Existing strength criteria are mostly formulated to describe the mechanical properties of reconstituted soils. However, the engineering characteristics of structured soils are different from those of reconstituted soi...Existing strength criteria are mostly formulated to describe the mechanical properties of reconstituted soils. However, the engineering characteristics of structured soils are different from those of reconstituted soils in many aspects, especially in their strength properties, Thus, the influence of soil structure (bonding and fabric) on the mechanical properties of structured soils cannot be correctly described, By analyzing the breakage mechanism of natural soils, the structured soils can be conceptualized as binary medium materials consisting of bonded blocks and weakened bands. On this basis, a new strength criterion is pro- posed for structured soils, The expressions of the strength criterion on both meridian and deviator planes are given to describe the strength properties of structured soils on these planes. The proposed strength criterion is compared with available test data under conventional and true triaxial stress conditions in the literature. It is observed that the proposed strength criterion agrees well with the test data.展开更多
Naturally deposited or residual soils exhibit more complicated behavior than remolded clays. A dual-surface damage model for structured soils is developed based on the thermodynamics framework established in our first...Naturally deposited or residual soils exhibit more complicated behavior than remolded clays. A dual-surface damage model for structured soils is developed based on the thermodynamics framework established in our first paper. The shift stresses and the transformation between the generalized dissipative stress space and actual stress space are established following a systematic procedure. The corresponding constitutive behavior of the proposed model is determined, which reflects the internal structural configuration and damage behavior for geomaterials. Four evolution variables κj^i(i=D, R;j=V, S) and the basic parameters λ, s, v and e0 are introduced to account for the progressive loss of internal structure for natural clays. A series of fully triaxial tests and isotropic compression tests are performed for structured and reconstituted samples of Beijing and Zhengzhou natural clays. The validation of the proposed model is examined by comparing the numerical results with the experimental data.展开更多
The possibilities of the particle finite element method(PFEM)for modeling geotechnical problems are increasingly evident.PFEM is a numerical approach to solve large displacement and large strain continuum problems tha...The possibilities of the particle finite element method(PFEM)for modeling geotechnical problems are increasingly evident.PFEM is a numerical approach to solve large displacement and large strain continuum problems that are beyond the capabilities of classical finite element method(FEM).In PFEM,the computational domain is reconfigured for optimal solution by frequent remeshing and boundary updating.PFEM inherits many concepts,such as a Lagrangian description of continuum,from classic geomechanical FEM.This familiarity with more popular numerical methods facilitates learning and application.This work focuses on G-PFEM,a code specifically developed for the use of PFEM in geotechnical problems.The article has two purposes.The first is to give the reader an overview of the capabilities and main features of the current version of the G-PFEM and the second is to illustrate some of the newer developments of the code.G-PFEM can solve coupled hydro-mechanical static and dynamic problems involving the interaction of solid and/or deformable bodies.Realistic constitutive models for geomaterials are available,including features,such as structure and destructuration,which result in brittle response.The solutions are robust,solidly underpinned by numerical technology including mixedfield formulations,robust and mesh-independent integration of elastoplastic constitutive models and a rigorous and flexible treatment of contact interactions.The novel features presented in this work include the contact domain technique,a natural way to capture contact interactions and impose contact constraints between different continuum bodies,as well as a new simplified formulation for dynamic impact problems.The code performance is showcased by the simulation of several soil-structure interaction problems selected to highlight the novel code features:a rigid footing insertion in soft rock,pipeline insertion and subsequent lateral displacement on over-consolidated clay,screw-pile pull-out and the dynamic impact of a free-falling spherical penetrometer into clay.展开更多
Fine grains migration is a primary cause of landslides and debris flows.This study investigates the effect of fine-grain migration on slope failure through flume experiments,focusing on the spatiotemporal characterist...Fine grains migration is a primary cause of landslides and debris flows.This study investigates the effect of fine-grain migration on slope failure through flume experiments,focusing on the spatiotemporal characteristics and mechanisms of slope stability.A series of artificial rainfall flume experiments with varying rainfall intensities and slopes were conducted using soil samples collected from Wei Jia Gully.The experiments monitored pore-water pressure,grain migration,and failure sequences.Grain-size distribution parameters(μand Dc)were analyzed to understand the migration path and accumulation of fine grains.The experiments reveal that fine-grain migration significantly alters soil structure,leading to random blockage and interconnection of internal pore channels.These changes result in fluctuating pore-water pressure distributions and uneven fine-grain accumulation,critical factors in slope stability.Slope failures occur randomly and intermittently,influenced by fine-grain content in runoff and resulting pore-water pressure variations.This study highlights that fine-grain migration plays a vital role in slope stability,with significant implications for predicting and mitigating slope failures.The stochastic nature of fine-grain migration and its impact on soil properties should be incorporated into predictive models to enhance their accuracy and reliability.展开更多
The influences of biological,chemical,and flow processes on soil structure through microbially induced carbonate precipitation(MICP)are not yet fully understood.In this study,we use a multi-level thresholding segmenta...The influences of biological,chemical,and flow processes on soil structure through microbially induced carbonate precipitation(MICP)are not yet fully understood.In this study,we use a multi-level thresholding segmentation algorithm,genetic algorithm(GA)enhanced Kapur entropy(KE)(GAE-KE),to accomplish quantitative characterization of sandy soil structure altered by MICP cementation.A sandy soil sample was treated using MICP method and scanned by the synchrotron radiation(SR)micro-CT with a resolution of 6.5 mm.After validation,tri-level thresholding segmentation using GAE-KE successfully separated the precipitated calcium carbonate crystals from sand particles and pores.The spatial distributions of porosity,pore structure parameters,and flow characteristics were calculated for quantitative characterization.The results offer pore-scale insights into the MICP treatment effect,and the quantitative understanding confirms the feasibility of the GAE-KE multi-level thresholding segmentation algorithm.展开更多
The sloshing in a group of rigid cylindrical tanks with baffles and on soil foundation under horizontal excitation is studied analytically.The solutions for the velocity potential are derived out by the liquid subdoma...The sloshing in a group of rigid cylindrical tanks with baffles and on soil foundation under horizontal excitation is studied analytically.The solutions for the velocity potential are derived out by the liquid subdomain method.Equivalent models with mass-spring oscillators are established to replace continuous fluid.Combined with the least square technique,Chebyshev polynomials are employed to fit horizontal,rocking and horizontal-rocking coupling impedances of soil,respectively.A lumped parameter model for impedance is presented to describe the effects of soil on tank structures.A mechanical model for the soil-foundation-tank-liquid-baffle system with small amount of calculation and high accuracy is proposed using the substructure technique.The analytical solutions are in comparison with data from reported literature and numerical codes to validate the effectiveness and correctness of the model.Detailed dynamic properties and seismic responses of the soil-tank system are given for the baffle number,size and location as well as soil parameter.展开更多
