Land, as a key factor of production, is an appropriate indicator of national and regional economic structure transformation. Land use in the Changjiang (Yangtze) River Basin (CRB) since the 1950s has experienced t...Land, as a key factor of production, is an appropriate indicator of national and regional economic structure transformation. Land use in the Changjiang (Yangtze) River Basin (CRB) since the 1950s has experienced these changes. Industrialization has been the most powerful force of the change in the regional development of the CRB. Virtually all regional resources were put into this effort to modernize the industrial production and urban construction systems of the CRB whose industrialization and urbanization has been a success story, with impressive structural change in both production and land use. These changes are evident ih modem urban areas, but even more in traditionally rural areas. The regression analysis of regional development in the CRB over an extended period shows that the dominant factor in regional land use change is widespread industrialization in rural areas rather than the expansion of urban area. Thus, urbanization has had a limited influence on land use change in the CRB. A major task in realizing more sustainable land use in the future development of CRB is to relocate industrial activities from rural to urban areas.展开更多
Employing decoupling index and industrial structure characteristic bias index methods, this study analyzed the spatial-temporal characteristics of industrial structure transformations and their resulting carbon emissi...Employing decoupling index and industrial structure characteristic bias index methods, this study analyzed the spatial-temporal characteristics of industrial structure transformations and their resulting carbon emissions in the Xuzhou Metropolitan Area from 2000 to 2014, with a focus on their relationships and driving factors. Our research indicates that carbon emission intensity from industrial structures in the Xuzhou Metropolitan Area at first showed an increasing trend, which then decreased. Furthermore, the relationship between emissions and industrial economic growth has been trending toward absolute decoupling. From the perspective of the center-periphery, the Xuzhou Metropolitan Area formed a concentric pattern, where both progress towards low emissions and the level of technological advancement gradually diminished from the center to the periphery. In terms of variation across provinces, the ISCB index in the eastern Henan has decreased the slowest, followed by the southern Shandong and the northern Anhui, with the northern Jiangsu ranking last. During this period, resource-and labor-intensive industries were the primary growth industries in the northern Anhui and the eastern Henan, while labor-intensive industries dominated the southern Shandong and capital-intensive industries dominated the northern Jiangsu. In terms of city types, the spatial pattern for industrial structure indicates that recession resource-based cities had higher carbon emission intensities than mature resource-based cities, followed by non-resource-based cities and regenerative resource-based cities. Generally, the industrial structure in the Xuzhou Metropolitan Area has transformed from being resource-intensive to capital-intensive, and has been trending toward technology-intensive as resource availability has been exploited to exhaustion and then been regenerated. Industrial structure has been the leading factor causing heterogeneity of carbon emission intensities between metropolitan cities. Therefore, the key to optimizing the industrial structure and layout of metropolitan areas is to promote industrial structure transformation and improve the system controlling collaborative industrial development between cities.展开更多
Orthorhombic LiMnO2 cathode materials were synthesized successfully at lower temperature by sol-gel method. When LiMnO2 precursor prepared by sol-gel method was fired in air, the product was a mixture of spinel struct...Orthorhombic LiMnO2 cathode materials were synthesized successfully at lower temperature by sol-gel method. When LiMnO2 precursor prepared by sol-gel method was fired in air, the product was a mixture of spinel structure LiMn2O4 and rock-salt structure Li2MnO3, whereas in argon single-phase orthorhombic LiMnO2 could obtain at the range of 750℃ to 920℃. The substitution of Mn by Zn2+ or Co3+ in LiMnO2 led to the structure of LiMnO2 transiting to Qα-LiFeO2. The results of electrochemical cycles indicated that the discharged capacity of orthorhombic-LiMnO2 was smaller at the initial stages, then gradually increased with the increasing of cycle number, finally the capacity stabilized to certain value after about 10th cycles. This phenomenon reveals that there is an activation process for orthorhombic LiMnO2 cathode materials during electrochemical cycles, which is a phase transition process from orthorhombic LiMnO2 to tetragonal spinel Li2Mn2O4. The capacity of orthorhombic LiMnO2 synthesized at lower temperature is larger than that synthesized at high temperature.展开更多
Scarcity of land resources and transformation of industrial structure is a pair of contradictory elements.We derive the characteristics of land use structure and industrial structure transformation in Xining City usin...Scarcity of land resources and transformation of industrial structure is a pair of contradictory elements.We derive the characteristics of land use structure and industrial structure transformation in Xining City using Transformation Coefficient(TC):first,in the period 1999-2000,the land use structure coefficient(θ1) declined by 79.55%,but the overall evolution trend is gentle;second,the transformation coefficient of industrial structure(θ2) tended to decline ceaselessly on the whole,a decrease of 36.09%(overall,the transformation coefficient of industrial structure is slightly greater than the land use structure coefficient);third,the inter-annual variation of the two experienced ups and downs(in the period 1999-2007,the inter-annual variation was great and in the period 2008-2010,the inter-annual variation tended to be gentle).On the basis of autocorrelation and co-integration model,we draw the following conclusions through analysis:first,the land use structure in Xining City plays a role in promoting industrial structure transformation;second,there is a long-term equilibrium relationship between the two.Finally,relevant policy recommendations are put forward for the industrial development in Xining City.展开更多
Structure Data Layout Optimization (SDLO) is a prevailing compiler optimization technique to improve cache efficiency. Structure transformation is a critical step for SDLO. Diversity of transformation methods and ex...Structure Data Layout Optimization (SDLO) is a prevailing compiler optimization technique to improve cache efficiency. Structure transformation is a critical step for SDLO. Diversity of transformation methods and existence of complex data types are major challenges for structure transformation. We have designed and implemented STrans, a well-defined system which provides controllable and comprehensive functionality on structure transformation. Compared to known systems, it has less limitation on data types for transformation. In this paper we give formal definition of the approach STrans transforms data types. We have also designed Transformation Specification Language, a mini language to configure how to transform structures, which can be either manually tuned or generated by compiler. STrans supports three kinds of transformation methods, i.e., splitting, peeling, and pool-splitting, and works well on different combinations of compound data types. STrans is the transformation system used in ASLOP and is well tested for all benchmarks for ASLOR展开更多
