To improve the adaptability of TBMs in diverse geological environments,this paper proposes a reconfigurable Type-V thrust mechanism(V-TM)with rearrangeable working states,in which structural stiffness can be automatic...To improve the adaptability of TBMs in diverse geological environments,this paper proposes a reconfigurable Type-V thrust mechanism(V-TM)with rearrangeable working states,in which structural stiffness can be automatically altered during operation.Therefore,millions of configurations can be obtained,and thousands of instances of working status per configuration can be set respectively.Nonetheless,the complexity of configurations and diversity of working states contributes to further complications for the structural stiffness algorithm.This results in challenges such as difficulty calculating the payload compliance index and the environment adaptability index.To solve this problem,we use the configuration matrix to describe the relationship between propelling jacks under reconfiguration and adopt pattern vectors to describe the working state of each hydraulic cylinder.Then,both the dynamic compatible equation between propeller forces of the hydraulic cylinders and driving forces,and the kinematic harmonizing equation between the hydraulic cylinder displacements and their deformations are established.Next,we derive the stiffness analytical equation using Hooke’s law and the Jacobian Matrix.The proposed approach provides an effective algorithm to support structural rigidity analysis,and lays a solid theoretical foundation for calculating the performance indexes of the V-TM.We then analyze the rigidity characteristics of typical configurations under different working states,and obtain the main factors affecting structural stiffness of the V-TM.The results show the deviation degree of structural parameters in hydraulic cylinders within the same group,and the working status of propelling jacks.Finally,our constructive conclusions contribute valuable information for matching and optimization by drawing on the factors that affect the structural rigidity of the V-TM.展开更多
As one of the oldest creatures on the earth, the tortoises have formed a nearly perfect shell structure after millions of years of evolution In this paper, Chinese tortoise shell is studied. Firstly, the scanni...As one of the oldest creatures on the earth, the tortoises have formed a nearly perfect shell structure after millions of years of evolution In this paper, Chinese tortoise shell is studied. Firstly, the scanning model of the tortoise shell is established by means of computer tomography (CT) scanning technology and MIMICS software. Secondly, the solid model of three-dimensional structure of the tortoise shell is constructed by using geomagic studio reverse engineering software. Afterwards, the compression numerical simulation of the tortoise shell structure under low strain rate is conducted with the help of finite element software LS-DYNA. Finally, load-bearing characteristics of the tortoise shell structure and dome-shaped structure are compared and analyzed. The results show that compared withthe dome-shaped structure with the same volume, tortoise shell structure has a higher structural rigidity and can withstand higher pressure. Therefore, tortoise shell structure provide some reference to the design of armored vehicles, sheltersand other types of thin shell structures.展开更多
Vacuum vessel of the HT-7U is a fully welded toroidal structure with a noncircular cross-section nested in the bore of the TF coils. According to the requirement of the physics design, sixteen horizontal ports on outb...Vacuum vessel of the HT-7U is a fully welded toroidal structure with a noncircular cross-section nested in the bore of the TF coils. According to the requirement of the physics design, sixteen horizontal ports on outboard mid-plane and thirty-two vertical ports on the top and bottom are designed for diagnostics, plasma heating, current driving, vacuum pumping and gas puffing. Bellows on these port necks are used for flexible components to absorb the relative displacement in radial and vertical directions due to external load, thermal expansion or contrac-tion and assembly tolerance, and also used for isolation of mechanical vibration. For the support system of vacuum vessel it should be not only strong enough to withstand forces acting on the vessel interior components and the vessel itself due to the dead weight and electromagnetic inter-actions during plasma disruption, but also sufficiently flexible to be suited to thermal expansion during baking. In order to solve this contradiction a new kind of low rigid support has been designed, which has a perfectly rigid in vertical direction and perfectly soft in radial direction. Some three-dimension finite element COSMOS models were performed to analyze their structural strength, stiffness and fatigue life, with an emphasis on the static stress analysis. The load spectra during vacuum vessel operation were also simulated on these models in the view of fatigue design. It was confirmed that the bellows and support