The cultivation of engineering capabilities aims to equip engineering professionals with high-level expertise to meet the demands of society and industry development,thereby enhancing their competitiveness and career ...The cultivation of engineering capabilities aims to equip engineering professionals with high-level expertise to meet the demands of society and industry development,thereby enhancing their competitiveness and career potential.This article focuses on engineering capability development,exploring teaching strategies for the Reinforced Concrete Structure course.It aims to provide insights for educators in engineering programs at universities and vocational colleges in China.By doing so,teaching plans that meet the needs of engineering capability development,laying a solid educational foundation for the healthy growth of engineering professionals in the new era,and enhancing their application of knowledge and skills can be developed.展开更多
In this paper, the tensile properties of the MWK structures produced with different basic stitches for composite reinforcement were experimentally studied. The results show that the MWK structures with the double loop...In this paper, the tensile properties of the MWK structures produced with different basic stitches for composite reinforcement were experimentally studied. The results show that the MWK structures with the double loop pillar stitches have better mechanical properties.展开更多
This paper presents the results of a parametric study of self-centering seismic retrofit schemes for reinforced concrete (RC) frame buildings. The self-centering retrofit system features flag-shaped hysteresis and min...This paper presents the results of a parametric study of self-centering seismic retrofit schemes for reinforced concrete (RC) frame buildings. The self-centering retrofit system features flag-shaped hysteresis and minimal residual deformation. For comparison purpose,an alternate seismic retrofit scheme that uses a bilinear-hysteresis retrofit system such as buckling-restrained braces (BRB) is also considered in this paper. The parametric study was carried out in a single-degree-of-freedom (SDOF) system framework since a multi-story building structure may be idealized as an equivalent SDOF system and investigation of the performance of this equivalent SDOF system can provide insight into the seismic response of the multi-story building. A peak-oriented hysteresis model which can consider the strength and stiffness degradation is used to describe the hysteretic behavior of RC structures. The parametric study involves two key parameters -the strength ratio and elastic stiffness ratio between the seismic retrofit system and the original RC frame. An ensemble of 172 earthquake ground motion records scaled to the design basis earthquake in California with a probability of exceedance of 10% in 50 years was constructed for the simulation-based parametric study. The effectiveness of the two seismic retrofit schemes considered in this study is evaluated in terms of peak displacement ratio,peak acceleration ratio,energy dissipation demand ratio and residual displacement ratio between the SDOF systems with and without retrofit. It is found from this parametric study that RC structures retrofitted with the self-centering retrofit scheme (SCRS) can achieve a seismic performance level comparable to the bilinear-hysteresis retrofit scheme (BHRS) in terms of peak displacement and energy dissipation demand ratio while having negligible residual displacement after earthquake.展开更多
The interaction between geogrid and soil is crucial for the stability of geogrid-reinforced earth structure. In finite element (FE) analysis, geogrids are usually assumed as beam or truss elements, and the interacti...The interaction between geogrid and soil is crucial for the stability of geogrid-reinforced earth structure. In finite element (FE) analysis, geogrids are usually assumed as beam or truss elements, and the interaction between geogrid and soil is considered as Coulomb friction resistance, which cannot reflect the true stress and displacement developed in the reinlbrcement. And the traditional Lagrangian elements used to simulate soil always become highly distorted and lose accuracy in high-stress blocks. An improved geogrid model that can produce shear resistance and passive resistance and a soil model using the Eulerian technique, in combination with the coupled Eulerian-Lagrangian (CEL) method, are used to analyze the interaction between geogrid and soil of reinforced foundation test in ABAQUS. The stress in the backfill, resistance of geogrid, and settlement of foundation were computed and the results of analysis agree well with the experimental results. This simulation method is of referential value for FE analysis of reinforced earth structure.展开更多
An investigation on damage location due to the corrosion in reinforced concrete structures is conducted. The frequency change square ratio is used as a parameter for the damage. It is theoretically verified that the p...An investigation on damage location due to the corrosion in reinforced concrete structures is conducted. The frequency change square ratio is used as a parameter for the damage. It is theoretically verified that the parameter is a function of the damage location. Experimental results of the corrosion in reinforced concrete structures show that the predicted damage location is in agreement with the real damage location. The modal parameters are used to detect the damages in structural concrete elements, and so they are useful for structural appraisal.展开更多
