The catalyst layers(CLs) electrode is the key component of the membrane electrode assembly(MEA) in proton exchange membrane fuel cells(PEMFCs). Conventional electrodes for PEMFCs are composed of carbon-supported, iono...The catalyst layers(CLs) electrode is the key component of the membrane electrode assembly(MEA) in proton exchange membrane fuel cells(PEMFCs). Conventional electrodes for PEMFCs are composed of carbon-supported, ionomer, and Pt nanoparticles, all immersed together and sprayed with a micron-level thickness of CLs. They have a performance trade-off where increasing the Pt loading leads to higher performance of abundant triple-phase boundary areas but increases the electrode cost. Major challenges must be overcome before realizing its wide commercialization. Literature research revealed that it is impossible to achieve performance and durability targets with only high-performance catalysts, so the controllable design of CLs architecture in MEAs for PEMFCs must now be the top priority to meet industry goals. From this perspective, a 3D ordered electrode circumvents this issue with a support-free architecture and ultrathin thickness while reducing noble metal Pt loadings. Herein, we discuss the motivation in-depth and summarize the necessary CLs structural features for designing ultralow Pt loading electrodes. Critical issues that remain in progress for 3D ordered CLs must be studied and characterized. Furthermore, approaches for 3D ordered CLs architecture electrode development, involving material design, structure optimization, preparation technology, and characterization techniques, are summarized and are expected to be next-generation CLs for PEMFCs. Finally, the review concludes with perspectives on possible research directions of CL architecture to address the significant challenges in the future.展开更多
The Kyushu–Palau Ridge(KPR),an anti-S-shaped submarine highland at the center of the Philippine Sea Plate(PSP),is considered the residual arc of the Izu–Bonin–Mariana Island Arc,which retains key information about ...The Kyushu–Palau Ridge(KPR),an anti-S-shaped submarine highland at the center of the Philippine Sea Plate(PSP),is considered the residual arc of the Izu–Bonin–Mariana Island Arc,which retains key information about the cessation of the Western Philippine Basin(WPB)expansion and the Parece Vela Basin(PVB)breakup.Herein,using the new generation of satellite altimetry gravity data,high-precision seafloor topography data,and newly acquired ship-borne gravity data,the topographic and gravity characteristics of the KPR mid-southern section and adjacent region are depicted.The distribution characteristics of the faults were delineated using the normalized vertical derivative–total horizontal derivative method(NVDR-THDR)and the minimum curvature potential field separation method.The Moho depth and crustal thickness were inverted using the rapid inversion method for a double-interface model with depth constraints.Based on these results,the crust structure features in the KPR mid-southern section,and the“triangular”structure geological significance where the KPR and Central Basin Rift(CBR)of the WPB intersect are interpreted.The KPR crustal thickness is approximately 6–16 km,with a distinct discontinuity that is slightly thicker than the normal oceanic crust.The KPR mid-southern section crust structure was divided into four segments(S1–S4)from north to south,formed by the CBR eastward extension joint action and clockwise rotation of the PVB expansion axis and the Mindanao fault zone blocking effect.展开更多
The daily 1°× 1° data of the Aviation (AVN) model, the black body temperature (TBB) data of cloud top, and cloud images by geostationary meteorological satellite (GMS) are used to identify a dew-p...The daily 1°× 1° data of the Aviation (AVN) model, the black body temperature (TBB) data of cloud top, and cloud images by geostationary meteorological satellite (GMS) are used to identify a dew-point front near the periphery of the western Pacific subtropical high (WPSH). The results clearly demonstrate the existence of the dew-point front, and its thermodynamic and dynamic structural characteristics are analyzed in detail. The dew-point front is a transitional belt between the moist southwest monsoon flow and the dry adiabatic sinking flow near the WPSH, manifested by a large horizontal moisture gradient in the mid-lower troposphere and conjugated with the mei-yu front to form a predominant double-front structure associated with intense rainfall in the mei-yu period. The mei-yu front is located between 30° and 35°N, vertically extends from the ground level to the upper level and shifts northward. The dew-point front is to the south of the mei-yu front and lies up against the periphery of the WPSH. Generally, it is located between 850 hPa and 500 hPa. On the dew-point front side, the southwesterly prevails at