had sufficient strength in the designed range of the load conditions. The results showed that the peak stress on bellows was 87 MPa and on the support system was 97 MPa. Now all kinds of bellows and support system have been designed. In order to accumulate some engineering experiences and probe into some molding die and welding technologies, prototypical bellows and support system have been fabricated. At the same time a mechanical testing apparatus was designed for proof tests on the prototypical bellows and support to verify their functional and structure capability. The experimental data indicated that the re-sults of finite element analysis were coincident with experimental test results. It has been proved that the present vacuum vessel's bellows and support system are reasonable and feasible.展开更多
African ostrich can run for 30 min at a speed of 60 km/h in the desert,and its hindlimb has excellent energy saving and vibration damping performance.In order to realize the energy⁃efficient and vibration⁃damping desi...African ostrich can run for 30 min at a speed of 60 km/h in the desert,and its hindlimb has excellent energy saving and vibration damping performance.In order to realize the energy⁃efficient and vibration⁃damping design of the leg mechanism of the legged robot,the principle of engineering bionics was applied.According to the passive rebound characteristic of the intertarsal joint of the ostrich foot and the characteristic of variable output stiffness of the ostrich hindlimb,combined with the proportion and size of the structure of the ostrich hindlimb,the bionic rigid⁃flexible composite legged robot single⁃leg structure was designed.The locomotion of the bionic mechanical leg was simulated by means of ADAMS.Through the motion simulation analysis,the influence of the change of the inner spring stiffness coefficient within a certain range on the vertical acceleration of the body centroid and the motor power consumption was studied,and the optimal stiffness coefficient of the inner spring was obtained to be 200 N/mm,and it was further verified that the inner and outer spring mechanism could effectively reduce the energy consumption of the mechanical leg.Simulation results show that the inner and outer spring mechanism could effectively reduce the motor energy consumption by about 72.49%.展开更多
Modem long-span space structures,developed during the 1970s and 1980s,are light and effective structures based on new technologies and light-weight high-strength materials,such as membranes and steel cables.These stru...Modem long-span space structures,developed during the 1970s and 1980s,are light and effective structures based on new technologies and light-weight high-strength materials,such as membranes and steel cables.These structures include air-supported membrane structures,cable-membrane structures,cable truss structures,beam string structures,suspen-domes,cable domes,composite structures of cable dome and single-layer lattice shell,Tensairity structures and so forth.For the premodem space structures widely used since the mid-twentieth century(such as thin shells,space trusses,lattice shells and ordinary cable structures),new space structures have been developed by the combination of different structural forms and materials.The application of prestressing technology and the innovation of structural concepts and configurations are also associated with modem space structures,including composite space trusses,open-web grid structures,polyhedron space frame structures,partial double-layer lattice shells,cable-stayed grid structures,tree-type structures,prestressed segmental steel structures and so forth.This paper provides a review of the structural characteristics and practical applications in China of modem rigid space structures,modem flexible space structures and modem rigid-flexible combined space structures.展开更多
Soft in-pipe robot has good adaptability in tubular circumstances,while its rigidity is insufficient,which affects the traction performance.This paper proposes a novel worm-like in-pipe robot with a rigid and soft str...Soft in-pipe robot has good adaptability in tubular circumstances,while its rigidity is insufficient,which affects the traction performance.This paper proposes a novel worm-like in-pipe robot with a rigid and soft structure,which not only has strong traction ability but also flexible mobility in the shaped pipes.Imitating the structure features of the earthworm,the bionic in-pipe robot structure is designed including two soft anchor parts and one rigid telescopic part.The soft-supporting mechanism is the key factor for the in-pipe robot excellent performance,whose mathematical model is established and the mechanical characteristics are analyzed,which is used to optimize the structural parameters.The prototype is developed and the motion control strategy is planned.Various performances of the in-pipe robot are tested,such as the traction ability,moving velocity and adaptability.For comparative analysis,different operating scenarios are built including the horizontal pipe,the inclined pipe,the vertical pipe and other unstructured pipes.The experiment results show that the in-pipe robot is suitable for many kinds of pipe applications,the average traction is about 6.8N,the moving velocity is in the range of 9.5 to 12.7 mm/s.展开更多