Industry interaction is becoming an important approach to promoting highquality economic development.In this paper,the multi-sector general equilibrium model is developed to clarify the theoretical mechanism among ind...Industry interaction is becoming an important approach to promoting highquality economic development.In this paper,the multi-sector general equilibrium model is developed to clarify the theoretical mechanism among industry interaction,structure transformation,and high-quality economic development;the empirical tests are carried out based on the provincial panel data from 2000 to 2017;and the empowerment paths for digital technologies are explored to drive high-quality economic development.The findings are as follows.(1)The industry interaction can promote high-qualityy economic development in China on the whole,but it shows a significant imbalance and a healthy two-way promotion mode have not been formed.(2)The impact of industry interaction on high-quality economic development is significantly heterogeneous at the sector and regional levels.(3)The current unhealthy industry interaction may widen the productivity gap between manufacturing and service sectors,and transform China's economic into service-oriented structure,thus leading the economic development to a vicious circle of“low efficiency to low-end servitization and further to lower efficiency”and hindering the sustainability of high-quality economic development:.(4)Digitaltlechnologies can break the development dilemma and achieve high-quality economic development by alleviating structural contradictions,boosting healthy industry interaction,and narrowing the productivity gap among sectors.The conclusions provide empirical evidence for the government to promote the integration of advanced manufacturing and modern service sectors and achieve highquality economic development.展开更多
Induction of tumor cell senescence has become a promising strategy for anti-tumor immunotherapy,but fibrotic matrix severely blocks senescence inducers penetration and immune cells infiltration.Herein,we designed a ca...Induction of tumor cell senescence has become a promising strategy for anti-tumor immunotherapy,but fibrotic matrix severely blocks senescence inducers penetration and immune cells infiltration.Herein,we designed a cancer-associated fibroblasts(CAFs)triggered structure-transformable nano-assembly(HSD-P@V),which can directionally deliver valsartan(Val,CAFs regulator)and doxorubicin(DOX,senescence inducer)to the specific targets.In detail,DOX is conjugated with hyaluronic acid(HA)via diselenide bonds(Se-Se)to form HSD micelles,while CAFs-sensitive peptide is grafted onto the HSD to form a hydrophilic polymer,which is coated on Val nanocrystals(VNs)surface for improving the stability and achieving responsive release.Once arriving at tumor microenvironment and touching CAFs,HSD-P@V disintegrates into VNs and HSD micelles due to sensitive peptide detachment.VNs can degrade the extracellularmatrix,leading to the enhanced penetration of HSD.HSD targets tumor cells,releases DOX to induce senescence,and recruits effector immune cells.Furthermore,senescent cells are cleared by the recruited immune cells to finish the integrated anti-tumor therapy.In vitro and in vivo results show that the nanoassembly remarkably inhibits tumor growth as well as lungmetastasis,and extends tumorbearing mice survival.This work provides a promising paradigm of programmed delivering multi-site nanomedicine for cancer immunotherapy.展开更多
After the end of the cold war, the Asia-Pacific security structure has experienced great changes, especially on the occasion of the current "power-sharing" and "power-shifting" between China and th...After the end of the cold war, the Asia-Pacific security structure has experienced great changes, especially on the occasion of the current "power-sharing" and "power-shifting" between China and the United States in the Asia-Pacific region, the Asia-Pacific security structure adjustment is especially significant. On the one hand, the Alliance structure with the United States as the pivot has experienced transformation from a hub-spokes system to a network, has formed the hierarchical layout of new alliance, quasi-alliance and potential alliance, On the other hand, emerging economies represented by China and Russia, while reinforcing the existing coordinate security framework, reshape the Asia-Pacific and even the whole Eurasia geopolitical posture through strategic initiatives such as the Belt and Road Initiative, the Eurasian Economic Union. As the third force in the Asia-Pacific security architecture, the Association of South-East Asian Nations(ASEAN) with the construction of a series of multilateral security mechanisms provides dialogue platform for the two security architectures led by major countries, and has also become one of the feasible paths to realize the future holistic security architecture in the Asia-Pacific region. Meanwhile, the major countries strategic competitions have intensified, which has gradually eroded the ASEAN ‘s cohesion, neutrality and even the central position in a holistic security architecture. The future's reconstruction of the Asia-Pacific security architecture needs to find new strategic consensus and reconfirm the ASEAN central position.展开更多
Tumor-targeted delivery of nanomedicine is of great importance to improve therapeutic efficacy of cancer and minimize systemic side effects.Unfortunately,nowadays the targeting efficiency of nanomedicine toward tumor ...Tumor-targeted delivery of nanomedicine is of great importance to improve therapeutic efficacy of cancer and minimize systemic side effects.Unfortunately,nowadays the targeting efficiency of nanomedicine toward tumor is still quite limited and far from clinical requirements.In this work,we develop an innovative peptide-based nanoparticle to realize light-triggered nitric oxide(NO)release and structural transformation for enhanced intratumoral retention and simultaneously sensitizing photodynamic therapy(PDT).The designed nanoparticle is self-assembled from a chimeric peptide monomer,TPP-RRRKLVFFK-Ce6,which contains a photosensitive moiety(chlorin e6,Ce6),aβ-sheet-forming peptide domain(Lys-Leu-Val-Phe-Phe,KLVFF),an oligoarginine domain(RRR)as NO donor and a triphenylphosphonium(TPP)moiety for targeting mitochondria.When irradiated by light,the constructed nanoparticles undergo rapid structural transformation from nanosphere to nanorod,enabling to achieve a significantly higher intratumoral accumulation by 3.26 times compared to that without light irradiation.More importantly,the conversion of generated NO and reactive oxygen species(ROS)in a light-responsive way to peroxynitrite anions(ONOO)with higher cytotoxicity enables NO to sensitize PDT in cancer treatment.Both in vitro and in vivo studies demonstrate that NO sensitized PDT based on the well-designed transformable nanoparticles enables to eradicate tumors efficiently.The light-triggered transformable nanoplatform developed in this work provides a new strategy for enhanced intratumoral retention and improved therapeutic outcome.展开更多