The offshore reinforced concrete structures are always subject to cyclic load, such as wave load.In this paper a new finite element analysis model is developed to analyze the stress and strain state of reinforced conc...The offshore reinforced concrete structures are always subject to cyclic load, such as wave load.In this paper a new finite element analysis model is developed to analyze the stress and strain state of reinforced concrete structures including offshore concrete structures, subject to any number of the cyclic load. On the basis of the anal ysis of the experimental data,this model simplifies the number of cycles-total cyclic strain curve of concrete as three straight line segments,and it is assumed that the stress-strain curves of different cycles in each segment are the same, thus the elastoplastic analysis is only needed for the first cycle of each segment, and the stress or strain corresponding to any number of cycles can be obtained by superposition of stress or strain obtained by the above e lastoplastic analysis based on the cyclic numbers in each segment.This model spends less computer time,and can obtain the stress and strain states of the structures after any number of cycles.The endochronic-damage and ideal offshore concrete platform subject to cyclic loading are experimented and analyzed by the finite element method based on the model proposed in this paper. The results between the experiment and the finite element analysis are in good agreement,which demonstrates the validity and accuracy of the proposed model.展开更多
Reinforced concrete(RC) load bearing wall is widely used in high-rise and mid-rise buildings. Due to the number of walls in plan and reduction in lateral force portion, this system is not only stronger against earthqu...Reinforced concrete(RC) load bearing wall is widely used in high-rise and mid-rise buildings. Due to the number of walls in plan and reduction in lateral force portion, this system is not only stronger against earthquakes, but also more economical. The effect of progressive collapse caused by removal of load bearing elements, in various positions in plan and stories of the RC load bearing wall system was evaluated by nonlinear dynamic and static analyses. For this purpose, three-dimensional model of 10-story structure was selected. The analysis results indicated stability, strength and stiffness of the RC load-bearing wall system against progressive collapse. It was observed that the most critical condition for removal of load bearing walls was the instantaneous removal of the surrounding walls located at the corners of the building where the sections of the load bearing elements were changed. In this case, the maximum vertical displacement was limited to 6.3 mm and the structure failed after applying the load of 10 times the axial load bored by removed elements. Comparison between the results of the nonlinear dynamic and static analyses demonstrated that the "load factor" parameter was a reasonable criterion to evaluate the progressive collapse potential of the structure.展开更多
The properties and tensile behaviors of polypropylene (PP) geogrids and geonets for reinforcement of soil structures are investigated.Mass per unit area of the geogrids and geonets was weighed using an electronic bala...The properties and tensile behaviors of polypropylene (PP) geogrids and geonets for reinforcement of soil structures are investigated.Mass per unit area of the geogrids and geonets was weighed using an electronic balance and aperture sizes of the geonets were exactly measured using a computer.Laboratory tests were performed using a small tensile machine capable of monitoring tensile force and displacement.Tensile failure behaviors were described,and tensile index properties such as tensile strength,maximum tensile strain,tensile forces corresponding to different strains in the geogrids and gronets were obtained.The characterization of these indexes is discussed.展开更多
An anchorage reliability analysis approach for simply supported reinforced concrete beams under corrosion attack in the anchorage zone is developed.The first-order second-moment method is employed to analyze the effec...An anchorage reliability analysis approach for simply supported reinforced concrete beams under corrosion attack in the anchorage zone is developed.The first-order second-moment method is employed to analyze the effects of various factors on the anchorage reliability.These factors include both the length and width of cover cracking due to reinforcement corrosion,the cover thickness,the anchorage length,and the stirrup ratio.The results show that the effect of corrosion-induced crack length on the reliability index for anchorage,β0,is negligible when the crack on the concrete surface is just appearing,but with the crack widening,the β0 value is reduced significantly;the considerable changes in β0 result from a variation in cover depth and anchorage length;the effect of changes in the diameter or space of stirrups on the anchorage resistance is very limited,and the variation in β0 is also very low.展开更多
Seeking for innovative structures with higher mechanical performance is a continuous target in railway vehicle crashworthiness design.In the present study,three types of hexagonal reinforced honeycomb-like structures ...Seeking for innovative structures with higher mechanical performance is a continuous target in railway vehicle crashworthiness design.In the present study,three types of hexagonal reinforced honeycomb-like structures were developed and analyzed subjected to out-of-plane compression,namely triangular honeycomb(TH),double honeycomb(DH)and full inside honeycomb(FH).Theoretical formulas of average force and specific energy absorption(SEA)were constructed based on the energy minimization principle.To validate,corresponding numerical simulations were carried out by explicit finite element method.Good agreement has been observed between them.The results show that all these honeycomb-like structures maintain the same collapsed stages as conventional honeycomb;cell reinforcement can significantly promote the performance,both in the average force and SEA;full inside honeycomb performs better than the general,triangular and double schemes in average force;meanwhile,its SEA is close to that of double scheme;toroidal surface can dissipate higher plastic energy,so more toroidal surfaces should be considered in design of thin-walled structure.These achievements pave a way for designing high-performance cellular energy absorption devices.展开更多