Traditional vegetation techniques for the control of concentrated flow erosion are widely recognized, whereas only a few studies have experimentally investigated the impacts of belowground roots on the erodibility of ...Traditional vegetation techniques for the control of concentrated flow erosion are widely recognized, whereas only a few studies have experimentally investigated the impacts of belowground roots on the erodibility of topsoils in semi-arid areas. To quantify the effects of root architectures on soil erodibility and its relevant structural properties, simulated flow experiments were conducted at six-week intervals from 18 July to 20 October in 2012 in the hilly Loess Plateau. Five treatments were: 1) bare(control), 2) purple alfalfa(Medicago sativa), representing tap roots(T), 3) switchgrass(Panicum virgatum), representing fibrous roots(F), 4) purple alfalfa and switchgrass, representing both tap and fibrous roots(T + F), and 5) natural recovery(N). For each treatment, soil structural properties and root characteristics were measured at an interval of six weeks. Soil anti-scouribility was calculated. Results showed that grass planting slightly reduced soil bulk density, but increased soil aggregate content by 19.1%, 10.6%, 28.5%, and 41.2% in the treatments T, F, T + F, and N, respectively. Soil shear strength(cohesion and angle of internal friction(φ)) significantly increased after the grass was planted. As roots grew, soil cohesion increased by 115.2%–135.5%, while soil disintegration rate decreased by 39.0%–58.1% in the 21 th week compared with the recorded value in the 9th week. Meanwhile, root density and root surface area density increased by 64.0%–104.7% and 75.9%–157.1%, respectively. No significant differences in soil anti-scouribility were observed between the treatments of T and F or of T + F and N, but the treatments of T + F and N performed more effectively than T or F treatment alone in retarding concentrated flow. Soil aggregation and root surface-area density explained the observed soil anti-scouribility during concentrated flow well for the different treatments. This result proved that the restoration of natural vegetation might be the most appropriate strategy in soil reinforcement in the hilly Loess Plateau.展开更多
The infiltration of water into soil is one of the most important soil physical properties that affect soil erosion and the eco-environment, especially in the Pisha sandstone area on the Chinese Loess Plateau. We studi...The infiltration of water into soil is one of the most important soil physical properties that affect soil erosion and the eco-environment, especially in the Pisha sandstone area on the Chinese Loess Plateau. We studied the one-dimensional vertical infiltration of water in three experimental soils, created by mixing Pisha sandstone with sandy soil, irrigation-silted soil, and loessial soil, at mass ratios of 1:1, 1:2, 1:3, 1:4, and 1:5. Our objective was to compare water infiltration in the experimental soils and to evaluate the effect of Pisha sandstone on water infiltration. We assessed the effect by measuring soil bulk density(BD), porosity, cumulative infiltration, infiltration rate and saturated hydraulic conductivity(Ks). The results showed that Pisha sandstone decreased the infiltration rate and saturated hydraulic conductivity in the three experimental soils. Cumulative infiltration over time was well described by the Philip equation. Sandy soil mixed with the Pisha sandstone at a ratio of 1:3 had the best water-holding capacity. The results provided experimental evidence for the movement of soil water and a technical support for the reconstruction and reclamation of mining soils in the Pisha sandstone area.展开更多
Three suborder soils in southwest China were adopted, namely Ustic Vertisol, Stagnic Anthrosol and Ustic Ferrosol, so as to carry out the basic physical and chemical analysis respectively, to design a dynamic measurin...Three suborder soils in southwest China were adopted, namely Ustic Vertisol, Stagnic Anthrosol and Ustic Ferrosol, so as to carry out the basic physical and chemical analysis respectively, to design a dynamic measuring method for water stability of soil structure and conduct the comparative study on the quality of the soil structure. The results indicated that (1) The water stability dynamic characteristic of the soil structure could well reflect the maintaining capability of the soil structure as time goes on. (2) The quality of several soil structures in southwest China was sequenced as follows: Stagnic Anthrosols 〉 Ustic Vertisols 〉 Ustic Ferrosols. (3) The water stability of soil structure is very positively correlated with the capillary porosity and the clay particle (D 〈 0.002 mm) content (Co), but is very negatively correlated with the silt (D is 0.05-0.002 ram) content (Csc), and (4) The dynamic functional equation of the water stability of soil structure in southwest China was established, so that the water stability characteristics of various soil structures could be quantitatively expressed and the quality of different soil structures can be quantitatively compared from each other.展开更多
The interaction of soil aggregate dynamics with soil organic carbon is complex with varied spatio-temporal processes in macro-and micro-aggregates. This paper is to determine the aggregation of soil aggregates in purp...The interaction of soil aggregate dynamics with soil organic carbon is complex with varied spatio-temporal processes in macro-and micro-aggregates. This paper is to determine the aggregation of soil aggregates in purple soils (Regosols in FAO Taxonomy or Entisols in USDA Taxonomy) for four types of land use, cropland [corn (Zea mays L.)], orchard (citrus), forestland (bamboo or cypress), and barren land (wild grass), and to explore their relationship with soil organic carbon in the Sichuan basin of southwestern China. Procedures and methods, including manual dry sieving procedure, Yoder's wet sieving procedure, pyrophosphates solution method, and Kachisky method, are used to acquire dry, wet, and chemically stable aggregates, and microaggregates. Light and heavy fractions of soil organic carbon were separated using 2.0 g·mL^-1 HgI2-KI mixed solution. The loosely, stably, and tightly combined organic carbon in heavy fraction were separated by extraction with 0.1 M NaOH and 0.1 M NaOH-0.1M Na4P2O7 mixed solution (pH 13). The results show that the contents of dry and wet macroaggregates 〉0.25 mm in diameter were 974.1 and 900.0 g·kg^-1 highest in red brown purple soils under forestland, while 889.6 and 350.6 g·kg^-1 lowest in dark purple soil and lowest in grey brown purple soils under cropland, respectively. The chemical stability of macroaggregates was lowest in grey brown purple soil with 8.47% under cropland, and highest in red brown purple soil with 69.34% under barren land. The content of microaggregates in dark purple soils was 587g·kg^-1 higher than brown purple soils, while 655g·kg^-1 in red brown purple soils was similar to grey brown purple soils (651g·kg^-1). Cropland conditions, only 38.4% of organic carbon was of the combined form, and 61.6% of that existed in light fraction. Forestland conditions, 90.7% of organic carbon in red brown purple soil was complexed with minerals as a form of humic substances. The contents and stability of wet aggregates 〉 0.25 mm, contents and stability of chemically stable aggregates 〉0.25 mm, contents of microaggregates 〉 0.01 mm, contents of aggregated primary particle (d〈0.01 mm) and degree of primary particles (d 〈0.01 mm) aggregation were closely related to the concentrations of total soil organic carbon, and loosely and tightly combined organic carbon in heavy fraction. Soil microaggregation could be associated with organic carbon concentration and its combined forms in heavy fraction. There was a direct relationship between microaggregation and macroaggregation of soil primary particles, because the contents of wet aggregates 〉 0.25 mm and its water stability of aggregates were highly correlated with the contents of aggregated primary particle (d 〈 0.01 mm) and the degree of primary particles (d 〈 0.01 mm) aggregation.展开更多
Structure is an evident determinant for macroscopic behaviors of soils.However,this is not taken into account in most constitutive models,as structure is a rather complex issue in models.For this,it is important to de...Structure is an evident determinant for macroscopic behaviors of soils.However,this is not taken into account in most constitutive models,as structure is a rather complex issue in models.For this,it is important to develop and implement simple models that can reflect this important aspect of soil behavior.This paper tried to model structured soils based on well-established concepts,such as critical state and sub-loading.Critical state is the core of the classic Cam Clay model.The sub-loading concept implies adoption of an inner(sub-loading)yield surface,according to specific hardening rules for some internal strain-like state variables.Nakai and co-workers proposed such internal variables for controlling density(p)and structure(ω),using a modified stress space,called tij.Herein,similar variables are used in the context of the better-known invariants(p and q)of the Cam Clay model.This change requires explicit adoption of a non-associated flow rule for the sub-loading surface.This is accomplished by modifying the dilatancy ratio of the Cam Clay model,as a function of the new internal variables.These modifications are described and implemented under three-dimensional(3D)conditions.The model is then applied to simulating laboratory tests under different stress paths and the results are compared to experiments reported for different types of structured soils.The good agreements show the capacity and potential of the proposed model.展开更多