The drug supervision methods based on near-infrared spectroscopy analysis are heavily dependent on the chemometrics model which characterizes the relationship between spectral data and drug categories.The preliminary ...The drug supervision methods based on near-infrared spectroscopy analysis are heavily dependent on the chemometrics model which characterizes the relationship between spectral data and drug categories.The preliminary application of convolution neural network in spectral analysis demonstrates excellent end-to-end prediction ability,but it is sensitive to the hyper-parameters of the network.The transformer is a deep-learning model based on self-attention mechanism that compares convolutional neural networks(CNNs)in predictive performance and has an easy-todesign model structure.Hence,a novel calibration model named SpectraTr,based on the transformer structure,is proposed and used for the qualitative analysis of drug spectrum.The experimental results of seven classes of drug and 18 classes of drug show that the proposed SpectraTr model can automatically extract features from a huge number of spectra,is not dependent on pre-processing algorithms,and is insensitive to model hyperparameters.When the ratio of the training set to test set is 8:2,the prediction accuracy of the SpectraTr model reaches 100%and 99.52%,respectively,which outperforms PLS DA,SVM,SAE,and CNN.The model is also tested on a public drug data set,and achieved classification accuracy of 96.97%without preprocessing algorithm,which is 34.85%,28.28%,5.05%,and 2.73%higher than PLS DA,SVM,SAE,and CNN,respectively.The research shows that the SpectraTr model performs exceptionally well in spectral analysis and is expected to be a novel deep calibration model after Autoencoder networks(AEs)and CNN.展开更多
The microstructure of CdI2 thin film grown during vapor-phase deposition was investigated by scanning electron microscopy (SEM). The thin film deposited on Si crystal consists of numerous sunflower-like aggregates. Th...The microstructure of CdI2 thin film grown during vapor-phase deposition was investigated by scanning electron microscopy (SEM). The thin film deposited on Si crystal consists of numerous sunflower-like aggregates. These aggregates display well self-assembly characteristics. The size of Sunflower-like aggregates is between 12 and 44 μm. Each sunflower-like aggregate is surrounded with many adjacent wings-'petals'. The structure of central region of the 'sunflower' is obviously difFerent from that of the 'petal'. Electron spectroscopy for chemical analysis (ESCA) was employed in determining the chemical valence of the thin film. Self-organization efFect is used to explain the coring growth process of CdI2 thin film展开更多
A simple model of the closely packed structure for system of hard-sphere particles interacting via the long-range Newtonian type attraction is suggested. Based on density functional theory, the exact equation of ...A simple model of the closely packed structure for system of hard-sphere particles interacting via the long-range Newtonian type attraction is suggested. Based on density functional theory, the exact equation of state is obtained and the mutual transformations of the crystal structures in such systems are studied. The description takes into account the fact impossibility of hard-sphere particles which have the same spatial occupation place.展开更多
In order to investigate the ion irradiation effect on the corrosion behavior and microstructure of Zircaloy-4, the Zircaloy-4 film were prepared by electron beam deposition on the Zircaloy-4 specimen surface and irra...In order to investigate the ion irradiation effect on the corrosion behavior and microstructure of Zircaloy-4, the Zircaloy-4 film were prepared by electron beam deposition on the Zircaloy-4 specimen surface and irradiated by Kr ions using an accelerator at an energy of 300 keV with the dose from 1×1015 to 3×1016ions/cm2. The post-irradiation corrosion tests were conducted to rank the corrosion resistance of the resulting specimens by potentiodynamic polarization curve measurements in a 0.5 mol/L H2SO4 water so- lution at room temperature. Transmission electron microscopy (TEM) was employed to examine the microstructural change in the surface. The potentiodynamic tests show that with the irradiation dose increasing, the passive current density, closely related to the surface corrosion resistance, decreases firstly and increases subsequently. The mechanism of the corrosion behavior transformation is due to the amorphous phase formation firstly and the amorphous phase destruction and the polycrystalline structure formation in the irradiated surface subsequently.展开更多
This paper uses the panel data of 17 cities in Shandong Province from 2003 to 2018 to construct a panel model to empirically study the impact of foreign direct investment(FDI)on the industrial structure.The results sh...This paper uses the panel data of 17 cities in Shandong Province from 2003 to 2018 to construct a panel model to empirically study the impact of foreign direct investment(FDI)on the industrial structure.The results show that two-way investment,financial industry development,and policy variables have significant roles in promoting the advancement of the industrial structure in the province.In the future implementation of the“Going Global”strategy in Shandong Province,the cooperation between two-way investment and the financial industry should be strengthened,the level of regional financial development should be improved,and the impact of two-way investment on the optimization and upgrading of the industrial structure should be reinforced.展开更多
The character of structural changes in the surface layer of titanium carbide (TiC) with Ni-Cr alloy binder was investigated theoretically and experimentally after electron-beam treatment of the material surface. The...The character of structural changes in the surface layer of titanium carbide (TiC) with Ni-Cr alloy binder was investigated theoretically and experimentally after electron-beam treatment of the material surface. The thermal influence of the electron-beam irradiation on the surface layer microstructure of the composite fine-grained material was mathematically analyzed. Quantitative estimations of the depth of the zone in microstructural phase transformations were carried out. The microstructure and concentration profile of Ti distribution in the metallic binder over the cross section of the surface layer with microstructural phase transformations after electron-pulse treatment of the hard metal surface were experimentally investigated.展开更多
