第1期46-54,共9页
Another comparative interpretation was conducted with respect to the data from 5 DSS profiles in the central and southern parts of Shanxi, leading to the conclusion that in Linxian, Linfen and Xingtai earthquake regio... Another comparative interpretation was conducted with respect to the data from 5 DSS profiles in the central and southern parts of Shanxi, leading to the conclusion that in Linxian, Linfen and Xingtai earthquake regions, through which the five profiles pass, there exist anomalous crust mantle structure and abyssal crustal faults extending to Moho, all being regarded as the deep indications for earthquake occurrence. 展开更多
关键词 the central and southern parts of Shanxi deep seismic sounding crust mantle structure and deep tectonics
下载PDF
Tomographic investigation of the upper crustal structure and seismotectonic environments in Yunnan Province 被引量:2
12
作者 白志明 王椿镛 《Acta Seismologica Sinica(English Edition)》 CSCD 2003年第2期127-139,共13页
Investigation has been made for the upper crust structure and seismotectonic environments in Yunnan Province using the plentiful DSS data of the four profiles. The derived velocity model has a good relationship with t... Investigation has been made for the upper crust structure and seismotectonic environments in Yunnan Province using the plentiful DSS data of the four profiles. The derived velocity model has a good relationship with the ex-posed basins, uplifts and faults. The low velocity anomaly corresponding to the volcano also has been revealed. There exists a prominent lateral inhomogeneity within the upper crust of Yunnan region. The depth of crystalline basement generally ranges from 0 km to 5 km, and the bedrocks are exposed on the ground directly in some places, nevertheless the thickness of sedimentary cover also can reach to 8 km or even 12 km at some large depressions. Although the Changning-Shuangjiang fault is a boundary between two first class tectonic units, its incision depth within the crust maybe shallow. On the other hand, known as the plates seam, the Honghe fault has a distinct evi-dence of extending into the mid-lower crust. The widely spread activity of the volcanoes in the geological era has a close relationship with the earthquakes occurrence nowadays. Despite of the ceasing of the volcanoes in some places on the ground, the material in the mid-lower crust is still active, and there still exists strong upward stress. As the ceasing of the volcanoes on the surface, most parts of the power from the lower crust and the upper mantle cannot be released; therefore it accumulates at some appropriate tectonic locations. Moreover, the saturation of the water from the basin, the action of other fluids, and the effects of the outer stress maybe another direct reason ac-count for the strong earthquakes occurrence in Yunnan region. 展开更多
关键词 DSS data upper crust structure seismotectonic environment TOMOGRAPHY
下载PDF
Crust-mantle structure feature and the seismic activity of the main tectonic units in the North Tanlu fault zone 被引量:2
13
作者 牛雪 卢造勋 +2 位作者 姜德录 雷清清 石盛昌 《Acta Seismologica Sinica(English Edition)》 CSCD 2000年第2期159-165,共7页
Using recent data of geoscience transaction in Northeast China, the author analyses and studies the crust-upper mantle structure feature of the North Tanlu fault zone. The result shows the crust-mantle structure are o... Using recent data of geoscience transaction in Northeast China, the author analyses and studies the crust-upper mantle structure feature of the North Tanlu fault zone. The result shows the crust-mantle structure are obvious difference at both sides of the North Tanlu fault zone. The fault activity and segmentation are closely related with abruptly change zone of the crust-upper mantle structure. There is a clear mirror image relationship between the big geomorphic shape and asthenosphere undulate, the former restricts tectonic stability and tectonic style of dif- ferent crustal units. The significantly strengthening seismicity of north set and south set in the North Tanlu fault zone just correspond to the low-velocity and high conductivity layer of crust-upper mantle. In the North Tanlu fault zone, the main controlling structure of the mid-strong seismic generally consists of the active fault sectors, whose crust-mantle structure is more complicated in rigidity massif. 展开更多
关键词 North Tanlu fsult zone crust-upper mantle structure low velocity-high conductivity layer seismicity
下载PDF
Study on fine structure of crust-mantle transi-tion zone in Yanqing-Hailai basin based on CDP and DSS data
14
作者 成瑾 李清河 《Acta Seismologica Sinica(English Edition)》 CSCD 1998年第1期78-85,共8页
