The precise control of the shape of transversely stiffened suspended cable systems is crucial. However, existing form-finding methods primarily rely on iterative calculations that treat loads as fixed known conditions...The precise control of the shape of transversely stiffened suspended cable systems is crucial. However, existing form-finding methods primarily rely on iterative calculations that treat loads as fixed known conditions. These methods are inefficient and fail to accurately control shape results. In this study, we propose a form-finding method that analyzes the load response of models under different sag and stress levels, taking into account the construction process. To analyze the system, a structural finite element model was established in ANSYS, and geometric nonlinear analysis was conducted using the Newton-Raphson method. The form-finding analysis results demonstrate that the proposed method achieves precise control of shape, with a maximum shape error ranging from 0.33% to 0.98%. Furthermore, the relationships between loads and tension forces are influenced by the deformed shape of the structures, exhibiting significant geometric nonlinear characteristics. Meanwhile, the load response analysis reveals that the stress level of the self-equilibrium state in the transversely stiffened suspended cable system is primarily governed by strength criteria, while shape is predominantly controlled by stiffness criteria. Importantly, by simulating the initial tensioning process as an initial condition, this method solves for a counterweight that satisfies the requirements and achieves a self-equilibrium state with the desired shape. The shape of the self-equilibrium state is precisely controlled by simulating the construction process. Overall, this work presents a new method for analyzing the form-finding process of large-span transversely stiffened suspended cable system, considering the construction process which was often overlooked in previous studies.展开更多
To evaluate the thermal performance of a low-temperature electrical radiant floor heating system,an experimental facility equipped with a constant temperature chamber and different specimen floors is designed and buil...To evaluate the thermal performance of a low-temperature electrical radiant floor heating system,an experimental facility equipped with a constant temperature chamber and different specimen floors is designed and built.The heating cable is installed in the floor slab with a unit-rated power of 30 W/m.Twenty-four different schemes are worked out and tested,which include three kinds of composite floor structures and eight kinds of cable distances.The cable distances are 30,40,50,60,80,100,130,150 mm.The main affective factors of the thermal performance and their influencing regularity are discussed.The experimental results show that the system has good stability and reliability,and the ratio of the radiation heat-transfer rate to the gross heat-transfer rate is greater than 50%.When the floor structure and the cable distance are fixed,the gross heat-transfer rate of the upper floor surface has a maximum value at an optimal cable distance.Under the experimental conditions in this paper,the optimal cable distance is 50 mm.展开更多
Many animals and plants have high potential to serve as concept generators for developing biomimetic materials and structures. We present some ideas based on structural and functional properties of plants and animals ...Many animals and plants have high potential to serve as concept generators for developing biomimetic materials and structures. We present some ideas based on structural and functional properties of plants and animals that led to the development of two types ofbiomimetic cable entry systems. Those systems have been realized on the level of functional demonstrators.展开更多
In order to solve the surrounding rock control problem of large section gangue replacement roadway under complicated conditions, this paper analyzed the impact to the roadway controlling produced by the geological con...In order to solve the surrounding rock control problem of large section gangue replacement roadway under complicated conditions, this paper analyzed the impact to the roadway controlling produced by the geological conditions such as high ground stress, folded structure tilted roof asymmetry and soft wall rock, and built the tilt layered roof structural mechanics model to clarify the increase span mechanism of the weak coal instability. Then, we proposed the combined control system including roof inclined truss cable, coal-side cable-channel steel and intensive bolt support. And then by building the structural mechanics model of roof inclined truss cable system, the support principle was described. Besides, according to this model, we deduced the calculation formula of cable anchoring force and its tensile stress. Finally surrounding rock control technology of large section roadway in fold coal pillar area was formed. Field practice shows that the greatest roof convergence of gangue replacement roadway is 158 mm and coal-side deformation is 243 mm. Roadway deformation is controlled effectively and technical support is provided for replacement mining.展开更多