The oxidation behavior of three biodiesels of different origins,viz.rapeseed oil derived biodiesel,soybean oil derived biodiesel and waste oil based biodiesel,were tested on an oxidation tester.The chemical compositio...The oxidation behavior of three biodiesels of different origins,viz.rapeseed oil derived biodiesel,soybean oil derived biodiesel and waste oil based biodiesel,were tested on an oxidation tester.The chemical compositions of the biodiesels were characterized by gas chromatography.Thereafter,the structural transformation of fatty acid methyl ester(FAME)of the biodiesels was analyzed by an infrared spectrometer and an ultraviolet absorption spectrometer.The results demonstrated that the oxidation behavior of biodiesels of different origins was closely related to the composition and distribution of FAMEs.Higher concentration of unsaturated FAME with multi-double bonds exhibited poorer oxidation resistance.Furthermore,cis-trans isomerization transformation occurred in the unsaturated FAME molecules and conjugated double-bond produced during the oxidation process of biodiesel.Greater cis-trans variations corresponded to deeper oxidation degree.The higher the content of unsaturated FAME with multi-double bonds in a biodiesel,the more the conjugated double bonds was formed.展开更多
Metal-organic frameworks(MOFs)have been widely studied as efficient electrocatalysts for water oxidation due to their tunable structure and easy preparation.However,the rational design of MOFs-based electrocatalysts a...Metal-organic frameworks(MOFs)have been widely studied as efficient electrocatalysts for water oxidation due to their tunable structure and easy preparation.However,the rational design of MOFs-based electrocatalysts and fundamental understanding of their structural evolution during oxygen evolution reaction(OER)remain critical challenges.Here,we report a facile approach to tune the structural transformation process of the Co-based zeolitic imidazolate framework(ZIF)during the OER process by using water molecules as a vacancy promoter.The modified ZIF catalyst accelerates the structural transformation from MOF precursor to electrochemical active species and simultaneously enhances the vacancy density during the electrochemical activation process.The optimized electrocatalyst exhibits an extremely low overpotential 175 mV to deliver 10 mA cm^(-2) and superior durability(100 h)at 100 mA cm^(-2).The comprehensive characterization results reveal the structural transformation from the initial tetrahedral Co sites to cobalt oxyhydroxide(CoOOH)and the formation process of oxygen vacancies(CoOOH-Vo)at a high anodic potential.These findings represent a promising way to achieve highly active MOF-based electrocatalysts for water oxidation.展开更多
A mixture of Ni and Fe oxides is among the most commonly active catalysts for the oxygen evolution reaction(OER)during the water oxidation process.In particular,Ni oxide incorporated with even a small amount of Fe lea...A mixture of Ni and Fe oxides is among the most commonly active catalysts for the oxygen evolution reaction(OER)during the water oxidation process.In particular,Ni oxide incorporated with even a small amount of Fe leads to substantively enhanced OER activity.However,the critical role of Fe species during the electrocatalytic process is still under evaluation.Herein,we report nickel(oxy)hydroxide incorporated with Fe through the surface reconstruction of a bimetallic metal-organic framework(NiFe-MOF)during the water oxidation process.The spectroscopic investigations with theoretical calculations reveal the critical role of Fe in promoting the formation of highly oxidized Ni^(4+),which directly correlates with an enhanced OER activity.Both the geometric and electronic structu res of the as-reconstructed Ni_(1-x)Fe_(x)OOH electrocatalysts can be delicately tuned by the Ni-Fe ratio of the bimetallic NiFe-MOF,further affecting the catalytic activity.As a result,the Ni_(1-x)Fe_(x)OOH derived from Ni_(0.9)Fe_(0.1)-MOF delivers low overpotentials of 260 mV at 10 mA cm^(-2)and 400 mV at 300 mA cm^(-2).展开更多
Rural transformation can improve poverty reduction,living standards,and health outcomes in developing countries.However,impacts associated with rural transformation vary by region,household,and individual trait(includ...Rural transformation can improve poverty reduction,living standards,and health outcomes in developing countries.However,impacts associated with rural transformation vary by region,household,and individual trait(including gender).While research on rural transformation has been increasing over the last decade,there has been no comprehensive review conducted on the relationships between gender and rural transformation.Here,we conduct a systematic literature review to investigate the impacts of rural transformation on gender and the influence of gender inclusiveness on rural transformation.We reviewed 82 studies from 1960-2021 that explore the relationships between rural transformation and gender.We then developed a framework that captures incidences and flow directions between indicators.Results show that most studies examined the impacts of rural transformation on women and between gender indicators.Few investigated the role of women and the influence of gender inclusiveness on rural transformation.Overall,studies showed that rural transformation typically leads to positive outcomes for women regarding employment,income,and empowerment.However,negative impacts on women’s control over income,stability of new income sources,and access to healthy food are also common.Tailoring future development policies and programs to explicitly account for gender inclusiveness can lead to more successful rural transformation.展开更多
The synergy effect of alloy elements in bimetallic clusters can be used to tune the chemical and physical properties. Research on the influences of alloy concentration and distribution on the frozen structure of bimet...The synergy effect of alloy elements in bimetallic clusters can be used to tune the chemical and physical properties. Research on the influences of alloy concentration and distribution on the frozen structure of bimetallic clusters plays a key rolc in exploring new structural materials. In this paper, we study the influence of Ag concentration on the frozen structure of the (AgCo)561 cluster by using molecular dynamics simulation with a general embedded atom method. The results indicate that tt^e structure and chemical ordering of the (AgCo)561 cluster are strongly related to Ag concentration. Hcp-icosahedron structural transformation in the frozen (CoAg)561 cluster can be induced by changing Ag concentration. The chemical ordering also transforms to Janus-like Co Ag from core-shell Co-Ag.展开更多
基金Under the auspices of Knowledge Innovation Program of Chinese Academy of Sciences (No. KCZX2-307-01)
文摘Land, as a key factor of production, is an appropriate indicator of national and regional economic structure transformation. Land use in the Changjiang (Yangtze) River Basin (CRB) since the 1950s has experienced these changes. Industrialization has been the most powerful force of the change in the regional development of the CRB. Virtually all regional resources were put into this effort to modernize the industrial production and urban construction systems of the CRB whose industrialization and urbanization has been a success story, with impressive structural change in both production and land use. These changes are evident ih modem urban areas, but even more in traditionally rural areas. The regression analysis of regional development in the CRB over an extended period shows that the dominant factor in regional land use change is widespread industrialization in rural areas rather than the expansion of urban area. Thus, urbanization has had a limited influence on land use change in the CRB. A major task in realizing more sustainable land use in the future development of CRB is to relocate industrial activities from rural to urban areas.