the lower level and the northeasterly at the upper level; this wind distribution is different from that on the mei-yu front side. Vertical ascending motion exists between the two fronts, and there are descending motions on the north side of the mei^yu front and on the south side of the dew-point front~ which form a secondary circulation. The dynamics of the double fronts also have some interesting features. At the lower level, positive vertical vorticity and obvious convergence between the two fronts are clearly identified. At the mid-lower level, negative local change of the divergence (corresponding to increasing convergence) is often embedded in the two fronts or against the mei-yu front. Most cloud clusters occur between the two fronts and propagate down stream in a wave-like manner.展开更多
1 Introduction The huize Zn-Pb ore district in Yunnan province is locatedinthecentralsouthernofthe Sichuan—Yunnan—GuizhouPb-ZnPoly-metallic Mineralization Area in the southwestern margin of the Yangtze Block,and is ...1 Introduction The huize Zn-Pb ore district in Yunnan province is locatedinthecentralsouthernofthe Sichuan—Yunnan—GuizhouPb-ZnPoly-metallic Mineralization Area in the southwestern margin of the Yangtze Block,and is strictly controlled by fault structures.It has developed to one of the famous production bases of lead&zinc and germanium in China.展开更多
This study presents a transfer learning approach for discovering potential Mg-based superconductors utilizing a comprehensive target dataset.Initially,a large source dataset(Bandgap dataset)comprising approximately∼7...This study presents a transfer learning approach for discovering potential Mg-based superconductors utilizing a comprehensive target dataset.Initially,a large source dataset(Bandgap dataset)comprising approximately∼75k compounds is utilized for pretraining,followed by fine-tuning with a smaller Critical Temperature(T_(c))dataset containing∼300 compounds.Comparatively,there is a significant improvement in the performance of the transfer learning model over the traditional deep learning(DL)model in predicting Tc.Subsequently,the transfer learning model is applied to predict the properties of approximately 150k compounds.Predictions are validated computationally using density functional theory(DFT)calculations based on lattice dynamics-related theory.Moreover,to demonstrate the extended predictive capability of the transfer learning model for new materials,a pool of virtual compounds derived from prototype crystal structures from the Materials Project(MP)database is generated.T_(c) predictions are obtained for∼3600 virtual compounds,which underwent screening for electroneutrality and thermodynamic stability.An Extra Trees-based model is trained to utilize E_(hull)values to obtain thermodynamically stable materials,employing a dataset containing Ehull values for approximately 150k materials for training.Materials with Ehull values exceeding 5 meV/atom were filtered out,resulting in a refined list of potential Mg-based superconductors.This study showcases the effectiveness of transfer learning in predicting superconducting properties and highlights its potential for accelerating the discovery of Mg-based materials in the field of superconductivity.展开更多
Fushun oil shale(FOS) was subjected to thermal dissolution(TD) under different conditions. The results show that the optimal solvent, temperature, time, and ratio of solvent to FOS are ethanol, 300 °C, 2 h, and 5...Fushun oil shale(FOS) was subjected to thermal dissolution(TD) under different conditions. The results show that the optimal solvent, temperature, time, and ratio of solvent to FOS are ethanol, 300 °C, 2 h, and 5 ml·g^(-1),respectively and the corresponding yield of the soluble portion(SP) is 32.2%(daf), which is much higher than the oil content of FOS(ca. 6%), suggesting that TD in ethanol is an excellent way to extract organics from FOS.According to 3 direct analyses, aliphatic moieties in FOS are the most abundant followed by C\\O-containing moieties and each cluster in FOS has 3 conjugated aromatic rings on average with fewer substituents. According to the analysis with a gas chromatograph/mass spectrometer, alkanes are predominant in all the SPs. A number of alkenes were identified in the SPs from the TD, while none of the alkenes were detected in acetone-SP obtained at room temperature, implying that the TD can destroy the π-π and intertwining interactions between alkenes and macromolecular structures in FOS. Moreover, a small amount of alkyl-substituted phenols and alkoxysubstituted phenols were detected in ethanol-SP from the TD, which could be the products from ethanolyzing the macromolecular moiety of FOS.展开更多