Bacteria in desert soil have unique phylogeny and important ecological functions, and theirresponses to changes in precipitation need further attention. However, relevant studies have mainlyfocused on the surface soil...Bacteria in desert soil have unique phylogeny and important ecological functions, and theirresponses to changes in precipitation need further attention. However, relevant studies have mainlyfocused on the surface soil, and studies on the responses of bacteria at different soil depths to variationsin precipitation are rare. Thus, we used 16S rDNA high-throughput sequencing to investigate the changesin soil bacterial distribution along a mean annual precipitation gradient (50–150 mm) in the Alxa Desert,China, and compared the variation characteristics in the surface soil layer (0–10 cm) and subsurface soillayer (10–20 cm). Results showed that soil bacterial communities significantly changed along theprecipitation gradient in both soil layers. However, the subsurface soil layer could support bacterialcommunities with higher diversity and closer internal relationships but more internal competition than thesurface soil layer. Additionally, compared with the surface soil layer, variations in diversity andco-occurrence patterns in the subsurface soil layer were more in line with the changes in the mean annualprecipitation, while bacterial community structure was less variable in the subsurface soil layer. Comparedwith the mean annual precipitation, soil moisture had little influence on the structure and diversity of soilbacterial community but had a high correlation with intercommunity connectivity. Therefore, soilmoisture might play a complex role in mediating environmental conditions and soil bacterial communitycharacteristics. Due to the different responses of surface and subsurface soil bacteria to the changes inprecipitation, it is necessary to distinguish different soil layers when predicting the trends in desert soilbacterial conditions associated with precipitation, and prediction of subsurface soil bacteria may be moreaccurate.展开更多
Natural soil variability is a well-known issue in geotechnical design,although not frequently managed in practice.When subsoil must be characterized in terms of mechanical properties for infrastructure design,random f...Natural soil variability is a well-known issue in geotechnical design,although not frequently managed in practice.When subsoil must be characterized in terms of mechanical properties for infrastructure design,random finite element method(RFEM)can be effectively adopted for shallow foundation design to gain a twofold purpose:(1)understanding how much the bearing capacity is affected by the spatial variability structure of soils,and(2)optimisation of the foundation dimension(i.e.width B).The present study focuses on calculating the bearing capacity of shallow foundations by RFEM in terms of undrained and drained conditions.The spatial variability structure of soil is characterized by the autocorrelation function and the scale of fluctuation(δ).The latter has been derived by geostatistical tools such as the ordinary Kriging(OK)approach based on 182 cone penetration tests(CPTs)performed in the alluvial plain in Bologna Province,Italy.Results show that the increase of the B/δratio not only reduces the bearing capacity uncertainty but also increases its mean value under drained conditions.Conversely,under the undrained condition,the autocorrelation function strongly affects the mean values of bearing capacity.Therefore,the authors advise caution when selecting the autocorrelation function model for describing the soil spatial variability structure and point out that undrained conditions are more affected by soil variability compared to the drained ones.展开更多
In many sites on Egypt desert roads collapsible soils <span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">is</spa...In many sites on Egypt desert roads collapsible soils <span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">is</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> broadly classified as a problematic soils contain</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ing</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> silty fine sand which </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">is </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">cemented with low density and low degree of saturation which is susceptible to a large and sudden reduction in their v</span><span style="font-family:Verdana;">olume upon inundation, with or without vibration in its stress. Four sites have been studied for new urban</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">, </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">roads and industry work sits, related to increase in natural water content</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> These soils go through radical rearrangement of their particles, causing sudden changes in the stress-deformation behavior which caus</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">e</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> differential settlement of foundation and roads. This chan</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ge in volume can lead to foundation failures and worth of damages under ground public facilities and infrastructure. In this study, the search program </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">is </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">developed to establish their different behavior under wetting in two phase</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s:</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> field and laboratory work. The obtained results are useful in mapping the trend of the factors affect</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ed</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> in assessing soil collapsibility rate or collapse potentials which </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">are </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">observed in construction with volume change problems. The major factors observed are the natural structure skeleton of the soil particle and its grain size and mechanism of soil sedimentation. The field collapse potentials value assigned for these tested sites along Alexandria</span><span style="font-family:Verdana;">—Cairo desert road indicated that the field measured collapsibility potentials are smaller than those measured on the same extracted undisturbed samples in laboratory by 15%, which can be save</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">d</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> in coast, change in proposed collapsibility improvement method and change in select foundation type. Also, field tests evaluate the collapsibility rate with time and highlight that environmental history and natural soil structure in field are the important factors affected on these soil collapse, and also, knowledgeable by collapsible soils during wetting in these sites studied.</span></span></span>展开更多
Offshore wind turbines(OWTs) suffer wind, wave and earthquake loads. The investigation of OWTs' dynamic response under environmental loads is essential for structural safety assessment. The soil-structure interact...Offshore wind turbines(OWTs) suffer wind, wave and earthquake loads. The investigation of OWTs' dynamic response under environmental loads is essential for structural safety assessment. The soil-structure interaction(SSI)significantly affects the responses of OWT under environmental loads. However, there is few systematic research about the difference in the dynamic response of different SSI models under environmental loads. In order to solve the problem, the OWT is modeled by shell element, and several SSI models are built. The wind, wave and earthquake loads are taken into account. Moreover, the dynamic response, fatigue and buckling analysis are performed by ANSYS. The results indicate that SSI cannot be ignored in the dynamic response of the OWT under wind and wave loads. The SSI can decrease the displacement response of the OWT by 19% under wind and wave loads and reduce the fatigue damage of the pile. Multi-layer SSI can strongly influence the OWT's dynamic response under wind and wave loads or earthquake-only load. The vertical earthquake load increases the dynamic response in three directions.Besides, in order to simulate real environment, multi-layer SSI, soil damping and vertical SSI must be considered to evaluate the displacement response of the OWT under wind, wave and earthquake loads. The earthquake and gravity loads can cause more obvious response of the OWT than that of only wind and wave loads. The top and bottom of the tower are prone to occur buckling.展开更多