基金Under the auspices of the National Natural Science Foundation of China(No.41371146,41671123)National Social Science Foundation of China(No.13BJY067)
文摘Employing decoupling index and industrial structure characteristic bias index methods, this study analyzed the spatial-temporal characteristics of industrial structure transformations and their resulting carbon emissions in the Xuzhou Metropolitan Area from 2000 to 2014, with a focus on their relationships and driving factors. Our research indicates that carbon emission intensity from industrial structures in the Xuzhou Metropolitan Area at first showed an increasing trend, which then decreased. Furthermore, the relationship between emissions and industrial economic growth has been trending toward absolute decoupling. From the perspective of the center-periphery, the Xuzhou Metropolitan Area formed a concentric pattern, where both progress towards low emissions and the level of technological advancement gradually diminished from the center to the periphery. In terms of variation across provinces, the ISCB index in the eastern Henan has decreased the slowest, followed by the southern Shandong and the northern Anhui, with the northern Jiangsu ranking last. During this period, resource-and labor-intensive industries were the primary growth industries in the northern Anhui and the eastern Henan, while labor-intensive industries dominated the southern Shandong and capital-intensive industries dominated the northern Jiangsu. In terms of city types, the spatial pattern for industrial structure indicates that recession resource-based cities had higher carbon emission intensities than mature resource-based cities, followed by non-resource-based cities and regenerative resource-based cities. Generally, the industrial structure in the Xuzhou Metropolitan Area has transformed from being resource-intensive to capital-intensive, and has been trending toward technology-intensive as resource availability has been exploited to exhaustion and then been regenerated. Industrial structure has been the leading factor causing heterogeneity of carbon emission intensities between metropolitan cities. Therefore, the key to optimizing the industrial structure and layout of metropolitan areas is to promote industrial structure transformation and improve the system controlling collaborative industrial development between cities.
基金supported by the National Natural Science Foundation of China under grant No.59972026.
文摘Orthorhombic LiMnO2 cathode materials were synthesized successfully at lower temperature by sol-gel method. When LiMnO2 precursor prepared by sol-gel method was fired in air, the product was a mixture of spinel structure LiMn2O4 and rock-salt structure Li2MnO3, whereas in argon single-phase orthorhombic LiMnO2 could obtain at the range of 750℃ to 920℃. The substitution of Mn by Zn2+ or Co3+ in LiMnO2 led to the structure of LiMnO2 transiting to Qα-LiFeO2. The results of electrochemical cycles indicated that the discharged capacity of orthorhombic-LiMnO2 was smaller at the initial stages, then gradually increased with the increasing of cycle number, finally the capacity stabilized to certain value after about 10th cycles. This phenomenon reveals that there is an activation process for orthorhombic LiMnO2 cathode materials during electrochemical cycles, which is a phase transition process from orthorhombic LiMnO2 to tetragonal spinel Li2Mn2O4. The capacity of orthorhombic LiMnO2 synthesized at lower temperature is larger than that synthesized at high temperature.
基金Supported by National Natural Science Foundation Project(41101098)Youth Project of Xianning University(KY10044,KY10043)
文摘Scarcity of land resources and transformation of industrial structure is a pair of contradictory elements.We derive the characteristics of land use structure and industrial structure transformation in Xining City using Transformation Coefficient(TC):first,in the period 1999-2000,the land use structure coefficient(θ1) declined by 79.55%,but the overall evolution trend is gentle;second,the transformation coefficient of industrial structure(θ2) tended to decline ceaselessly on the whole,a decrease of 36.09%(overall,the transformation coefficient of industrial structure is slightly greater than the land use structure coefficient);third,the inter-annual variation of the two experienced ups and downs(in the period 1999-2007,the inter-annual variation was great and in the period 2008-2010,the inter-annual variation tended to be gentle).On the basis of autocorrelation and co-integration model,we draw the following conclusions through analysis:first,the land use structure in Xining City plays a role in promoting industrial structure transformation;second,there is a long-term equilibrium relationship between the two.Finally,relevant policy recommendations are put forward for the industrial development in Xining City.