A nonlinear finite element model of the nut post reinforced concrete (RC) structure of the safety mechanism in the Three Gorges Project (TGP) ship lift was built by ANSYS software. Some irregular structures such a...A nonlinear finite element model of the nut post reinforced concrete (RC) structure of the safety mechanism in the Three Gorges Project (TGP) ship lift was built by ANSYS software. Some irregular structures such as the nut post and the rotary rod were divided by curved surface into a series of regular parts, and the structures were all meshed to hexahedron. Constraint equations were defined between two interfaces with different element sizes and mesh patterns. PRETS179 elements were used to simulate the preload in the tendons and the pre-stressed screws, and the loss of prestressing force was calculated. Five extreme load cases were analyzed. The stress of each part in the structure was obtained. The results indicate that the maximum compressive stress of concrete C35 is 24.13 MPa, so the concrete may be partially crushed; the maximum tensile stress of the grouting motar is 6.73 MPa, so the grouting motar may partially fracture; the maximum yon Mises stress of the rotary rod is 648.70 MPa, therefore the rotary rod may partially yield.展开更多
The objective of this paper is to provide an analytical basis for the quantitative evaluation of damage to a reinforced concrete structure based on the vibration data obtained by using the damage detection technique. ...The objective of this paper is to provide an analytical basis for the quantitative evaluation of damage to a reinforced concrete structure based on the vibration data obtained by using the damage detection technique. A partial reinforced concrete system of a weak beam/strong column moment frame is chosen as an example. A pushover analysis is carried out in order to numerically examine both the story shear-relative displacement characteristics and the associated damage level. In the analysis, a two dimensional nonlinear finite element analysis is employed considering several constitutive models. As a result, the degradation of the stiffness at the damaged story is characterized in association with the story relative displacement. It is also pointed out that the rotation angle of the column-base is highly correlated with the story relative displacement. Based on the analytical findings, quantitative approaches for a structural health monitoring system are suggested considering both the current sensor technologies and those available in the future. Keywords nonlinear FEM analysis - structural health monitoring - reinforced concrete structure - story stiffness - rotation angle of column-base Supported by: Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research (Base Research (c) (1), Research No. 14550555)展开更多
A reliability-based quantitative durability design methodology is presented for reinforced concrete(RC)structures in the marine environment on the basis of natural exposure data derived from four berths(1.5,1.5,4 and ...A reliability-based quantitative durability design methodology is presented for reinforced concrete(RC)structures in the marine environment on the basis of natural exposure data derived from four berths(1.5,1.5,4 and 15 years)of a concrete port.More than 200 chloride profiles are obtained and analyzed.The relationship between nominal surface chloride ion concentration and altitude is discussed.Subsequently,the formula of the apparent chloride diffusion coefficient is proposed with consideration of the surrounding temperature,sodium chloride solution concentration,age factor and altitude.Then,the reliability-based method to predict the durability of RC structures is developed according to Fick s second law.Relationships between the predicted penetration depth of the chloride ion,the ratio of the wetting time per-period and the corresponding altitude are discussed.Subsequently,the environmental zonation methodology is established for concrete structures under a marine chloride environment by considering the ratio of the wetting time per-period of concrete as the zoning index.Finally,the corres-ponding durability design method for each zone level is established,which contains the durability design regulations of the specimen,and correction coefficients for different water/binder ratios,ages,temperatures and chloride ion concentrations.展开更多
This paper focuses on the effect of temperature on the out-of-plane compressive properties and failure mechanism of carbon fiber/epoxy composite pyramidal truss cores sandwich panels (CF/CPTSP). CFJCPTSP with novel ...This paper focuses on the effect of temperature on the out-of-plane compressive properties and failure mechanism of carbon fiber/epoxy composite pyramidal truss cores sandwich panels (CF/CPTSP). CFJCPTSP with novel reinforced frames are manufactured by the water jet cutting and interlocking assembly method in this paper. The theoretical analysis is presented to predict the out-of-plane compressive stiffness and strength of CFJCPTSP at different ambient temperatures. The tests of composite sandwich panels are per- formed throughout the temperature range from -90℃ to 180℃. Good agreement is found between theo- retical predictions and experimental measurements. Experimental results indicate that the low tempera- ture increases the compressive stiffness and strength of CF/CPTSP. However, the high temperature causes the degradation of the compressive stiffness and strength. Meanwhile, the effects of temperature on the failure mode of composite sandwich panels are also observed.展开更多