Soda residue(SR)is a type of industrial waste produced in the soda process with the ammonia-soda method.Applying SR to backfilling solves the land occupation and environmental pollution problems in coastal areas and s...Soda residue(SR)is a type of industrial waste produced in the soda process with the ammonia-soda method.Applying SR to backfilling solves the land occupation and environmental pollution problems in coastal areas and saves material costs for foundation engineering.The strength characteristics of soda residue soil(SRS)under different consolidation conditions are the key points to be solved in the engineering application of SRS.Triaxial compression tests were performed on the undisturbed SRS of Tianjin Port.The shear properties of SRS under different consolidation conditions were then discussed.Meanwhile,a structural strength model(SSM)based on Mohr-Coulomb theory was proposed.SSM reflects the influence of soil structure on undrained strength(Cu)and divides the Cu into the following two parts:friction strength(C_(uf))and original structural strength(C_(u0)).C_(uf)characterizes the magnitude of friction between soil particles,which is related to the consolidation stress.Meanwhile,C_(u0)represents the structural effect on soil strength,which is related to the soil deposition and consolidation processes.SSM was validated by the test data of undisturbed soils.Results reveal that the undisturbed soil generally had a certain C_(u0).Therefore,the SRS strength model was established by combining the experimental law of SRS with SSM.Error analysis shows that the SRS strength model can effectively predict the Cu of undisturbed SRS in Tianjin Port under different consolidation conditions.展开更多
The interaction between soil and marine structures like submarine pipeline/pipe pile/suction caisson is a complicated geotechnical mechanism process.In this study,the interface is discretized into multiple mesoscopic ...The interaction between soil and marine structures like submarine pipeline/pipe pile/suction caisson is a complicated geotechnical mechanism process.In this study,the interface is discretized into multiple mesoscopic contact elements that are damaged randomly throughout the shearing process due to the natural heterogeneity.The evolution equation of damage variable is developed based on the Weibull function,which is able to cover a rather wide range of distribution shapes by only two parameters,making it applicable for varying scenarios.Accordingly,a statistical damage model is established by incorporating Mohr–Coulomb strength criterion,in which the interfacial residual strength is considered whereby the strain softening behavior can be described.A concept of“semi-softening”characteristic point on shear stress–displacement curve is proposed for effectively modeling the evolution of strain softening.Finally,a series of ring shear tests of the interfaces between fine sea sand and smooth/rough steel surfaces are conducted.The predicted results using the proposed model are compared with experimental data of this study as well as some results from existing literature,indicating that the model has a good performance in modeling the progressive failure and strain softening behavior for various types of soil–structure interfaces.展开更多
Well-aggregated soil has been shown to improve soil infiltration and reduce runoff and soil erosion, making well-aggregated soil important for productive, sustainable agriculture. One factor that may influence near-su...Well-aggregated soil has been shown to improve soil infiltration and reduce runoff and soil erosion, making well-aggregated soil important for productive, sustainable agriculture. One factor that may influence near-surface soil aggregate stability is fertilizer application. Rapid dissolution of fertilizers, which are mostly salts, can potentially disperse clays and destabilize aggregates. The objective of this study was to evaluate the potential effect of various fertilizer-phosphorus (P) and -nitrogen (N) sources [i.e., triple superphosphate (TSP), monoammonium phosphate (MAP), chemically precipitated struvite (CPST), electrochemically precipitated struvite (ECST), environmentally smart nitrogen (ESN)] and soil depth on water-stable aggregates (WSA) in furrow-irrigated rice on a silt-loam soil (Typic Albaqualf). Total WSA (TWSA) concentration was unaffected (P > 0.05) by fertilizer treatment or soil depth, while WSA concentration was numerically largest (P ∙g<sup>-1</sup>), which did not differ from CPST, ECST, and ESN in the 0 - 5 cm depth or the unamended control in the 0 - 5 and 5 - 10 cm depths, and was at least 1.7 times larger than ESN in the 5 - 10 cm depth (0.03 g∙g<sup>-1</sup>). Results indicated that WSA concentration among non-struvite fertilizer-P sources was generally similar to that from the struvite fertilizer materials. Principal component analysis determined that 32% of the variation of TWSA was mainly explained by changes in soil bulk density, pH, and electrical conductivity. Long-term, continual annual application of fertilizer-P and N could negatively impact soil aggregate stability, soil structure, and potentially erosion.展开更多
Different pore sizes present different pore shrinkage capacities in a nonrigid soil.However,the shrinkage capacities of different pore sizes and their influencing factors are not clear.We aimed to quantify the shrinka...Different pore sizes present different pore shrinkage capacities in a nonrigid soil.However,the shrinkage capacities of different pore sizes and their influencing factors are not clear.We aimed to quantify the shrinkage capacities of different pore sizes(large pores,>50μm;medium pores,0.2-50μm;fine pores,<0.2μm)and determine how soil properties impact soil shrinkage capacity at the regional scale.Two sampling transects from west to east(360 km long,35 samples)and from north to south(190 km long,29 samples)were selected to investigate soil shrinkage capacity and physicochemical properties of at0-20 cm depth in the Vertisol(locally known as Shajiang black soil)region of the North China Plain.The results showed that soil total shrinkage capacity,indicated by the coefficient of linear extensibility(COLE),had a mean value of 0.041-0.051 in the west-east and north-south transects.Large pores had higher pore shrinkage index(PSI)values(0.103-0.109)than medium(0.077-0.096)and fine(0.087-0.091)pores.The PSI of fine pores showed a fluctuating increasing trend from northwest to southeast,and the fine pore shrinkage capacity determined the COLE(r^(2)=0.789,P<0.001).The PSI of large pores had a significant relationship with soil bulk density(r=0.281,P<0.05)and organic carbon(r=-0.311,P<0.05),whereas those of medium and fine pores were correlated with soil clay content(r=0.381 and 0.687,respectively,P<0.001).In addition,the PSI of fine pores was also correlated with montmorillonite content(r=0.387,P<0.01).It can be concluded that the PSI of large pores is related to anthropogenically influenced soil properties with low stability,whereas those of medium and fine pores are related to pedogenic properties.The high variability in anthropogenic and pedogenic factors explains the spatial pattern of Vertisol shrinkage capacity on the North China Plain.展开更多
It has been well documented that natural normally-consolidated marine soils are generally subjected to the effects of soil structure. The interpretation of the resistance of soil structure is an important issue in the...It has been well documented that natural normally-consolidated marine soils are generally subjected to the effects of soil structure. The interpretation of the resistance of soil structure is an important issue in the theory study and engineering practice of ocean engineering and geotechnical engineering. It is traditionally considered that the resistance of soil structure gradually disappears with increasing stress level when the applied stress is beyond the consolidation yield stress. In this study, however, it is found that this traditional interpretation of the resistance of soil structure can not explain the strength behavior of natural marine deposits with a normally-consolidated stress history. A new interpretation of the resistance of soil structure is proposed based on the strength behavior. In the preyield state, the undrained strength of natural marine deposits is composed of two components: one developed by the applied stress and the other developed by the resistance of soil structure. When the applied stress is beyond the consolidation yield stress, the strength behavior is independent of the resistance of soil structure.展开更多
文摘Existing strength criteria are mostly formulated to describe the mechanical properties of reconstituted soils. However, the engineering characteristics of structured soils are different from those of reconstituted soils in many aspects, especially in their strength properties, Thus, the influence of soil structure (bonding and fabric) on the mechanical properties of structured soils cannot be correctly described, By analyzing the breakage mechanism of natural soils, the structured soils can be conceptualized as binary medium materials consisting of bonded blocks and weakened bands. On this basis, a new strength criterion is pro- posed for structured soils, The expressions of the strength criterion on both meridian and deviator planes are given to describe the strength properties of structured soils on these planes. The proposed strength criterion is compared with available test data under conventional and true triaxial stress conditions in the literature. It is observed that the proposed strength criterion agrees well with the test data.