基金supported by the National Natural Science Foundation of China(No.61133006)the National High-Tech Research and Development(863)Program of China(No.2012AA010901)
文摘Structure Data Layout Optimization (SDLO) is a prevailing compiler optimization technique to improve cache efficiency. Structure transformation is a critical step for SDLO. Diversity of transformation methods and existence of complex data types are major challenges for structure transformation. We have designed and implemented STrans, a well-defined system which provides controllable and comprehensive functionality on structure transformation. Compared to known systems, it has less limitation on data types for transformation. In this paper we give formal definition of the approach STrans transforms data types. We have also designed Transformation Specification Language, a mini language to configure how to transform structures, which can be either manually tuned or generated by compiler. STrans supports three kinds of transformation methods, i.e., splitting, peeling, and pool-splitting, and works well on different combinations of compound data types. STrans is the transformation system used in ASLOP and is well tested for all benchmarks for ASLOR
基金the research results of the"Research on Major Issues of Building an Autonomous and Controllable Modern Sector System under the Economic Conditions of a Large Country"(No.21&ZD099)a major project of the National Social Science Fund of China,and the"Internal Mechanism,Effect Evaluation and Policy Innovation of the Optimization and Transformation of Economic Structure Driven by Digital Technologies"(No.2021YJSB037),one of the postgraduate research innovation projects in Tianjin.
文摘Industry interaction is becoming an important approach to promoting highquality economic development.In this paper,the multi-sector general equilibrium model is developed to clarify the theoretical mechanism among industry interaction,structure transformation,and high-quality economic development;the empirical tests are carried out based on the provincial panel data from 2000 to 2017;and the empowerment paths for digital technologies are explored to drive high-quality economic development.The findings are as follows.(1)The industry interaction can promote high-qualityy economic development in China on the whole,but it shows a significant imbalance and a healthy two-way promotion mode have not been formed.(2)The impact of industry interaction on high-quality economic development is significantly heterogeneous at the sector and regional levels.(3)The current unhealthy industry interaction may widen the productivity gap between manufacturing and service sectors,and transform China's economic into service-oriented structure,thus leading the economic development to a vicious circle of“low efficiency to low-end servitization and further to lower efficiency”and hindering the sustainability of high-quality economic development:.(4)Digitaltlechnologies can break the development dilemma and achieve high-quality economic development by alleviating structural contradictions,boosting healthy industry interaction,and narrowing the productivity gap among sectors.The conclusions provide empirical evidence for the government to promote the integration of advanced manufacturing and modern service sectors and achieve highquality economic development.
基金was supported by National Natural Science Foundation of China(81972893,82172719)Natural Science Foundation of Henan(212300410071)Training program for young key teachers in Henan Province(2020GGJS019).
文摘Induction of tumor cell senescence has become a promising strategy for anti-tumor immunotherapy,but fibrotic matrix severely blocks senescence inducers penetration and immune cells infiltration.Herein,we designed a cancer-associated fibroblasts(CAFs)triggered structure-transformable nano-assembly(HSD-P@V),which can directionally deliver valsartan(Val,CAFs regulator)and doxorubicin(DOX,senescence inducer)to the specific targets.In detail,DOX is conjugated with hyaluronic acid(HA)via diselenide bonds(Se-Se)to form HSD micelles,while CAFs-sensitive peptide is grafted onto the HSD to form a hydrophilic polymer,which is coated on Val nanocrystals(VNs)surface for improving the stability and achieving responsive release.Once arriving at tumor microenvironment and touching CAFs,HSD-P@V disintegrates into VNs and HSD micelles due to sensitive peptide detachment.VNs can degrade the extracellularmatrix,leading to the enhanced penetration of HSD.HSD targets tumor cells,releases DOX to induce senescence,and recruits effector immune cells.Furthermore,senescent cells are cleared by the recruited immune cells to finish the integrated anti-tumor therapy.In vitro and in vivo results show that the nanoassembly remarkably inhibits tumor growth as well as lungmetastasis,and extends tumorbearing mice survival.This work provides a promising paradigm of programmed delivering multi-site nanomedicine for cancer immunotherapy.
文摘After the end of the cold war, the Asia-Pacific security structure has experienced great changes, especially on the occasion of the current "power-sharing" and "power-shifting" between China and the United States in the Asia-Pacific region, the Asia-Pacific security structure adjustment is especially significant. On the one hand, the Alliance structure with the United States as the pivot has experienced transformation from a hub-spokes system to a network, has formed the hierarchical layout of new alliance, quasi-alliance and potential alliance, On the other hand, emerging economies represented by China and Russia, while reinforcing the existing coordinate security framework, reshape the Asia-Pacific and even the whole Eurasia geopolitical posture through strategic initiatives such as the Belt and Road Initiative, the Eurasian Economic Union. As the third force in the Asia-Pacific security architecture, the Association of South-East Asian Nations(ASEAN) with the construction of a series of multilateral security mechanisms provides dialogue platform for the two security architectures led by major countries, and has also become one of the feasible paths to realize the future holistic security architecture in the Asia-Pacific region. Meanwhile, the major countries strategic competitions have intensified, which has gradually eroded the ASEAN ‘s cohesion, neutrality and even the central position in a holistic security architecture. The future's reconstruction of the Asia-Pacific security architecture needs to find new strategic consensus and reconfirm the ASEAN central position.
基金financially supported by National Natural Science Foundation of China(51872188)Shenzhen Basic Research Program(SGDX20201103093600004)+3 种基金Special Funds for the Development of Strategic Emerging Industries in Shenzhen(20180309154519685)SZU Top Ranking Project(860-00000210)Basic and Applied Basic Research Foundation of Guangdong Province(2019A1515110294)the Postdoctoral Science Foundation of China(2020M672798).