This study presents a numerical multi-scale simulation framework which is extended to accommodate hybrid simulation (numerical-experimental integration). The framework is enhanced with a standardized data exchange f...This study presents a numerical multi-scale simulation framework which is extended to accommodate hybrid simulation (numerical-experimental integration). The framework is enhanced with a standardized data exchange format and connected to a generalized controller interface program which facilitates communication with various types of laboratory equipment and testing configurations. A small-scale experimental program was conducted using a six degree-of-freedom hydraulic testing equipment to verify the proposed framework and provide additional data for small-scale testing of shear- critical reinforced concrete structures. The specimens were tested in a multi-axial hybrid simulation manner under a reversed cyclic loading condition simulating earthquake forces. The physical models were 1/3.23-scale representations of a beam and two columns. A mixed-type modelling technique was employed to analyze the remainder of the structures. The hybrid simulation results were compared against those obtained from a large-scale test and finite element analyses. The study found that if precautions are taken in preparing model materials and if the shear-related mechanisms are accurately considered in the numerical model, small-scale hybrid simulations can adequately simulate the behaviour of shear-critical structures. Although the findings of the study are promising, to draw general conclusions additional test data are required.展开更多
Based on the existing research, this paper presents an innovative methodology to realize direct damage-based seismic design for RC frame structures by mobilizing ESDOF theory and the damage-based strength reduction fa...Based on the existing research, this paper presents an innovative methodology to realize direct damage-based seismic design for RC frame structures by mobilizing ESDOF theory and the damage-based strength reduction factor(RD factor). A design example is then followed to verify this method.展开更多
A Fe_(2)O_(3)-MWNTs(multi-walled carbon nanotubes)composite with a reinforced concrete structure was fabricated employing a two-step method which involves a sol-gel process followed by high-temperature in situ sinteri...A Fe_(2)O_(3)-MWNTs(multi-walled carbon nanotubes)composite with a reinforced concrete structure was fabricated employing a two-step method which involves a sol-gel process followed by high-temperature in situ sintering.This Fe_(2)O_(3)-MWNTs composite,intended to be used as an anode material for lithium-ion batteries,maintained a reversible capacity as high as 896.3 mA·h/g after 100 cycles at a current density of 100 mA/g and the initial coulombic efficiency reached 75.5%.The rate capabilities of the Fe_(2)O_(3)-MWNTs composite,evaluated using the ratios of capacity at 100,200,500,1000,2000 and 100 mA/g after every 10 cycles,were determined to be 904.7,852.1,759.0,653.8,566.8 and 866.3 mA·h/g,respectively.Such a superior electrochemical performance of the Fe_(2)O_(3)-MWNTs composite is mainly attributed to the reinforced concrete construction,in which the MWNTs function as the skeleton and conductive network.Such a structure contributes to shortening the transport pathways for both Li+and electrons,enhancing conductivity and accommodating volume expansion during prolonged cycling.This Fe_(2)O_(3)-MWNTs composite with the designed structure is a promising anode material for high-performance lithium-ion batteries.展开更多
A numerical model using the coupled smoothed panicle hydrodynamics-finite element method (SPH-FEM) approach is presented for analysis of structures under blast loads. The analyses on two numerical cases, one for fre...A numerical model using the coupled smoothed panicle hydrodynamics-finite element method (SPH-FEM) approach is presented for analysis of structures under blast loads. The analyses on two numerical cases, one for free field explosive and the other for structural response under blast loads, are performed to model the whole processes from the propagation of the pressure wave to the response of structures. Based on the simulation, it is concluded that this model can be used for reasonably accurate explosive analysis of structures. The resulting information would be valuable for protecting structures under blast loads.展开更多
Earthquake simulator tests of a 1/6-scale nine-story reinforced concrete frame-wall model are described in the paper. The test results and associated numerical simulation are summarized and discussed. Based on the tes...Earthquake simulator tests of a 1/6-scale nine-story reinforced concrete frame-wall model are described in the paper. The test results and associated numerical simulation are summarized and discussed. Based on the test data, a relationship between maximum inter-story drift and damage state is established. Equations of variation of structural characteristics (natural frequency and equivalent stiffness) with overall drifts are derived by data fitting, which can be used to estimate structural damage state if structural characteristics can be measured. A comparison of the analytical and experimental results show that both the commonly used equivalent beam and fiber element models can simulate the nonlinear seismic response of structures very well. Finally, conclusions associated with seismic design and damage evaluation of RC structures are presented.展开更多