基金the Major Research of the National Natural Science Foundation of China(No.90715035)HI-Tech Research and Development Program of China(Code 2007AA11Z132).
文摘Naturally deposited or residual soils exhibit more complicated behavior than remolded clays. A dual-surface damage model for structured soils is developed based on the thermodynamics framework established in our first paper. The shift stresses and the transformation between the generalized dissipative stress space and actual stress space are established following a systematic procedure. The corresponding constitutive behavior of the proposed model is determined, which reflects the internal structural configuration and damage behavior for geomaterials. Four evolution variables κj^i(i=D, R;j=V, S) and the basic parameters λ, s, v and e0 are introduced to account for the progressive loss of internal structure for natural clays. A series of fully triaxial tests and isotropic compression tests are performed for structured and reconstituted samples of Beijing and Zhengzhou natural clays. The validation of the proposed model is examined by comparing the numerical results with the experimental data.
基金financial support by Severo Ochoa Centre of Excellence (2019-2023) Grant No. CEX2018-000797-Sfunded by MCIN/AEI/10.13039/501100011033+1 种基金research projects BIA2017-84752-RPID2020-119598RB-I00
文摘The possibilities of the particle finite element method(PFEM)for modeling geotechnical problems are increasingly evident.PFEM is a numerical approach to solve large displacement and large strain continuum problems that are beyond the capabilities of classical finite element method(FEM).In PFEM,the computational domain is reconfigured for optimal solution by frequent remeshing and boundary updating.PFEM inherits many concepts,such as a Lagrangian description of continuum,from classic geomechanical FEM.This familiarity with more popular numerical methods facilitates learning and application.This work focuses on G-PFEM,a code specifically developed for the use of PFEM in geotechnical problems.The article has two purposes.The first is to give the reader an overview of the capabilities and main features of the current version of the G-PFEM and the second is to illustrate some of the newer developments of the code.G-PFEM can solve coupled hydro-mechanical static and dynamic problems involving the interaction of solid and/or deformable bodies.Realistic constitutive models for geomaterials are available,including features,such as structure and destructuration,which result in brittle response.The solutions are robust,solidly underpinned by numerical technology including mixedfield formulations,robust and mesh-independent integration of elastoplastic constitutive models and a rigorous and flexible treatment of contact interactions.The novel features presented in this work include the contact domain technique,a natural way to capture contact interactions and impose contact constraints between different continuum bodies,as well as a new simplified formulation for dynamic impact problems.The code performance is showcased by the simulation of several soil-structure interaction problems selected to highlight the novel code features:a rigid footing insertion in soft rock,pipeline insertion and subsequent lateral displacement on over-consolidated clay,screw-pile pull-out and the dynamic impact of a free-falling spherical penetrometer into clay.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA23090202)the Key Science and Technology Projects of Transportation Industry(Grant No.2021-MS4-104)the National Key Research and Development Program of China(Grant No.2019YFC1509900).
文摘Fine grains migration is a primary cause of landslides and debris flows.This study investigates the effect of fine-grain migration on slope failure through flume experiments,focusing on the spatiotemporal characteristics and mechanisms of slope stability.A series of artificial rainfall flume experiments with varying rainfall intensities and slopes were conducted using soil samples collected from Wei Jia Gully.The experiments monitored pore-water pressure,grain migration,and failure sequences.Grain-size distribution parameters(μand Dc)were analyzed to understand the migration path and accumulation of fine grains.The experiments reveal that fine-grain migration significantly alters soil structure,leading to random blockage and interconnection of internal pore channels.These changes result in fluctuating pore-water pressure distributions and uneven fine-grain accumulation,critical factors in slope stability.Slope failures occur randomly and intermittently,influenced by fine-grain content in runoff and resulting pore-water pressure variations.This study highlights that fine-grain migration plays a vital role in slope stability,with significant implications for predicting and mitigating slope failures.The stochastic nature of fine-grain migration and its impact on soil properties should be incorporated into predictive models to enhance their accuracy and reliability.
基金supported by the National Natural Science Foundation of China(Grant Nos.42077232 and 42077235)the Key Research and Development Plan of Jiangsu Province(Grant No.BE2022156).
文摘The influences of biological,chemical,and flow processes on soil structure through microbially induced carbonate precipitation(MICP)are not yet fully understood.In this study,we use a multi-level thresholding segmentation algorithm,genetic algorithm(GA)enhanced Kapur entropy(KE)(GAE-KE),to accomplish quantitative characterization of sandy soil structure altered by MICP cementation.A sandy soil sample was treated using MICP method and scanned by the synchrotron radiation(SR)micro-CT with a resolution of 6.5 mm.After validation,tri-level thresholding segmentation using GAE-KE successfully separated the precipitated calcium carbonate crystals from sand particles and pores.The spatial distributions of porosity,pore structure parameters,and flow characteristics were calculated for quantitative characterization.The results offer pore-scale insights into the MICP treatment effect,and the quantitative understanding confirms the feasibility of the GAE-KE multi-level thresholding segmentation algorithm.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51978336 and 11702117)the Science and Technology Plan Project of Department of Communications of Zhejiang Province(Grant No.2021051)Nantong City Social Livelihood Science and Technology Project(Grant No.MS22022067).
文摘The sloshing in a group of rigid cylindrical tanks with baffles and on soil foundation under horizontal excitation is studied analytically.The solutions for the velocity potential are derived out by the liquid subdomain method.Equivalent models with mass-spring oscillators are established to replace continuous fluid.Combined with the least square technique,Chebyshev polynomials are employed to fit horizontal,rocking and horizontal-rocking coupling impedances of soil,respectively.A lumped parameter model for impedance is presented to describe the effects of soil on tank structures.A mechanical model for the soil-foundation-tank-liquid-baffle system with small amount of calculation and high accuracy is proposed using the substructure technique.The analytical solutions are in comparison with data from reported literature and numerical codes to validate the effectiveness and correctness of the model.Detailed dynamic properties and seismic responses of the soil-tank system are given for the baffle number,size and location as well as soil parameter.