Fortunella margarita(Lour.) Swingle, commonly known as kumquat, is the smallest citrus fruit. It thrives in southeastern China and is widely cultivated and consumed in the world due to its multiple health benefits. ...Fortunella margarita(Lour.) Swingle, commonly known as kumquat, is the smallest citrus fruit. It thrives in southeastern China and is widely cultivated and consumed in the world due to its multiple health benefits. It has been used as an important herbal medicine in traditional Chinese medicine and also as one of the most popular fruits. There are various kinds of bioactive compounds in F. margarita, such as polysaccharides, limonoids, essential oils, flavonoids, phenolic acids, vitamins, dietary fiber, etc. In addition, many studies have reported that these bioactive compounds can be used as antioxidant, antimicrobial, hypolipidemic, drosophila lure components in functional foods, pharmaceuticals and daily chemical products due to their biological activities. This review focuses on the structural features and biological activities of polysaccharides, limonoids, essential oils and flavonoids and other bioactive substances from F. margarita and their potential applications in food, daily chemical and pharmaceutical industries.展开更多
The Deep Seismic Sounding( DSS) projects carried out from the 1970 s in the lower Yangtze region and its neighboring area were reviewed in this paper,then the basic wave group features of those wide angle reflection /...The Deep Seismic Sounding( DSS) projects carried out from the 1970 s in the lower Yangtze region and its neighboring area were reviewed in this paper,then the basic wave group features of those wide angle reflection / refraction record sections,and of the crustal structure are summarized. It shows that there were in total five clear wave groups on the record sections,which include the first arrival Pg,the reflection P1 from the bottom interface of the upper crust,the reflection P3 from the bottom interface of the middle crust,the strong reflection Pm from the Moho boundary,and the refraction Pn from uppermost mantle. In general,these phases are easily consistently traced and compared,despite some first arrivals being delayed or arriving earlier than normal due to the shallow sedimentary cover or bedrocks. In particular,in the Dabie Mountain region the seismic events of a few gathered shots always have weak reflection energy,are twisted,or exhibit disorganized waveforms, which could be attributed to the disruption variations of reflection depth,the broken Moho,and the discontinuity of the reflection boundary within crust. The regional crustal structures are composed of the upper,middle and lower crust,of which the middle and lower layers can be divided into two weak reflection ones. The crustal thickness of the North China and Yangtze platform are 30km- 36 km,and the Moho exhibits a flat geometry despite some local uplifts. The average pressure velocity in lower crust beneath this two tectonic area is 6. 7 ± 0. 3km / s. Nevertheless,beneath the Dabieshan area the crustal thickness is 32km- 41 km,the Moho bends down sharply andtakes an abrupt 4km- 7km dislocation in the vertical direction. The average pressure velocity in the lower crust beneath the Dabieshan area is 6. 8 ± 0. 2km / s.展开更多
This paper uses the ARW-WRF model to carry out a numerical simulation of a warm-sector heavy rainfall event over southern China on the 22-23 May, 2014. A composite analysis method was used to analyze the evolution pro...This paper uses the ARW-WRF model to carry out a numerical simulation of a warm-sector heavy rainfall event over southern China on the 22-23 May, 2014. A composite analysis method was used to analyze the evolution process and structural features of the convective cells on a convection line during this rainfall event. This analysis identified three stages:(1) Stage of activation: the equivalent potential temperature surfaces as lower layers start to bulge and form warm cells and weak vertical convective cloud towers which are subject to the impact of low-level warm moist updrafts in the rainfall sector;(2) Stage of development: the warm cells continue to bulge and form warm air columns and the convective cloud towers develop upwards becoming stronger as they rise;(3) Stage of maturity: the warm air columns start to connect with the stable layer in the upper air; the convective cloud tower will bend and tilt westward with each increasing in height, and the convection cell is characterized by a "crescent-shaped echo" above the 700 h Pa plane. During this stage the internal temperature of the cell is higher than the ambient temperature and the dynamic structural field is manifested as intensive vertical upward movement. The large-value centers of the northerly and westerly winds in the middle layer correspond to the warm moist center in the cells and the relatively cold center south of the warm air column. Further analysis shows that the formation of the "crescent-shaped" convective cell is associated with horizontal vorticity. Horizontal vorticity in the center and west of the warm cell experiences stronger cyclonic and anticyclonic shear transformation over time; this not only causes the original suborbicular cell echo shape to develop into a crescent-like shape, but also makes a convection line consisting of cells that develop to the northwest.展开更多