The fine structure of crust mantle transition zone in Yanqing Hailai(Yan Huai basin) basin has been analyzed and discussed by using the data of Yanqing Hailai deep seismic reflection profile and Beijing Huailai ... The fine structure of crust mantle transition zone in Yanqing Hailai(Yan Huai basin) basin has been analyzed and discussed by using the data of Yanqing Hailai deep seismic reflection profile and Beijing Huailai Fengzhen deep seismic sounding profile obtained respectively in 1992 and in 1993. The primary model is established based on CDP stacking profile. The phases of seismic refraction waves and wide angle reflection waves are analyzed, travel time inversion is carried out and 2 D ray tracing is computed. Synthetic seismograms are completed by using re flectivity method for waveform fitting of phases P M and P M′, they are reflection waves from both the upper and the lower boundaries of the crust mantle transition zone in this basin. The results show that the P M′ reflection waves are stronger at some points and come from the lower boundary of Moho discontinuity. It is confirmed and inter preted that the Moho discontinuity in Yanqing Hailai basin consists of a group of thin layers with alternatively higher and lower velocities. 展开更多
关键词 seismic reflection and refraction Yanqing Hailai basin fine structure crust mantle transition region travel time inversion
下载PDF
Upper mantle P wave velocity structure of the northern part of China and Mongolia
15
作者 JIAN PING WU RONG SHENG ZENG YUE HONG MING Institute of Geophysics, China Seismological Bureau, Beijing 100081, China 《Acta Seismologica Sinica(English Edition)》 CSCD 1998年第6期24-33,共10页
The average upper mantle P wave velocity structure and lateral heterogeneity in the northern part of China and Mongolia are investigated by waveform inversion of broadband body waveform data recorded by CDSN and digit... The average upper mantle P wave velocity structure and lateral heterogeneity in the northern part of China and Mongolia are investigated by waveform inversion of broadband body waveform data recorded by CDSN and digital stations around China. The average model has a low P wave velocity lid (about 7.8~8.0 km·s -1 ) with thickness about 60 km, and two discontinuities with velocity jumps of 0.29 km·s -1 and 0.55 km·s -1 at depth of 410 km and 665 km respectively. In the Jungger basin, the P wave velocity of uppermost mantle is about 7.7 km·s -1 . The lid thickness (90~100 km) and velocity gradient (average gradient is greater than 0.005 5/s) are large. At the depth of 140 km the P wave velocity reaches to 8.2 km·s -1 . Near in Baikal, the lid is about 30 km thick with average P wave velocity of 8.00~8.05 km·s -1 . 展开更多
关键词 upper mantle P wave velocity structure waveform inversion the northern part of China Mongolia
下载PDF
3-D velocity structure of P wave in the upper mantle beneath southwestern China and its adjacent areas
16
作者 雷建设 周蕙兰 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2002年第2期134-142,共9页
3-D velocity structure of P wave in the upper mantle beneath southwestern China and its adjacent areas (10°N [similar to] 36°N, 70°E [similar to] 110°E) down to the depth of 400 km has been studied... 3-D velocity structure of P wave in the upper mantle beneath southwestern China and its adjacent areas (10°N [similar to] 36°N, 70°E [similar to] 110°E) down to the depth of 400 km has been studied by using 80 974 P-wave first arrival times recorded at 165 stations from 7 053 events both within the studying areas, selected from the ISC bulletin and the Bulletin of China and NEIC fundamental seismic network. With a resolution of grid spacing of 2°×2°, the velocity heterogeneity on the horizontal profile is obvious though it attenuates with the depth increasing. On the vertical profiles of velocity along the latitude of 16°N and 24°N, the collision and extrusion of India plate to Eurasia plate is displayed, and a remarkable velocity difference between India plate and Eurasia plate is shown. In the vertical profile along the longitude of 90°E, the subducting of India plate northward beneath Eurasia plate (Tibet plateau) is also obvious. On the horizontal profile at the depth of 90 km, a slow velocity stripe from Myitkyina, Myanmar to Donghai, Vietnam seems to be related to Honghe fault belt. An illustration method of describing the resolution more directly and exactly has been proposed and utilized in this paper. 展开更多
关键词 Southwestern China and its adjacent areas upper mantle 3-D velocity structure description of the resolution
下载PDF
The role of fluids in the lower crust and upper mantle:A tribute to Jacques Touret
17
作者 Daniel Harlov 《Geoscience Frontiers》 SCIE CAS CSCD 2014年第5期621-625,共5页
This special issue of Geoscience Frontiers is a tribute volume honoring the life and career of Jacques Touret. A set of research papers has been assembled, which broadly reflect his research interests over his 50 plus... This special issue of Geoscience Frontiers is a tribute volume honoring the life and career of Jacques Touret. A set of research papers has been assembled, which broadly reflect his research interests over his 50 plus year career. These papers Focus on the role that fluids play during the Formation and evolution of the Earth's crust. Below I provide a brief summary of the life of Jacques Touret, along with a select bibliography of his more important papers. This is then followed by a brief introduction to the papers assembled for this special issue. 展开更多
关键词 The role of fluids in the lower crust and upper mantle
下载PDF
Thermal Structure and Rheology of the Upper Mantle Derived from Mantle Xenoliths from Gansu Province, Western China
18
作者 ShiLanbin LinChuanyong ChenXiaode 《Earthquake Research in China》 2004年第3期281-299,共19页