Cable-membrane structures have small rigidity and are highly sensitive to wind. Structural health monitoring is necessary to ensure the serviceability and safety of the structure. In this research, the design method o...Cable-membrane structures have small rigidity and are highly sensitive to wind. Structural health monitoring is necessary to ensure the serviceability and safety of the structure. In this research, the design method of a structural health monitoring system is using the characteristics of a cable-membrane structure. Taking the Yueyang Sanhe Airport Terminal as an example, a finite element model is established to determine the critical structural components. Next, the engineering requirements and the framework of the monitoring system are studied based on the results of numerical analysis. The specific implementation of the structural health monitoring is then carried out, which includes sensor selection, installation and wiring. The proposed framework is successfully applied to the monitoring system for the Yueyang Airport terminal building, and the synchronous acquisition of fiber Bragg grating and acceleration sensor signals is implemented in an innovative way. The successful implementation and operation of structural health monitoring will help to guarantee the safety of the cablemembrane structure during its service life.展开更多
The aim of this study is to analyze of the cable-glass systems which are used on the glass curtain wall according to their types, degree, architectural and structural effects. The suspended glass system with pre-stres...The aim of this study is to analyze of the cable-glass systems which are used on the glass curtain wall according to their types, degree, architectural and structural effects. The suspended glass system with pre-stressed cable truss (SGSPCT) is widely started to apply after the 1980’s with Serres building. The advantages of these systems are to provide the transparency on the fa?ades and speedy construction process with minimum materials. The disadvantages are: more expensive than other systems and so many details for the joints and load distribution calculations. There are three different architectural design typologies of the SGSPCT system. These are distance bridging systems, between floor system and independent body. These three different typologies can be seen on the same building at the same time. This system has been known as complex structure systems. The twenty five glass buildings which are designed in different systems have been analyzed during this study. After these analyses the five glass buildings which are designed with cable-truss system have been selected for scope of the study. These selected buildings have been included of three different cable-truss system typologies and degree. The methodology of this study is literature survey and building analyses method. The written and visual documents involve books, theses, reports, articles, magazines, drawings, internet sources and applied connection details of the glass buildings. The selected five glass buildings have been detailed analyzed with their architectural drawings, photographs and details. The study consists of five chapters including the introduction chapter. The general information of the glass building and cable-glass system has been mentioned in the first chapter. The structural features, details and analytical information on systems have been explained of the selected buildings in the second chapter. The detailed analyses of these selected buildings have been done according to their schematic drawings with the plans, sections and load distribution in the third chapter. The fourth chapter is discussion section. In this section, cable-truss systems have been compared with their advantages and disadvantages to the other systems. The fifth chapter is the last chapter, many advantages of cable-truss systems have been concluded that the use of glass substrates.展开更多
Three ethylene-vinyl alcohol copolymers were studied by means of the substituent chemical shift (SCS) method. The SCS parameters of hydroxy (-OH) in two different solvents were obtained: in deuterium oxide/phenol (20/...Three ethylene-vinyl alcohol copolymers were studied by means of the substituent chemical shift (SCS) method. The SCS parameters of hydroxy (-OH) in two different solvents were obtained: in deuterium oxide/phenol (20/80 W/W ) the parameters are S_1 = 42.77±0.08ppm, S_2 = 7.15±0.06 ppm, S_3 (s)= -4.08±0.02ppm, S_3 (t) =-3.09±0.20ppm,S_4 = 0.48±0.03ppm, S_5 = 0.26±0.05ppm. In o-dichloro-benzen-d_4 S_1(s)=44.79±0.61ppm, S_2=7.40±0.00ppm, S_3(s)=-4.51±0.17ppm, S_3(t)=-3.13 ±0.00 ppm, S_4 =0.63±0.04ppm, S_5=0.36±0.00ppm.Simultaneously the ^(13)CNMR spectra of EVA copolymers were assigned by using the SCS parameters obtained.展开更多