in order to evaluate the capacity of reinforced concrete (RC) structures subjected to blast Ioadings, the damaged plasticity model for concrete was used in the analysis of the dynamic responses of blast-loaded RC st...in order to evaluate the capacity of reinforced concrete (RC) structures subjected to blast Ioadings, the damaged plasticity model for concrete was used in the analysis of the dynamic responses of blast-loaded RC structures, and all three failure modes were numerically simulated by the finite element software ABAQUS. Simulation results agree with the experimental observations. It is demonstrated that the damaged plasticity model for concrete in the finite element software ABAQUS can predict dynamic responses and typical flexure, flexure-shear and direct shear failure modes of the blast-loaded RC structures.展开更多
文摘The cultivation of engineering capabilities aims to equip engineering professionals with high-level expertise to meet the demands of society and industry development,thereby enhancing their competitiveness and career potential.This article focuses on engineering capability development,exploring teaching strategies for the Reinforced Concrete Structure course.It aims to provide insights for educators in engineering programs at universities and vocational colleges in China.By doing so,teaching plans that meet the needs of engineering capability development,laying a solid educational foundation for the healthy growth of engineering professionals in the new era,and enhancing their application of knowledge and skills can be developed.
文摘In this paper, the tensile properties of the MWK structures produced with different basic stitches for composite reinforcement were experimentally studied. The results show that the MWK structures with the double loop pillar stitches have better mechanical properties.
基金Univeristy of Maryland,Start-up Grant to the First Author
文摘This paper presents the results of a parametric study of self-centering seismic retrofit schemes for reinforced concrete (RC) frame buildings. The self-centering retrofit system features flag-shaped hysteresis and minimal residual deformation. For comparison purpose,an alternate seismic retrofit scheme that uses a bilinear-hysteresis retrofit system such as buckling-restrained braces (BRB) is also considered in this paper. The parametric study was carried out in a single-degree-of-freedom (SDOF) system framework since a multi-story building structure may be idealized as an equivalent SDOF system and investigation of the performance of this equivalent SDOF system can provide insight into the seismic response of the multi-story building. A peak-oriented hysteresis model which can consider the strength and stiffness degradation is used to describe the hysteretic behavior of RC structures. The parametric study involves two key parameters -the strength ratio and elastic stiffness ratio between the seismic retrofit system and the original RC frame. An ensemble of 172 earthquake ground motion records scaled to the design basis earthquake in California with a probability of exceedance of 10% in 50 years was constructed for the simulation-based parametric study. The effectiveness of the two seismic retrofit schemes considered in this study is evaluated in terms of peak displacement ratio,peak acceleration ratio,energy dissipation demand ratio and residual displacement ratio between the SDOF systems with and without retrofit. It is found from this parametric study that RC structures retrofitted with the self-centering retrofit scheme (SCRS) can achieve a seismic performance level comparable to the bilinear-hysteresis retrofit scheme (BHRS) in terms of peak displacement and energy dissipation demand ratio while having negligible residual displacement after earthquake.
基金Supported by National Natural Science Foundation of China (No. 50678032)
文摘The interaction between geogrid and soil is crucial for the stability of geogrid-reinforced earth structure. In finite element (FE) analysis, geogrids are usually assumed as beam or truss elements, and the interaction between geogrid and soil is considered as Coulomb friction resistance, which cannot reflect the true stress and displacement developed in the reinlbrcement. And the traditional Lagrangian elements used to simulate soil always become highly distorted and lose accuracy in high-stress blocks. An improved geogrid model that can produce shear resistance and passive resistance and a soil model using the Eulerian technique, in combination with the coupled Eulerian-Lagrangian (CEL) method, are used to analyze the interaction between geogrid and soil of reinforced foundation test in ABAQUS. The stress in the backfill, resistance of geogrid, and settlement of foundation were computed and the results of analysis agree well with the experimental results. This simulation method is of referential value for FE analysis of reinforced earth structure.
文摘An investigation on damage location due to the corrosion in reinforced concrete structures is conducted. The frequency change square ratio is used as a parameter for the damage. It is theoretically verified that the parameter is a function of the damage location. Experimental results of the corrosion in reinforced concrete structures show that the predicted damage location is in agreement with the real damage location. The modal parameters are used to detect the damages in structural concrete elements, and so they are useful for structural appraisal.