基金Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues of Chinese Academy of Sciences(No.XDA05060300)
文摘Traditional vegetation techniques for the control of concentrated flow erosion are widely recognized, whereas only a few studies have experimentally investigated the impacts of belowground roots on the erodibility of topsoils in semi-arid areas. To quantify the effects of root architectures on soil erodibility and its relevant structural properties, simulated flow experiments were conducted at six-week intervals from 18 July to 20 October in 2012 in the hilly Loess Plateau. Five treatments were: 1) bare(control), 2) purple alfalfa(Medicago sativa), representing tap roots(T), 3) switchgrass(Panicum virgatum), representing fibrous roots(F), 4) purple alfalfa and switchgrass, representing both tap and fibrous roots(T + F), and 5) natural recovery(N). For each treatment, soil structural properties and root characteristics were measured at an interval of six weeks. Soil anti-scouribility was calculated. Results showed that grass planting slightly reduced soil bulk density, but increased soil aggregate content by 19.1%, 10.6%, 28.5%, and 41.2% in the treatments T, F, T + F, and N, respectively. Soil shear strength(cohesion and angle of internal friction(φ)) significantly increased after the grass was planted. As roots grew, soil cohesion increased by 115.2%–135.5%, while soil disintegration rate decreased by 39.0%–58.1% in the 21 th week compared with the recorded value in the 9th week. Meanwhile, root density and root surface area density increased by 64.0%–104.7% and 75.9%–157.1%, respectively. No significant differences in soil anti-scouribility were observed between the treatments of T and F or of T + F and N, but the treatments of T + F and N performed more effectively than T or F treatment alone in retarding concentrated flow. Soil aggregation and root surface-area density explained the observed soil anti-scouribility during concentrated flow well for the different treatments. This result proved that the restoration of natural vegetation might be the most appropriate strategy in soil reinforcement in the hilly Loess Plateau.
基金supported by the Key Technology and Demonstration of Damaged Ecosystem Restoration and Reconstruction in Shanxi–Shaanxi–Inner Mongolia Energy Base Location (KZCX2-XB3-13-02)
文摘The infiltration of water into soil is one of the most important soil physical properties that affect soil erosion and the eco-environment, especially in the Pisha sandstone area on the Chinese Loess Plateau. We studied the one-dimensional vertical infiltration of water in three experimental soils, created by mixing Pisha sandstone with sandy soil, irrigation-silted soil, and loessial soil, at mass ratios of 1:1, 1:2, 1:3, 1:4, and 1:5. Our objective was to compare water infiltration in the experimental soils and to evaluate the effect of Pisha sandstone on water infiltration. We assessed the effect by measuring soil bulk density(BD), porosity, cumulative infiltration, infiltration rate and saturated hydraulic conductivity(Ks). The results showed that Pisha sandstone decreased the infiltration rate and saturated hydraulic conductivity in the three experimental soils. Cumulative infiltration over time was well described by the Philip equation. Sandy soil mixed with the Pisha sandstone at a ratio of 1:3 had the best water-holding capacity. The results provided experimental evidence for the movement of soil water and a technical support for the reconstruction and reclamation of mining soils in the Pisha sandstone area.
基金the Knowledge Innovation Program of Chinese Academy of Sciences (KZCX2-YW-409) the National Key Technologies Research and Development Program in the Eleventh Five-year Plan of China (2006BAC01A11).
文摘Three suborder soils in southwest China were adopted, namely Ustic Vertisol, Stagnic Anthrosol and Ustic Ferrosol, so as to carry out the basic physical and chemical analysis respectively, to design a dynamic measuring method for water stability of soil structure and conduct the comparative study on the quality of the soil structure. The results indicated that (1) The water stability dynamic characteristic of the soil structure could well reflect the maintaining capability of the soil structure as time goes on. (2) The quality of several soil structures in southwest China was sequenced as follows: Stagnic Anthrosols 〉 Ustic Vertisols 〉 Ustic Ferrosols. (3) The water stability of soil structure is very positively correlated with the capillary porosity and the clay particle (D 〈 0.002 mm) content (Co), but is very negatively correlated with the silt (D is 0.05-0.002 ram) content (Csc), and (4) The dynamic functional equation of the water stability of soil structure in southwest China was established, so that the water stability characteristics of various soil structures could be quantitatively expressed and the quality of different soil structures can be quantitatively compared from each other.
基金the National Natural Science Foundation of China(40231016)the National Key Technologies R&D Program of China(2006BAD05B01-02)
文摘The interaction of soil aggregate dynamics with soil organic carbon is complex with varied spatio-temporal processes in macro-and micro-aggregates. This paper is to determine the aggregation of soil aggregates in purple soils (Regosols in FAO Taxonomy or Entisols in USDA Taxonomy) for four types of land use, cropland [corn (Zea mays L.)], orchard (citrus), forestland (bamboo or cypress), and barren land (wild grass), and to explore their relationship with soil organic carbon in the Sichuan basin of southwestern China. Procedures and methods, including manual dry sieving procedure, Yoder's wet sieving procedure, pyrophosphates solution method, and Kachisky method, are used to acquire dry, wet, and chemically stable aggregates, and microaggregates. Light and heavy fractions of soil organic carbon were separated using 2.0 g·mL^-1 HgI2-KI mixed solution. The loosely, stably, and tightly combined organic carbon in heavy fraction were separated by extraction with 0.1 M NaOH and 0.1 M NaOH-0.1M Na4P2O7 mixed solution (pH 13). The results show that the contents of dry and wet macroaggregates 〉0.25 mm in diameter were 974.1 and 900.0 g·kg^-1 highest in red brown purple soils under forestland, while 889.6 and 350.6 g·kg^-1 lowest in dark purple soil and lowest in grey brown purple soils under cropland, respectively. The chemical stability of macroaggregates was lowest in grey brown purple soil with 8.47% under cropland, and highest in red brown purple soil with 69.34% under barren land. The content of microaggregates in dark purple soils was 587g·kg^-1 higher than brown purple soils, while 655g·kg^-1 in red brown purple soils was similar to grey brown purple soils (651g·kg^-1). Cropland conditions, only 38.4% of organic carbon was of the combined form, and 61.6% of that existed in light fraction. Forestland conditions, 90.7% of organic carbon in red brown purple soil was complexed with minerals as a form of humic substances. The contents and stability of wet aggregates 〉 0.25 mm, contents and stability of chemically stable aggregates 〉0.25 mm, contents of microaggregates 〉 0.01 mm, contents of aggregated primary particle (d〈0.01 mm) and degree of primary particles (d 〈0.01 mm) aggregation were closely related to the concentrations of total soil organic carbon, and loosely and tightly combined organic carbon in heavy fraction. Soil microaggregation could be associated with organic carbon concentration and its combined forms in heavy fraction. There was a direct relationship between microaggregation and macroaggregation of soil primary particles, because the contents of wet aggregates 〉 0.25 mm and its water stability of aggregates were highly correlated with the contents of aggregated primary particle (d 〈 0.01 mm) and the degree of primary particles (d 〈 0.01 mm) aggregation.