文摘Tumor-targeted delivery of nanomedicine is of great importance to improve therapeutic efficacy of cancer and minimize systemic side effects.Unfortunately,nowadays the targeting efficiency of nanomedicine toward tumor is still quite limited and far from clinical requirements.In this work,we develop an innovative peptide-based nanoparticle to realize light-triggered nitric oxide(NO)release and structural transformation for enhanced intratumoral retention and simultaneously sensitizing photodynamic therapy(PDT).The designed nanoparticle is self-assembled from a chimeric peptide monomer,TPP-RRRKLVFFK-Ce6,which contains a photosensitive moiety(chlorin e6,Ce6),aβ-sheet-forming peptide domain(Lys-Leu-Val-Phe-Phe,KLVFF),an oligoarginine domain(RRR)as NO donor and a triphenylphosphonium(TPP)moiety for targeting mitochondria.When irradiated by light,the constructed nanoparticles undergo rapid structural transformation from nanosphere to nanorod,enabling to achieve a significantly higher intratumoral accumulation by 3.26 times compared to that without light irradiation.More importantly,the conversion of generated NO and reactive oxygen species(ROS)in a light-responsive way to peroxynitrite anions(ONOO)with higher cytotoxicity enables NO to sensitize PDT in cancer treatment.Both in vitro and in vivo studies demonstrate that NO sensitized PDT based on the well-designed transformable nanoparticles enables to eradicate tumors efficiently.The light-triggered transformable nanoplatform developed in this work provides a new strategy for enhanced intratumoral retention and improved therapeutic outcome.
基金supported by the National Natural Science Foundation of China(61906050,21365008)Guangxi Technology R&D Program(2018AD11018)Innovation Project of GUET Graduate Education(2021YCXS050).
文摘The drug supervision methods based on near-infrared spectroscopy analysis are heavily dependent on the chemometrics model which characterizes the relationship between spectral data and drug categories.The preliminary application of convolution neural network in spectral analysis demonstrates excellent end-to-end prediction ability,but it is sensitive to the hyper-parameters of the network.The transformer is a deep-learning model based on self-attention mechanism that compares convolutional neural networks(CNNs)in predictive performance and has an easy-todesign model structure.Hence,a novel calibration model named SpectraTr,based on the transformer structure,is proposed and used for the qualitative analysis of drug spectrum.The experimental results of seven classes of drug and 18 classes of drug show that the proposed SpectraTr model can automatically extract features from a huge number of spectra,is not dependent on pre-processing algorithms,and is insensitive to model hyperparameters.When the ratio of the training set to test set is 8:2,the prediction accuracy of the SpectraTr model reaches 100%and 99.52%,respectively,which outperforms PLS DA,SVM,SAE,and CNN.The model is also tested on a public drug data set,and achieved classification accuracy of 96.97%without preprocessing algorithm,which is 34.85%,28.28%,5.05%,and 2.73%higher than PLS DA,SVM,SAE,and CNN,respectively.The research shows that the SpectraTr model performs exceptionally well in spectral analysis and is expected to be a novel deep calibration model after Autoencoder networks(AEs)and CNN.
文摘The microstructure of CdI2 thin film grown during vapor-phase deposition was investigated by scanning electron microscopy (SEM). The thin film deposited on Si crystal consists of numerous sunflower-like aggregates. These aggregates display well self-assembly characteristics. The size of Sunflower-like aggregates is between 12 and 44 μm. Each sunflower-like aggregate is surrounded with many adjacent wings-'petals'. The structure of central region of the 'sunflower' is obviously difFerent from that of the 'petal'. Electron spectroscopy for chemical analysis (ESCA) was employed in determining the chemical valence of the thin film. Self-organization efFect is used to explain the coring growth process of CdI2 thin film
文摘A simple model of the closely packed structure for system of hard-sphere particles interacting via the long-range Newtonian type attraction is suggested. Based on density functional theory, the exact equation of state is obtained and the mutual transformations of the crystal structures in such systems are studied. The description takes into account the fact impossibility of hard-sphere particles which have the same spatial occupation place.
文摘In order to investigate the ion irradiation effect on the corrosion behavior and microstructure of Zircaloy-4, the Zircaloy-4 film were prepared by electron beam deposition on the Zircaloy-4 specimen surface and irradiated by Kr ions using an accelerator at an energy of 300 keV with the dose from 1×1015 to 3×1016ions/cm2. The post-irradiation corrosion tests were conducted to rank the corrosion resistance of the resulting specimens by potentiodynamic polarization curve measurements in a 0.5 mol/L H2SO4 water so- lution at room temperature. Transmission electron microscopy (TEM) was employed to examine the microstructural change in the surface. The potentiodynamic tests show that with the irradiation dose increasing, the passive current density, closely related to the surface corrosion resistance, decreases firstly and increases subsequently. The mechanism of the corrosion behavior transformation is due to the amorphous phase formation firstly and the amorphous phase destruction and the polycrystalline structure formation in the irradiated surface subsequently.
基金the phased result of the general project“Analysis of the Impact of Shandong Province’s Two-Way Investment on the Transformation and Upgrading of Industrial Structure under the Background of‘High-Quality Development’”and the 2020 Shandong Province Key R&D Program(Soft Science Project)(Project Number:2020RKB01339).
文摘This paper uses the panel data of 17 cities in Shandong Province from 2003 to 2018 to construct a panel model to empirically study the impact of foreign direct investment(FDI)on the industrial structure.The results show that two-way investment,financial industry development,and policy variables have significant roles in promoting the advancement of the industrial structure in the province.In the future implementation of the“Going Global”strategy in Shandong Province,the cooperation between two-way investment and the financial industry should be strengthened,the level of regional financial development should be improved,and the impact of two-way investment on the optimization and upgrading of the industrial structure should be reinforced.
文摘The character of structural changes in the surface layer of titanium carbide (TiC) with Ni-Cr alloy binder was investigated theoretically and experimentally after electron-beam treatment of the material surface. The thermal influence of the electron-beam irradiation on the surface layer microstructure of the composite fine-grained material was mathematically analyzed. Quantitative estimations of the depth of the zone in microstructural phase transformations were carried out. The microstructure and concentration profile of Ti distribution in the metallic binder over the cross section of the surface layer with microstructural phase transformations after electron-pulse treatment of the hard metal surface were experimentally investigated.