文摘The offshore reinforced concrete structures are always subject to cyclic load, such as wave load.In this paper a new finite element analysis model is developed to analyze the stress and strain state of reinforced concrete structures including offshore concrete structures, subject to any number of the cyclic load. On the basis of the anal ysis of the experimental data,this model simplifies the number of cycles-total cyclic strain curve of concrete as three straight line segments,and it is assumed that the stress-strain curves of different cycles in each segment are the same, thus the elastoplastic analysis is only needed for the first cycle of each segment, and the stress or strain corresponding to any number of cycles can be obtained by superposition of stress or strain obtained by the above e lastoplastic analysis based on the cyclic numbers in each segment.This model spends less computer time,and can obtain the stress and strain states of the structures after any number of cycles.The endochronic-damage and ideal offshore concrete platform subject to cyclic loading are experimented and analyzed by the finite element method based on the model proposed in this paper. The results between the experiment and the finite element analysis are in good agreement,which demonstrates the validity and accuracy of the proposed model.
文摘Reinforced concrete(RC) load bearing wall is widely used in high-rise and mid-rise buildings. Due to the number of walls in plan and reduction in lateral force portion, this system is not only stronger against earthquakes, but also more economical. The effect of progressive collapse caused by removal of load bearing elements, in various positions in plan and stories of the RC load bearing wall system was evaluated by nonlinear dynamic and static analyses. For this purpose, three-dimensional model of 10-story structure was selected. The analysis results indicated stability, strength and stiffness of the RC load-bearing wall system against progressive collapse. It was observed that the most critical condition for removal of load bearing walls was the instantaneous removal of the surrounding walls located at the corners of the building where the sections of the load bearing elements were changed. In this case, the maximum vertical displacement was limited to 6.3 mm and the structure failed after applying the load of 10 times the axial load bored by removed elements. Comparison between the results of the nonlinear dynamic and static analyses demonstrated that the "load factor" parameter was a reasonable criterion to evaluate the progressive collapse potential of the structure.
文摘The properties and tensile behaviors of polypropylene (PP) geogrids and geonets for reinforcement of soil structures are investigated.Mass per unit area of the geogrids and geonets was weighed using an electronic balance and aperture sizes of the geonets were exactly measured using a computer.Laboratory tests were performed using a small tensile machine capable of monitoring tensile force and displacement.Tensile failure behaviors were described,and tensile index properties such as tensile strength,maximum tensile strain,tensile forces corresponding to different strains in the geogrids and gronets were obtained.The characterization of these indexes is discussed.
基金The Key Science Foundation of Liaoning ProvincialCommunications Department (No.0101).
文摘An anchorage reliability analysis approach for simply supported reinforced concrete beams under corrosion attack in the anchorage zone is developed.The first-order second-moment method is employed to analyze the effects of various factors on the anchorage reliability.These factors include both the length and width of cover cracking due to reinforcement corrosion,the cover thickness,the anchorage length,and the stirrup ratio.The results show that the effect of corrosion-induced crack length on the reliability index for anchorage,β0,is negligible when the crack on the concrete surface is just appearing,but with the crack widening,the β0 value is reduced significantly;the considerable changes in β0 result from a variation in cover depth and anchorage length;the effect of changes in the diameter or space of stirrups on the anchorage resistance is very limited,and the variation in β0 is also very low.
基金Projects(51875581,51505502)supported by the National Natural Science Foundation of ChinaProjects(2017M620358,2018T110707)supported by China Postdoctoral Science FoundationProject(kq1905057)supported by the Training Program for Excellent Young Innovators of Changsha,China
文摘Seeking for innovative structures with higher mechanical performance is a continuous target in railway vehicle crashworthiness design.In the present study,three types of hexagonal reinforced honeycomb-like structures were developed and analyzed subjected to out-of-plane compression,namely triangular honeycomb(TH),double honeycomb(DH)and full inside honeycomb(FH).Theoretical formulas of average force and specific energy absorption(SEA)were constructed based on the energy minimization principle.To validate,corresponding numerical simulations were carried out by explicit finite element method.Good agreement has been observed between them.The results show that all these honeycomb-like structures maintain the same collapsed stages as conventional honeycomb;cell reinforcement can significantly promote the performance,both in the average force and SEA;full inside honeycomb performs better than the general,triangular and double schemes in average force;meanwhile,its SEA is close to that of double scheme;toroidal surface can dissipate higher plastic energy,so more toroidal surfaces should be considered in design of thin-walled structure.These achievements pave a way for designing high-performance cellular energy absorption devices.