Mantle xenoliths brought up by Cenozoic volcanic rocks onto the earth’s surface may provide direct information about the upper mantle beneath the volcanic region. This paper presents the study on mantle xenoliths col... Mantle xenoliths brought up by Cenozoic volcanic rocks onto the earth’s surface may provide direct information about the upper mantle beneath the volcanic region. This paper presents the study on mantle xenoliths collected from Haoti village, Dangchang County, Gansu Province, western China. The main purpose of the study is to gain an insight into the thermal structure and rheology of the upper mantle beneath the region. The results show that the upper mantle of the region is composed mainly of spinel lherzolite at shallower depth (52~75km), and garnet lherzolite at greater depth (greater than 75km), instead of harzburgite and dunite as proposed by some previous studies. The upper mantle geotherm derived from the equilibrium temperatures and pressures of xenoliths from the region is lower than that of North China, and is somewhat closer to the Oceanic geotherm. The crust-mantle boundary is determined from the geotherm to be at about 52km, and the Moho seems to be the transition zone of lower crust material with spinel lherzolite. If we take 1280℃ as the temperature of the top of asthenosphere, then the lithosphere-asthenosphere boundary should be at about 120km depth. The differential stress of the upper mantle is determined by using recrystallized grain size piezometry, while the strain rate and equivalent viscosity are determined by using the high temperature flow law of peridotite. The differential stress, strain rate and viscosity profiles constructed on the basis of the obtained values indicate that asthenospheric diapir occurred in this region during the Cenozoic time, resulting in the corresponding thinning of the lithosphere. However, the scale and intensity of the diapir was significantly less than that occurring in the North China region. Moreover, numerous small-scale shear zones with localized deformation might occur in the lithospheric mantle, as evidenced by the extensive occurrence of xenoliths with tabular equigranular texture. 展开更多
关键词 mantle xenoliths upper mantle Thermal structure RHEOLOGY Gansu Province Western China
下载PDF
Crust-Mantle Structure and Coupling Effects on Mineralization : An Example from Jiaodong Gold Ore Deposits Concentrating Area, China 被引量:17
19
作者 YangLiqiang DengJun +2 位作者 ZhangZhongjie WangGuangjie WangJianping 《Journal of China University of Geosciences》 SCIE CSCD 2003年第1期42-51,共10页
Based on the results of two dimension velo city structure, 1∶100 000 aeromagnetic anomaly, 1∶200 000 bouguer gravity anom aly and seismic anisotropy of Jiaodong and neighboring region in Shandong, China , the info... Based on the results of two dimension velo city structure, 1∶100 000 aeromagnetic anomaly, 1∶200 000 bouguer gravity anom aly and seismic anisotropy of Jiaodong and neighboring region in Shandong, China , the information of geophysical field was divided into two parts: deep and sh allow focus fields. And then, the information of two different fields was c ombined with that of deep seated geology and ore deposit features. The syntheti c result was adopted to analyze three dimension structure, to probe into crust mantle coupling effects of mineralization and dynamics of ore formation system . 展开更多
关键词 geophysical field crust mantle structure coupling effect dynamics of mineralization Jiaodong area of China.
下载PDF
Upper-mantle velocity structures beneath the Tibetan Plateau and surrounding areas inferred from triplicated P waveforms 被引量:10
20
作者 RiSheng Chu LuPei Zhu ZhiFeng Ding 《Earth and Planetary Physics》 CSCD 2019年第5期444-458,共15页
P-wave waveforms in the distance range between 12°and 30°were analyzed to investigate upper-mantle P velocity structures beneath the Tibetan Plateau and surrounding areas.The waveform data from 504 earthquak... P-wave waveforms in the distance range between 12°and 30°were analyzed to investigate upper-mantle P velocity structures beneath the Tibetan Plateau and surrounding areas.The waveform data from 504 earthquakes with magnitudes larger than 5.0 between 1990 and 2005 that occurred within 30°from the center of the Plateau were modelled.We divided the study area into 6 regions and modeled upper-mantle-distance P waveforms with turning points beneath each region separately.The results show that the uppermantle P-wave velocity structures beneath India,the Himalayas,and the Lhasa Terrane are similar and contain a high-velocity lid about 250 km thick.The upper-mantle velocities down to 200 km beneath the Qiangtang Terrane,the Tarim Basin,and especially the Songpan-GarzêTerrane are lower than those in the south.The 410-km discontinuity beneath these two terranes is elevated by about 20 km.Highvelocity anomalies are found in the transition zone below 500 km under the Lhasa and Qiangtang Terranes.The results suggest that the Tibetan Plateau was generated by thrusting of the Indian mantle lithosphere under the southern part of Tibet.Portions of the thickened Eurasian mantle lithosphere were delaminated;they are now sitting in the transition zone beneath southern Tibet and atop of the 410-km discontinuity underneath northern Tibet. 展开更多
关键词 TIBETAN Plateau upper mantle structure triplication waveform modelling
下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部