In this work,a blue emitter with a 3 D rigid structure composed of multiple spirobifluorene(3-Spiro) has been synthesized and characterized.Through a detailed study of the electrochemical and photophysical properties ...In this work,a blue emitter with a 3 D rigid structure composed of multiple spirobifluorene(3-Spiro) has been synthesized and characterized.Through a detailed study of the electrochemical and photophysical properties of 3-Spiro,we have evidenced that 3-Spiro can be applied as an active component of organic light-emitting diodes(OLEDs).The device with 5% doping rate of 4 CzPNPh exhibits high external quantum efficiency(EQE) of 11%,which proves the potential of 3 D rigid structure emitters for OLEDs.展开更多
A novel thiazolothiazole-bridged imidazole derivative(1) was found to exhibit blue fluorescence in gaseous state or in methanol and yellow fluorescence in solid state. The N-alkylation of imidazole subunit(s) in 1 usi...A novel thiazolothiazole-bridged imidazole derivative(1) was found to exhibit blue fluorescence in gaseous state or in methanol and yellow fluorescence in solid state. The N-alkylation of imidazole subunit(s) in 1 using n-propyl iodide generated unsymmetrically or symmetrically alkylated thiazolothiazolebridged imidazolium salts with good water solubility and remarkably strong emission in solution. Furthermore, the replacement of iodide counter-anion by triflate or bis(trifluoromethane sulfonyl)imide achieved remarkably strong emission in solid state and in solution as well as good water solubility. The strong fluorescence of dicationic salts with triflate and NTf_(2)^(-)counter-anions in solid state can be ascribed to their twisted and rigid structures induced by interionic C-H···F hydrogen bonding.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51675180)National Key Basic Research Program of China(973 Program,Grant No.2013CB037503)
文摘To improve the adaptability of TBMs in diverse geological environments,this paper proposes a reconfigurable Type-V thrust mechanism(V-TM)with rearrangeable working states,in which structural stiffness can be automatically altered during operation.Therefore,millions of configurations can be obtained,and thousands of instances of working status per configuration can be set respectively.Nonetheless,the complexity of configurations and diversity of working states contributes to further complications for the structural stiffness algorithm.This results in challenges such as difficulty calculating the payload compliance index and the environment adaptability index.To solve this problem,we use the configuration matrix to describe the relationship between propelling jacks under reconfiguration and adopt pattern vectors to describe the working state of each hydraulic cylinder.Then,both the dynamic compatible equation between propeller forces of the hydraulic cylinders and driving forces,and the kinematic harmonizing equation between the hydraulic cylinder displacements and their deformations are established.Next,we derive the stiffness analytical equation using Hooke’s law and the Jacobian Matrix.The proposed approach provides an effective algorithm to support structural rigidity analysis,and lays a solid theoretical foundation for calculating the performance indexes of the V-TM.We then analyze the rigidity characteristics of typical configurations under different working states,and obtain the main factors affecting structural stiffness of the V-TM.The results show the deviation degree of structural parameters in hydraulic cylinders within the same group,and the working status of propelling jacks.Finally,our constructive conclusions contribute valuable information for matching and optimization by drawing on the factors that affect the structural rigidity of the V-TM.
文摘As one of the oldest creatures on the earth, the tortoises have formed a nearly perfect shell structure after millions of years of evolution In this paper, Chinese tortoise shell is studied. Firstly, the scanning model of the tortoise shell is established by means of computer tomography (CT) scanning technology and MIMICS software. Secondly, the solid model of three-dimensional structure of the tortoise shell is constructed by using geomagic studio reverse engineering software. Afterwards, the compression numerical simulation of the tortoise shell structure under low strain rate is conducted with the help of finite element software LS-DYNA. Finally, load-bearing characteristics of the tortoise shell structure and dome-shaped structure are compared and analyzed. The results show that compared withthe dome-shaped structure with the same volume, tortoise shell structure has a higher structural rigidity and can withstand higher pressure. Therefore, tortoise shell structure provide some reference to the design of armored vehicles, sheltersand other types of thin shell structures.