基金Project (SPKJ 016-06) supported by the Key Research Project of State Power CorporationProject (2004AC101D31) supported the Key Scientific Research Project of Hubei Province, China
文摘A nonlinear finite element model of the nut post reinforced concrete (RC) structure of the safety mechanism in the Three Gorges Project (TGP) ship lift was built by ANSYS software. Some irregular structures such as the nut post and the rotary rod were divided by curved surface into a series of regular parts, and the structures were all meshed to hexahedron. Constraint equations were defined between two interfaces with different element sizes and mesh patterns. PRETS179 elements were used to simulate the preload in the tendons and the pre-stressed screws, and the loss of prestressing force was calculated. Five extreme load cases were analyzed. The stress of each part in the structure was obtained. The results indicate that the maximum compressive stress of concrete C35 is 24.13 MPa, so the concrete may be partially crushed; the maximum tensile stress of the grouting motar is 6.73 MPa, so the grouting motar may partially fracture; the maximum yon Mises stress of the rotary rod is 648.70 MPa, therefore the rotary rod may partially yield.
基金Ministry of Education,Science,Sports and Culture,Grant-in-Aid for Scientific Research(Base Research(c)(1),Research No.14550555)
文摘The objective of this paper is to provide an analytical basis for the quantitative evaluation of damage to a reinforced concrete structure based on the vibration data obtained by using the damage detection technique. A partial reinforced concrete system of a weak beam/strong column moment frame is chosen as an example. A pushover analysis is carried out in order to numerically examine both the story shear-relative displacement characteristics and the associated damage level. In the analysis, a two dimensional nonlinear finite element analysis is employed considering several constitutive models. As a result, the degradation of the stiffness at the damaged story is characterized in association with the story relative displacement. It is also pointed out that the rotation angle of the column-base is highly correlated with the story relative displacement. Based on the analytical findings, quantitative approaches for a structural health monitoring system are suggested considering both the current sensor technologies and those available in the future. Keywords nonlinear FEM analysis - structural health monitoring - reinforced concrete structure - story stiffness - rotation angle of column-base Supported by: Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research (Base Research (c) (1), Research No. 14550555)
基金The National Natural Science Foundation of China(No.51508162)
文摘A reliability-based quantitative durability design methodology is presented for reinforced concrete(RC)structures in the marine environment on the basis of natural exposure data derived from four berths(1.5,1.5,4 and 15 years)of a concrete port.More than 200 chloride profiles are obtained and analyzed.The relationship between nominal surface chloride ion concentration and altitude is discussed.Subsequently,the formula of the apparent chloride diffusion coefficient is proposed with consideration of the surrounding temperature,sodium chloride solution concentration,age factor and altitude.Then,the reliability-based method to predict the durability of RC structures is developed according to Fick s second law.Relationships between the predicted penetration depth of the chloride ion,the ratio of the wetting time per-period and the corresponding altitude are discussed.Subsequently,the environmental zonation methodology is established for concrete structures under a marine chloride environment by considering the ratio of the wetting time per-period of concrete as the zoning index.Finally,the corres-ponding durability design method for each zone level is established,which contains the durability design regulations of the specimen,and correction coefficients for different water/binder ratios,ages,temperatures and chloride ion concentrations.
基金supported by the Major State Basic Research Development Program of China (973 Program) under Grant No. 2011CB610303the National Natural Science Foundation of China under Grant No. 11432004
文摘This paper focuses on the effect of temperature on the out-of-plane compressive properties and failure mechanism of carbon fiber/epoxy composite pyramidal truss cores sandwich panels (CF/CPTSP). CFJCPTSP with novel reinforced frames are manufactured by the water jet cutting and interlocking assembly method in this paper. The theoretical analysis is presented to predict the out-of-plane compressive stiffness and strength of CFJCPTSP at different ambient temperatures. The tests of composite sandwich panels are per- formed throughout the temperature range from -90℃ to 180℃. Good agreement is found between theo- retical predictions and experimental measurements. Experimental results indicate that the low tempera- ture increases the compressive stiffness and strength of CF/CPTSP. However, the high temperature causes the degradation of the compressive stiffness and strength. Meanwhile, the effects of temperature on the failure mode of composite sandwich panels are also observed.