基金the financial support from the National Natual Science Foundation of China(No.51375491)the Natural Science Foundation of Chongqing(Project No.2011JJA90020)the Science Foundation for Young Teachers of Logistical Engineering University
文摘The oxidation behavior of three biodiesels of different origins,viz.rapeseed oil derived biodiesel,soybean oil derived biodiesel and waste oil based biodiesel,were tested on an oxidation tester.The chemical compositions of the biodiesels were characterized by gas chromatography.Thereafter,the structural transformation of fatty acid methyl ester(FAME)of the biodiesels was analyzed by an infrared spectrometer and an ultraviolet absorption spectrometer.The results demonstrated that the oxidation behavior of biodiesels of different origins was closely related to the composition and distribution of FAMEs.Higher concentration of unsaturated FAME with multi-double bonds exhibited poorer oxidation resistance.Furthermore,cis-trans isomerization transformation occurred in the unsaturated FAME molecules and conjugated double-bond produced during the oxidation process of biodiesel.Greater cis-trans variations corresponded to deeper oxidation degree.The higher the content of unsaturated FAME with multi-double bonds in a biodiesel,the more the conjugated double bonds was formed.
基金supported by the National Key Research and Development Program of China(Grant Nos.2017YFA0206700,2017YFA0402802)the National Natural Science Foundation of China(Grant Nos.21776265,51902304)+1 种基金Anhui Provincial Natural Science Foundation(Grant No.1908085ME122)the Fundamental Research Funds for the Central Universities(Wk2060140026)。
文摘Metal-organic frameworks(MOFs)have been widely studied as efficient electrocatalysts for water oxidation due to their tunable structure and easy preparation.However,the rational design of MOFs-based electrocatalysts and fundamental understanding of their structural evolution during oxygen evolution reaction(OER)remain critical challenges.Here,we report a facile approach to tune the structural transformation process of the Co-based zeolitic imidazolate framework(ZIF)during the OER process by using water molecules as a vacancy promoter.The modified ZIF catalyst accelerates the structural transformation from MOF precursor to electrochemical active species and simultaneously enhances the vacancy density during the electrochemical activation process.The optimized electrocatalyst exhibits an extremely low overpotential 175 mV to deliver 10 mA cm^(-2) and superior durability(100 h)at 100 mA cm^(-2).The comprehensive characterization results reveal the structural transformation from the initial tetrahedral Co sites to cobalt oxyhydroxide(CoOOH)and the formation process of oxygen vacancies(CoOOH-Vo)at a high anodic potential.These findings represent a promising way to achieve highly active MOF-based electrocatalysts for water oxidation.
基金supported by the National Natural Science Foundation of China(22105060)the Natural Science Foundation of Hebei Province(E2020205004)+1 种基金Funding from the Science Foundation of Hebei Normal University(L2020B13)the Science and Technology Project of Hebei Education Department(BJ2021028)。
文摘A mixture of Ni and Fe oxides is among the most commonly active catalysts for the oxygen evolution reaction(OER)during the water oxidation process.In particular,Ni oxide incorporated with even a small amount of Fe leads to substantively enhanced OER activity.However,the critical role of Fe species during the electrocatalytic process is still under evaluation.Herein,we report nickel(oxy)hydroxide incorporated with Fe through the surface reconstruction of a bimetallic metal-organic framework(NiFe-MOF)during the water oxidation process.The spectroscopic investigations with theoretical calculations reveal the critical role of Fe in promoting the formation of highly oxidized Ni^(4+),which directly correlates with an enhanced OER activity.Both the geometric and electronic structu res of the as-reconstructed Ni_(1-x)Fe_(x)OOH electrocatalysts can be delicately tuned by the Ni-Fe ratio of the bimetallic NiFe-MOF,further affecting the catalytic activity.As a result,the Ni_(1-x)Fe_(x)OOH derived from Ni_(0.9)Fe_(0.1)-MOF delivers low overpotentials of 260 mV at 10 mA cm^(-2)and 400 mV at 300 mA cm^(-2).
基金supported by the Australian Centre for International Agricultural Research(ACIAR,ADP/2017/024)。
文摘Rural transformation can improve poverty reduction,living standards,and health outcomes in developing countries.However,impacts associated with rural transformation vary by region,household,and individual trait(including gender).While research on rural transformation has been increasing over the last decade,there has been no comprehensive review conducted on the relationships between gender and rural transformation.Here,we conduct a systematic literature review to investigate the impacts of rural transformation on gender and the influence of gender inclusiveness on rural transformation.We reviewed 82 studies from 1960-2021 that explore the relationships between rural transformation and gender.We then developed a framework that captures incidences and flow directions between indicators.Results show that most studies examined the impacts of rural transformation on women and between gender indicators.Few investigated the role of women and the influence of gender inclusiveness on rural transformation.Overall,studies showed that rural transformation typically leads to positive outcomes for women regarding employment,income,and empowerment.However,negative impacts on women’s control over income,stability of new income sources,and access to healthy food are also common.Tailoring future development policies and programs to explicitly account for gender inclusiveness can lead to more successful rural transformation.
基金supported by the Science Foundation of Chongqing Committee of Education of China (Grant No. KJ111206)the Fund of Chongqing University of Arts and Sciences (Grant No. Z2011RCYJ05)
文摘The synergy effect of alloy elements in bimetallic clusters can be used to tune the chemical and physical properties. Research on the influences of alloy concentration and distribution on the frozen structure of bimetallic clusters plays a key rolc in exploring new structural materials. In this paper, we study the influence of Ag concentration on the frozen structure of the (AgCo)561 cluster by using molecular dynamics simulation with a general embedded atom method. The results indicate that tt^e structure and chemical ordering of the (AgCo)561 cluster are strongly related to Ag concentration. Hcp-icosahedron structural transformation in the frozen (CoAg)561 cluster can be induced by changing Ag concentration. The chemical ordering also transforms to Janus-like Co Ag from core-shell Co-Ag.