This study developed an optimal structural system for the hybrid cable-stayed bridge expected to have a durable lifetime of 200 years and of which major structural members are made of ultra high performance concrete (...This study developed an optimal structural system for the hybrid cable-stayed bridge expected to have a durable lifetime of 200 years and of which major structural members are made of ultra high performance concrete (UHPC) with 200 MPa-class compressive strength. This innovative cable-stayed bridge system makes it possible to reduce each of the construction and maintenance costs by 20% compared to the conventional concrete cable-stayed bridge by improving significantly the weight and durability of the bridge. Therefore, detail design is carried out considering a real 800 m cable-stayed bridge and the optimal structure of the hybrid cable-stayed bridge is proposed and verified.展开更多
文摘The precise control of the shape of transversely stiffened suspended cable systems is crucial. However, existing form-finding methods primarily rely on iterative calculations that treat loads as fixed known conditions. These methods are inefficient and fail to accurately control shape results. In this study, we propose a form-finding method that analyzes the load response of models under different sag and stress levels, taking into account the construction process. To analyze the system, a structural finite element model was established in ANSYS, and geometric nonlinear analysis was conducted using the Newton-Raphson method. The form-finding analysis results demonstrate that the proposed method achieves precise control of shape, with a maximum shape error ranging from 0.33% to 0.98%. Furthermore, the relationships between loads and tension forces are influenced by the deformed shape of the structures, exhibiting significant geometric nonlinear characteristics. Meanwhile, the load response analysis reveals that the stress level of the self-equilibrium state in the transversely stiffened suspended cable system is primarily governed by strength criteria, while shape is predominantly controlled by stiffness criteria. Importantly, by simulating the initial tensioning process as an initial condition, this method solves for a counterweight that satisfies the requirements and achieves a self-equilibrium state with the desired shape. The shape of the self-equilibrium state is precisely controlled by simulating the construction process. Overall, this work presents a new method for analyzing the form-finding process of large-span transversely stiffened suspended cable system, considering the construction process which was often overlooked in previous studies.
文摘To evaluate the thermal performance of a low-temperature electrical radiant floor heating system,an experimental facility equipped with a constant temperature chamber and different specimen floors is designed and built.The heating cable is installed in the floor slab with a unit-rated power of 30 W/m.Twenty-four different schemes are worked out and tested,which include three kinds of composite floor structures and eight kinds of cable distances.The cable distances are 30,40,50,60,80,100,130,150 mm.The main affective factors of the thermal performance and their influencing regularity are discussed.The experimental results show that the system has good stability and reliability,and the ratio of the radiation heat-transfer rate to the gross heat-transfer rate is greater than 50%.When the floor structure and the cable distance are fixed,the gross heat-transfer rate of the upper floor surface has a maximum value at an optimal cable distance.Under the experimental conditions in this paper,the optimal cable distance is 50 mm.
文摘Many animals and plants have high potential to serve as concept generators for developing biomimetic materials and structures. We present some ideas based on structural and functional properties of plants and animals that led to the development of two types ofbiomimetic cable entry systems. Those systems have been realized on the level of functional demonstrators.
文摘In order to solve the surrounding rock control problem of large section gangue replacement roadway under complicated conditions, this paper analyzed the impact to the roadway controlling produced by the geological conditions such as high ground stress, folded structure tilted roof asymmetry and soft wall rock, and built the tilt layered roof structural mechanics model to clarify the increase span mechanism of the weak coal instability. Then, we proposed the combined control system including roof inclined truss cable, coal-side cable-channel steel and intensive bolt support. And then by building the structural mechanics model of roof inclined truss cable system, the support principle was described. Besides, according to this model, we deduced the calculation formula of cable anchoring force and its tensile stress. Finally surrounding rock control technology of large section roadway in fold coal pillar area was formed. Field practice shows that the greatest roof convergence of gangue replacement roadway is 158 mm and coal-side deformation is 243 mm. Roadway deformation is controlled effectively and technical support is provided for replacement mining.