文摘This study presents a numerical multi-scale simulation framework which is extended to accommodate hybrid simulation (numerical-experimental integration). The framework is enhanced with a standardized data exchange format and connected to a generalized controller interface program which facilitates communication with various types of laboratory equipment and testing configurations. A small-scale experimental program was conducted using a six degree-of-freedom hydraulic testing equipment to verify the proposed framework and provide additional data for small-scale testing of shear- critical reinforced concrete structures. The specimens were tested in a multi-axial hybrid simulation manner under a reversed cyclic loading condition simulating earthquake forces. The physical models were 1/3.23-scale representations of a beam and two columns. A mixed-type modelling technique was employed to analyze the remainder of the structures. The hybrid simulation results were compared against those obtained from a large-scale test and finite element analyses. The study found that if precautions are taken in preparing model materials and if the shear-related mechanisms are accurately considered in the numerical model, small-scale hybrid simulations can adequately simulate the behaviour of shear-critical structures. Although the findings of the study are promising, to draw general conclusions additional test data are required.
文摘Based on the existing research, this paper presents an innovative methodology to realize direct damage-based seismic design for RC frame structures by mobilizing ESDOF theory and the damage-based strength reduction factor(RD factor). A design example is then followed to verify this method.
基金National Natural Science Foundation of China(Nos.21471100,21704066)Guangdong Basic and Applied Basic Research Foundation,China(No.2021A1515010241)Shenzhen Natural Science Fund,China(the Stable Support Plan Program)(No.20200813081943001).
文摘A Fe_(2)O_(3)-MWNTs(multi-walled carbon nanotubes)composite with a reinforced concrete structure was fabricated employing a two-step method which involves a sol-gel process followed by high-temperature in situ sintering.This Fe_(2)O_(3)-MWNTs composite,intended to be used as an anode material for lithium-ion batteries,maintained a reversible capacity as high as 896.3 mA·h/g after 100 cycles at a current density of 100 mA/g and the initial coulombic efficiency reached 75.5%.The rate capabilities of the Fe_(2)O_(3)-MWNTs composite,evaluated using the ratios of capacity at 100,200,500,1000,2000 and 100 mA/g after every 10 cycles,were determined to be 904.7,852.1,759.0,653.8,566.8 and 866.3 mA·h/g,respectively.Such a superior electrochemical performance of the Fe_(2)O_(3)-MWNTs composite is mainly attributed to the reinforced concrete construction,in which the MWNTs function as the skeleton and conductive network.Such a structure contributes to shortening the transport pathways for both Li+and electrons,enhancing conductivity and accommodating volume expansion during prolonged cycling.This Fe_(2)O_(3)-MWNTs composite with the designed structure is a promising anode material for high-performance lithium-ion batteries.
基金National Basic Research Program (973) of China (No. 2002CB412709)the National Natural Science Foun-dation of China (No. 50378054)
文摘A numerical model using the coupled smoothed panicle hydrodynamics-finite element method (SPH-FEM) approach is presented for analysis of structures under blast loads. The analyses on two numerical cases, one for free field explosive and the other for structural response under blast loads, are performed to model the whole processes from the propagation of the pressure wave to the response of structures. Based on the simulation, it is concluded that this model can be used for reasonably accurate explosive analysis of structures. The resulting information would be valuable for protecting structures under blast loads.
基金Basic Research Fund of Institute of Engineering Mechanics, China Earthquake Administration for Special Project Under Grant No.2007A02Joint Earthquake Science Foundation of China Under Grant No.95-07-443
文摘Earthquake simulator tests of a 1/6-scale nine-story reinforced concrete frame-wall model are described in the paper. The test results and associated numerical simulation are summarized and discussed. Based on the test data, a relationship between maximum inter-story drift and damage state is established. Equations of variation of structural characteristics (natural frequency and equivalent stiffness) with overall drifts are derived by data fitting, which can be used to estimate structural damage state if structural characteristics can be measured. A comparison of the analytical and experimental results show that both the commonly used equivalent beam and fiber element models can simulate the nonlinear seismic response of structures very well. Finally, conclusions associated with seismic design and damage evaluation of RC structures are presented.
基金Supported by National Natural Science Foundation of China (No.50638030 and 50525825)National Science and Technology Support Program (No.2006BAJ13B02).
文摘in order to evaluate the capacity of reinforced concrete (RC) structures subjected to blast Ioadings, the damaged plasticity model for concrete was used in the analysis of the dynamic responses of blast-loaded RC structures, and all three failure modes were numerically simulated by the finite element software ABAQUS. Simulation results agree with the experimental observations. It is demonstrated that the damaged plasticity model for concrete in the finite element software ABAQUS can predict dynamic responses and typical flexure, flexure-shear and direct shear failure modes of the blast-loaded RC structures.