基金Universidad Nacional de ColombiaUniversidade de Brasilia in Brazil for their technical and financial support。
文摘Structure is an evident determinant for macroscopic behaviors of soils.However,this is not taken into account in most constitutive models,as structure is a rather complex issue in models.For this,it is important to develop and implement simple models that can reflect this important aspect of soil behavior.This paper tried to model structured soils based on well-established concepts,such as critical state and sub-loading.Critical state is the core of the classic Cam Clay model.The sub-loading concept implies adoption of an inner(sub-loading)yield surface,according to specific hardening rules for some internal strain-like state variables.Nakai and co-workers proposed such internal variables for controlling density(p)and structure(ω),using a modified stress space,called tij.Herein,similar variables are used in the context of the better-known invariants(p and q)of the Cam Clay model.This change requires explicit adoption of a non-associated flow rule for the sub-loading surface.This is accomplished by modifying the dilatancy ratio of the Cam Clay model,as a function of the new internal variables.These modifications are described and implemented under three-dimensional(3D)conditions.The model is then applied to simulating laboratory tests under different stress paths and the results are compared to experiments reported for different types of structured soils.The good agreements show the capacity and potential of the proposed model.
基金This work was financially supported by the National Key Research and Development Program of China(2016YFC0501001)the Key Laboratory Cooperative Research Project of Chinese Academy of Sciences.
文摘Bacteria in desert soil have unique phylogeny and important ecological functions, and theirresponses to changes in precipitation need further attention. However, relevant studies have mainlyfocused on the surface soil, and studies on the responses of bacteria at different soil depths to variationsin precipitation are rare. Thus, we used 16S rDNA high-throughput sequencing to investigate the changesin soil bacterial distribution along a mean annual precipitation gradient (50–150 mm) in the Alxa Desert,China, and compared the variation characteristics in the surface soil layer (0–10 cm) and subsurface soillayer (10–20 cm). Results showed that soil bacterial communities significantly changed along theprecipitation gradient in both soil layers. However, the subsurface soil layer could support bacterialcommunities with higher diversity and closer internal relationships but more internal competition than thesurface soil layer. Additionally, compared with the surface soil layer, variations in diversity andco-occurrence patterns in the subsurface soil layer were more in line with the changes in the mean annualprecipitation, while bacterial community structure was less variable in the subsurface soil layer. Comparedwith the mean annual precipitation, soil moisture had little influence on the structure and diversity of soilbacterial community but had a high correlation with intercommunity connectivity. Therefore, soilmoisture might play a complex role in mediating environmental conditions and soil bacterial communitycharacteristics. Due to the different responses of surface and subsurface soil bacteria to the changes inprecipitation, it is necessary to distinguish different soil layers when predicting the trends in desert soilbacterial conditions associated with precipitation, and prediction of subsurface soil bacteria may be moreaccurate.
文摘Natural soil variability is a well-known issue in geotechnical design,although not frequently managed in practice.When subsoil must be characterized in terms of mechanical properties for infrastructure design,random finite element method(RFEM)can be effectively adopted for shallow foundation design to gain a twofold purpose:(1)understanding how much the bearing capacity is affected by the spatial variability structure of soils,and(2)optimisation of the foundation dimension(i.e.width B).The present study focuses on calculating the bearing capacity of shallow foundations by RFEM in terms of undrained and drained conditions.The spatial variability structure of soil is characterized by the autocorrelation function and the scale of fluctuation(δ).The latter has been derived by geostatistical tools such as the ordinary Kriging(OK)approach based on 182 cone penetration tests(CPTs)performed in the alluvial plain in Bologna Province,Italy.Results show that the increase of the B/δratio not only reduces the bearing capacity uncertainty but also increases its mean value under drained conditions.Conversely,under the undrained condition,the autocorrelation function strongly affects the mean values of bearing capacity.Therefore,the authors advise caution when selecting the autocorrelation function model for describing the soil spatial variability structure and point out that undrained conditions are more affected by soil variability compared to the drained ones.
文摘In many sites on Egypt desert roads collapsible soils <span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">is</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> broadly classified as a problematic soils contain</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ing</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> silty fine sand which </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">is </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">cemented with low density and low degree of saturation which is susceptible to a large and sudden reduction in their v</span><span style="font-family:Verdana;">olume upon inundation, with or without vibration in its stress. Four sites have been studied for new urban</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">, </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">roads and industry work sits, related to increase in natural water content</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> These soils go through radical rearrangement of their particles, causing sudden changes in the stress-deformation behavior which caus</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">e</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> differential settlement of foundation and roads. This chan</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ge in volume can lead to foundation failures and worth of damages under ground public facilities and infrastructure. In this study, the search program </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">is </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">developed to establish their different behavior under wetting in two phase</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s:</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> field and laboratory work. The obtained results are useful in mapping the trend of the factors affect</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ed</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> in assessing soil collapsibility rate or collapse potentials which </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">are </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">observed in construction with volume change problems. The major factors observed are the natural structure skeleton of the soil particle and its grain size and mechanism of soil sedimentation. The field collapse potentials value assigned for these tested sites along Alexandria</span><span style="font-family:Verdana;">—Cairo desert road indicated that the field measured collapsibility potentials are smaller than those measured on the same extracted undisturbed samples in laboratory by 15%, which can be save</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">d</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> in coast, change in proposed collapsibility improvement method and change in select foundation type. Also, field tests evaluate the collapsibility rate with time and highlight that environmental history and natural soil structure in field are the important factors affected on these soil collapse, and also, knowledgeable by collapsible soils during wetting in these sites studied.</span></span></span>
基金supported by the National Natural Science Foundation of China (Grant Nos. 51976131, 52006148, and 52106262)。
文摘Offshore wind turbines(OWTs) suffer wind, wave and earthquake loads. The investigation of OWTs' dynamic response under environmental loads is essential for structural safety assessment. The soil-structure interaction(SSI)significantly affects the responses of OWT under environmental loads. However, there is few systematic research about the difference in the dynamic response of different SSI models under environmental loads. In order to solve the problem, the OWT is modeled by shell element, and several SSI models are built. The wind, wave and earthquake loads are taken into account. Moreover, the dynamic response, fatigue and buckling analysis are performed by ANSYS. The results indicate that SSI cannot be ignored in the dynamic response of the OWT under wind and wave loads. The SSI can decrease the displacement response of the OWT by 19% under wind and wave loads and reduce the fatigue damage of the pile. Multi-layer SSI can strongly influence the OWT's dynamic response under wind and wave loads or earthquake-only load. The vertical earthquake load increases the dynamic response in three directions.Besides, in order to simulate real environment, multi-layer SSI, soil damping and vertical SSI must be considered to evaluate the displacement response of the OWT under wind, wave and earthquake loads. The earthquake and gravity loads can cause more obvious response of the OWT than that of only wind and wave loads. The top and bottom of the tower are prone to occur buckling.