基金This work was supported by the National Meg-Science Engineering Project of the Chinese Gorernment
文摘Vacuum vessel of the HT-7U is a fully welded toroidal structure with a noncircular cross-section nested in the bore of the TF coils. According to the requirement of the physics design, sixteen horizontal ports on outboard mid-plane and thirty-two vertical ports on the top and bottom are designed for diagnostics, plasma heating, current driving, vacuum pumping and gas puffing. Bellows on these port necks are used for flexible components to absorb the relative displacement in radial and vertical directions due to external load, thermal expansion or contrac-tion and assembly tolerance, and also used for isolation of mechanical vibration. For the support system of vacuum vessel it should be not only strong enough to withstand forces acting on the vessel interior components and the vessel itself due to the dead weight and electromagnetic inter-actions during plasma disruption, but also sufficiently flexible to be suited to thermal expansion during baking. In order to solve this contradiction a new kind of low rigid support has been designed, which has a perfectly rigid in vertical direction and perfectly soft in radial direction. Some three-dimension finite element COSMOS models were performed to analyze their structural strength, stiffness and fatigue life, with an emphasis on the static stress analysis. The load spectra during vacuum vessel operation were also simulated on these models in the view of fatigue design. It was confirmed that the bellows and support had sufficient strength in the designed range of the load conditions. The results showed that the peak stress on bellows was 87 MPa and on the support system was 97 MPa. Now all kinds of bellows and support system have been designed. In order to accumulate some engineering experiences and probe into some molding die and welding technologies, prototypical bellows and support system have been fabricated. At the same time a mechanical testing apparatus was designed for proof tests on the prototypical bellows and support to verify their functional and structure capability. The experimental data indicated that the re-sults of finite element analysis were coincident with experimental test results. It has been proved that the present vacuum vessel's bellows and support system are reasonable and feasible.
基金supported by National Basic Research Program of China(973 Program)(2012CB720002)National High Technology Research and Development Program of China(863 Program)(2012AA120601)+2 种基金National Natural Science Foundation of China(61225015)the Ph.D.Programs Foundation of Ministry of Education of China(20111101110012)China Academy of Space Technology(CAST)Foundation(CAST201210)
基金Sponsored by the National Natural Science Foundation of China(Grant Nos.51675221 and 91748211)the Science and Technology Development Planning Project of Jilin Province of China(Grant No.20180101077JC)the Science and Technology Research Project in the 13th Five⁃Year Period of Education Department of Jilin Province(Grant No.JJKH20190134KJ).
文摘African ostrich can run for 30 min at a speed of 60 km/h in the desert,and its hindlimb has excellent energy saving and vibration damping performance.In order to realize the energy⁃efficient and vibration⁃damping design of the leg mechanism of the legged robot,the principle of engineering bionics was applied.According to the passive rebound characteristic of the intertarsal joint of the ostrich foot and the characteristic of variable output stiffness of the ostrich hindlimb,combined with the proportion and size of the structure of the ostrich hindlimb,the bionic rigid⁃flexible composite legged robot single⁃leg structure was designed.The locomotion of the bionic mechanical leg was simulated by means of ADAMS.Through the motion simulation analysis,the influence of the change of the inner spring stiffness coefficient within a certain range on the vertical acceleration of the body centroid and the motor power consumption was studied,and the optimal stiffness coefficient of the inner spring was obtained to be 200 N/mm,and it was further verified that the inner and outer spring mechanism could effectively reduce the energy consumption of the mechanical leg.Simulation results show that the inner and outer spring mechanism could effectively reduce the motor energy consumption by about 72.49%.