基金National Natural Science Foundation of China under Grant Nos.51708088 and 51625802the Foundation for High Level Talent Innovation Support Program of Dalian under Grant No.2017RD03
文摘Cable-membrane structures have small rigidity and are highly sensitive to wind. Structural health monitoring is necessary to ensure the serviceability and safety of the structure. In this research, the design method of a structural health monitoring system is using the characteristics of a cable-membrane structure. Taking the Yueyang Sanhe Airport Terminal as an example, a finite element model is established to determine the critical structural components. Next, the engineering requirements and the framework of the monitoring system are studied based on the results of numerical analysis. The specific implementation of the structural health monitoring is then carried out, which includes sensor selection, installation and wiring. The proposed framework is successfully applied to the monitoring system for the Yueyang Airport terminal building, and the synchronous acquisition of fiber Bragg grating and acceleration sensor signals is implemented in an innovative way. The successful implementation and operation of structural health monitoring will help to guarantee the safety of the cablemembrane structure during its service life.
文摘The aim of this study is to analyze of the cable-glass systems which are used on the glass curtain wall according to their types, degree, architectural and structural effects. The suspended glass system with pre-stressed cable truss (SGSPCT) is widely started to apply after the 1980’s with Serres building. The advantages of these systems are to provide the transparency on the fa?ades and speedy construction process with minimum materials. The disadvantages are: more expensive than other systems and so many details for the joints and load distribution calculations. There are three different architectural design typologies of the SGSPCT system. These are distance bridging systems, between floor system and independent body. These three different typologies can be seen on the same building at the same time. This system has been known as complex structure systems. The twenty five glass buildings which are designed in different systems have been analyzed during this study. After these analyses the five glass buildings which are designed with cable-truss system have been selected for scope of the study. These selected buildings have been included of three different cable-truss system typologies and degree. The methodology of this study is literature survey and building analyses method. The written and visual documents involve books, theses, reports, articles, magazines, drawings, internet sources and applied connection details of the glass buildings. The selected five glass buildings have been detailed analyzed with their architectural drawings, photographs and details. The study consists of five chapters including the introduction chapter. The general information of the glass building and cable-glass system has been mentioned in the first chapter. The structural features, details and analytical information on systems have been explained of the selected buildings in the second chapter. The detailed analyses of these selected buildings have been done according to their schematic drawings with the plans, sections and load distribution in the third chapter. The fourth chapter is discussion section. In this section, cable-truss systems have been compared with their advantages and disadvantages to the other systems. The fifth chapter is the last chapter, many advantages of cable-truss systems have been concluded that the use of glass substrates.
文摘Three ethylene-vinyl alcohol copolymers were studied by means of the substituent chemical shift (SCS) method. The SCS parameters of hydroxy (-OH) in two different solvents were obtained: in deuterium oxide/phenol (20/80 W/W ) the parameters are S_1 = 42.77±0.08ppm, S_2 = 7.15±0.06 ppm, S_3 (s)= -4.08±0.02ppm, S_3 (t) =-3.09±0.20ppm,S_4 = 0.48±0.03ppm, S_5 = 0.26±0.05ppm. In o-dichloro-benzen-d_4 S_1(s)=44.79±0.61ppm, S_2=7.40±0.00ppm, S_3(s)=-4.51±0.17ppm, S_3(t)=-3.13 ±0.00 ppm, S_4 =0.63±0.04ppm, S_5=0.36±0.00ppm.Simultaneously the ^(13)CNMR spectra of EVA copolymers were assigned by using the SCS parameters obtained.
文摘This study developed an optimal structural system for the hybrid cable-stayed bridge expected to have a durable lifetime of 200 years and of which major structural members are made of ultra high performance concrete (UHPC) with 200 MPa-class compressive strength. This innovative cable-stayed bridge system makes it possible to reduce each of the construction and maintenance costs by 20% compared to the conventional concrete cable-stayed bridge by improving significantly the weight and durability of the bridge. Therefore, detail design is carried out considering a real 800 m cable-stayed bridge and the optimal structure of the hybrid cable-stayed bridge is proposed and verified.