基金the financial support from the National Natural Science Foundation of China(No.51979191)the National Key Research and Development Program of China(Nos.2016YFC0802204,2016YFC0802201)+2 种基金the National Natural Science Fund for Innovative Research Groups Science Foundation(No.51321065)the Construction Science and Technology Project of the Ministry of Transport of the People’s Republic of China(No.2014328224040)the Science and Technology Plan Project of Tianjin Port(No.2020-165)。
文摘Soda residue(SR)is a type of industrial waste produced in the soda process with the ammonia-soda method.Applying SR to backfilling solves the land occupation and environmental pollution problems in coastal areas and saves material costs for foundation engineering.The strength characteristics of soda residue soil(SRS)under different consolidation conditions are the key points to be solved in the engineering application of SRS.Triaxial compression tests were performed on the undisturbed SRS of Tianjin Port.The shear properties of SRS under different consolidation conditions were then discussed.Meanwhile,a structural strength model(SSM)based on Mohr-Coulomb theory was proposed.SSM reflects the influence of soil structure on undrained strength(Cu)and divides the Cu into the following two parts:friction strength(C_(uf))and original structural strength(C_(u0)).C_(uf)characterizes the magnitude of friction between soil particles,which is related to the consolidation stress.Meanwhile,C_(u0)represents the structural effect on soil strength,which is related to the soil deposition and consolidation processes.SSM was validated by the test data of undisturbed soils.Results reveal that the undisturbed soil generally had a certain C_(u0).Therefore,the SRS strength model was established by combining the experimental law of SRS with SSM.Error analysis shows that the SRS strength model can effectively predict the Cu of undisturbed SRS in Tianjin Port under different consolidation conditions.
基金financially supported by the China Postdoctoral Science Foundation(Grant No.2023M732997)the National Natural Science Foundation of China(Grant Nos.51890912,52008268)Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering,Hohai University(Grant No.2023007)。
文摘The interaction between soil and marine structures like submarine pipeline/pipe pile/suction caisson is a complicated geotechnical mechanism process.In this study,the interface is discretized into multiple mesoscopic contact elements that are damaged randomly throughout the shearing process due to the natural heterogeneity.The evolution equation of damage variable is developed based on the Weibull function,which is able to cover a rather wide range of distribution shapes by only two parameters,making it applicable for varying scenarios.Accordingly,a statistical damage model is established by incorporating Mohr–Coulomb strength criterion,in which the interfacial residual strength is considered whereby the strain softening behavior can be described.A concept of“semi-softening”characteristic point on shear stress–displacement curve is proposed for effectively modeling the evolution of strain softening.Finally,a series of ring shear tests of the interfaces between fine sea sand and smooth/rough steel surfaces are conducted.The predicted results using the proposed model are compared with experimental data of this study as well as some results from existing literature,indicating that the model has a good performance in modeling the progressive failure and strain softening behavior for various types of soil–structure interfaces.
文摘Well-aggregated soil has been shown to improve soil infiltration and reduce runoff and soil erosion, making well-aggregated soil important for productive, sustainable agriculture. One factor that may influence near-surface soil aggregate stability is fertilizer application. Rapid dissolution of fertilizers, which are mostly salts, can potentially disperse clays and destabilize aggregates. The objective of this study was to evaluate the potential effect of various fertilizer-phosphorus (P) and -nitrogen (N) sources [i.e., triple superphosphate (TSP), monoammonium phosphate (MAP), chemically precipitated struvite (CPST), electrochemically precipitated struvite (ECST), environmentally smart nitrogen (ESN)] and soil depth on water-stable aggregates (WSA) in furrow-irrigated rice on a silt-loam soil (Typic Albaqualf). Total WSA (TWSA) concentration was unaffected (P > 0.05) by fertilizer treatment or soil depth, while WSA concentration was numerically largest (P ∙g<sup>-1</sup>), which did not differ from CPST, ECST, and ESN in the 0 - 5 cm depth or the unamended control in the 0 - 5 and 5 - 10 cm depths, and was at least 1.7 times larger than ESN in the 5 - 10 cm depth (0.03 g∙g<sup>-1</sup>). Results indicated that WSA concentration among non-struvite fertilizer-P sources was generally similar to that from the struvite fertilizer materials. Principal component analysis determined that 32% of the variation of TWSA was mainly explained by changes in soil bulk density, pH, and electrical conductivity. Long-term, continual annual application of fertilizer-P and N could negatively impact soil aggregate stability, soil structure, and potentially erosion.
基金supported by the National Natural Science Foundation of China(Nos.41930753 and 41725004)the National Key Research and Development Program of China(No.2016YFD0300809)the Youth Innovation Promotion Association,Chinese Academy Sciences(No.2021311)。
文摘Different pore sizes present different pore shrinkage capacities in a nonrigid soil.However,the shrinkage capacities of different pore sizes and their influencing factors are not clear.We aimed to quantify the shrinkage capacities of different pore sizes(large pores,>50μm;medium pores,0.2-50μm;fine pores,<0.2μm)and determine how soil properties impact soil shrinkage capacity at the regional scale.Two sampling transects from west to east(360 km long,35 samples)and from north to south(190 km long,29 samples)were selected to investigate soil shrinkage capacity and physicochemical properties of at0-20 cm depth in the Vertisol(locally known as Shajiang black soil)region of the North China Plain.The results showed that soil total shrinkage capacity,indicated by the coefficient of linear extensibility(COLE),had a mean value of 0.041-0.051 in the west-east and north-south transects.Large pores had higher pore shrinkage index(PSI)values(0.103-0.109)than medium(0.077-0.096)and fine(0.087-0.091)pores.The PSI of fine pores showed a fluctuating increasing trend from northwest to southeast,and the fine pore shrinkage capacity determined the COLE(r^(2)=0.789,P<0.001).The PSI of large pores had a significant relationship with soil bulk density(r=0.281,P<0.05)and organic carbon(r=-0.311,P<0.05),whereas those of medium and fine pores were correlated with soil clay content(r=0.381 and 0.687,respectively,P<0.001).In addition,the PSI of fine pores was also correlated with montmorillonite content(r=0.387,P<0.01).It can be concluded that the PSI of large pores is related to anthropogenically influenced soil properties with low stability,whereas those of medium and fine pores are related to pedogenic properties.The high variability in anthropogenic and pedogenic factors explains the spatial pattern of Vertisol shrinkage capacity on the North China Plain.
文摘It has been well documented that natural normally-consolidated marine soils are generally subjected to the effects of soil structure. The interpretation of the resistance of soil structure is an important issue in the theory study and engineering practice of ocean engineering and geotechnical engineering. It is traditionally considered that the resistance of soil structure gradually disappears with increasing stress level when the applied stress is beyond the consolidation yield stress. In this study, however, it is found that this traditional interpretation of the resistance of soil structure can not explain the strength behavior of natural marine deposits with a normally-consolidated stress history. A new interpretation of the resistance of soil structure is proposed based on the strength behavior. In the preyield state, the undrained strength of natural marine deposits is composed of two components: one developed by the applied stress and the other developed by the resistance of soil structure. When the applied stress is beyond the consolidation yield stress, the strength behavior is independent of the resistance of soil structure.