文摘Modem long-span space structures,developed during the 1970s and 1980s,are light and effective structures based on new technologies and light-weight high-strength materials,such as membranes and steel cables.These structures include air-supported membrane structures,cable-membrane structures,cable truss structures,beam string structures,suspen-domes,cable domes,composite structures of cable dome and single-layer lattice shell,Tensairity structures and so forth.For the premodem space structures widely used since the mid-twentieth century(such as thin shells,space trusses,lattice shells and ordinary cable structures),new space structures have been developed by the combination of different structural forms and materials.The application of prestressing technology and the innovation of structural concepts and configurations are also associated with modem space structures,including composite space trusses,open-web grid structures,polyhedron space frame structures,partial double-layer lattice shells,cable-stayed grid structures,tree-type structures,prestressed segmental steel structures and so forth.This paper provides a review of the structural characteristics and practical applications in China of modem rigid space structures,modem flexible space structures and modem rigid-flexible combined space structures.
基金National Natural Science Foundation of China,52005369Open Project Fund of Tianjin Key Laboratory of Integrated Design and Online Monitoring of Light Industry and Food Engineering Machinery and Equipment,2020LIMFE05.
文摘Soft in-pipe robot has good adaptability in tubular circumstances,while its rigidity is insufficient,which affects the traction performance.This paper proposes a novel worm-like in-pipe robot with a rigid and soft structure,which not only has strong traction ability but also flexible mobility in the shaped pipes.Imitating the structure features of the earthworm,the bionic in-pipe robot structure is designed including two soft anchor parts and one rigid telescopic part.The soft-supporting mechanism is the key factor for the in-pipe robot excellent performance,whose mathematical model is established and the mechanical characteristics are analyzed,which is used to optimize the structural parameters.The prototype is developed and the motion control strategy is planned.Various performances of the in-pipe robot are tested,such as the traction ability,moving velocity and adaptability.For comparative analysis,different operating scenarios are built including the horizontal pipe,the inclined pipe,the vertical pipe and other unstructured pipes.The experiment results show that the in-pipe robot is suitable for many kinds of pipe applications,the average traction is about 6.8N,the moving velocity is in the range of 9.5 to 12.7 mm/s.
基金supported by the National Natural Science Foundation of China(No.51603055)the Natural Science Foundation of Heilongjiang Province(No.QC2017055)+1 种基金the China Postdoctoral Science Foundation(Nos.2016M601424,2017T100236)the Postdoctoral Foundation of Heilongjiang Province(Nos.LBH-Z16059,LBH-TZ10)。
文摘In this work,a blue emitter with a 3 D rigid structure composed of multiple spirobifluorene(3-Spiro) has been synthesized and characterized.Through a detailed study of the electrochemical and photophysical properties of 3-Spiro,we have evidenced that 3-Spiro can be applied as an active component of organic light-emitting diodes(OLEDs).The device with 5% doping rate of 4 CzPNPh exhibits high external quantum efficiency(EQE) of 11%,which proves the potential of 3 D rigid structure emitters for OLEDs.
基金National Natural Science Foundation of China(Nos.U20041101,21772034,U1704251)the Top-notch Personnel Fund of Henan Agricultural University(No.30500418)for financial support。
文摘A novel thiazolothiazole-bridged imidazole derivative(1) was found to exhibit blue fluorescence in gaseous state or in methanol and yellow fluorescence in solid state. The N-alkylation of imidazole subunit(s) in 1 using n-propyl iodide generated unsymmetrically or symmetrically alkylated thiazolothiazolebridged imidazolium salts with good water solubility and remarkably strong emission in solution. Furthermore, the replacement of iodide counter-anion by triflate or bis(trifluoromethane sulfonyl)imide achieved remarkably strong emission in solid state and in solution as well as good water solubility. The strong fluorescence of dicationic salts with triflate and NTf_(2)^(-)counter-anions in solid state can be ascribed to their twisted and rigid structures induced by interionic C-H···F hydrogen bonding.