The 1°×1° distribution map of crustmantle structural ratio R for the lithosphere along the Longitudinal Seismic Belt of China has been compiled using computer based on the results of geophysical prospec...The 1°×1° distribution map of crustmantle structural ratio R for the lithosphere along the Longitudinal Seismic Belt of China has been compiled using computer based on the results of geophysical prospecting by previous researchers, and the latest results by the present authors. Based on this map, an insight into the structural features of the crustmantle assemblage along the Longitudinal Seismic Belt has been gained, while their relation to seismic activity and the distributions of geothermal flux and intracrustal high conductivitylow velocity layers, as well as their tectonic effect to seismicity have been discussed.展开更多
The south coastal of Taizhou lies on the magmatic rock belt along the southeast coast of China,which has a complex regional geological structures,intense tectonic movement,and frequent magmatic activities.On the basis...The south coastal of Taizhou lies on the magmatic rock belt along the southeast coast of China,which has a complex regional geological structures,intense tectonic movement,and frequent magmatic activities.On the basis of the latest aeromagnetic data,combined with regional geology,gravity,and magnetic susceptibility information,integrated interpretation of the regional aeromagnetic anomalies and their refl ected faults was completed.According to the block features in diff erent zones of the reduction to the pole aeromagnetic data,the magnetic field characteristics and relationship with the structure division were described in detail.The different characteristics of the magnetic field are the concentrated reflection of tectonic movements,magmatic activities,and stratigraphic distributions;the fault structure,especially deep and large fault structures,was inferred and studied.The fault structures were mainly distributed in the NE,NNE,and NW directions,with approximately equal spacing between them.The magnetic anomaly is mainly characterized by the boundary,gradient zones,and beaded anomalies in a different magnetic field.The faults are not only important tectonic boundaries in this region but also tectonic belts that control the distribution of mineralization.Under the interaction of these faults,they form the basic structural pattern of the east-west zone and the north-south block.The NE faults have the largest scale and obviously control the diff erent magnetic fi elds and magmatic activities.The results can provide a reference for further study of the distribution and activity characteristics of magmatic rocks in the coastal zone.展开更多
Handwriting recognition is one of the most significant problems in pattern recognition,many studies have been proposed to improve this recognition of handwritten text for different languages.Yet,Fewer studies have bee...Handwriting recognition is one of the most significant problems in pattern recognition,many studies have been proposed to improve this recognition of handwritten text for different languages.Yet,Fewer studies have been done for the Arabic language and the processing of its texts remains a particularly distinctive problem due to the variability of writing styles and the nature of Arabic scripts compared to other scripts.The present paper suggests a feature extraction technique for offlineArabic handwriting recognition.A handwriting recognition system for Arabic words using a few important structural features and based on a Radial Basis Function(RBF)neural networks is proposed.The methods of feature extraction are central to achieve high recognition performance.The proposed methodology relies on a feature extraction technique based on many structural characteristics extracted from the word skeleton(subwords,diacritics,loops,ascenders,and descenders).In order to reach our purpose,we built our own word database and the proposed system has been successfully tested on a handwriting database of Algerian city names(wilayas).Finally,a simple classifier based on the radial basis function neural network is presented to recognize certain words to verify the reliability of the proposed feature extraction.The experiments on some images of the benchmark IFN/ENIT database show that the proposed system improves recognition and the results obtained are indicative of the efficiency of our technique.展开更多
Tropoje-Has ophiolitic massif of eastern Mirdita(Albania)ophiolitic belt,is a major source for metallurgical chromite ore in Albania.Massif consists of a thick mantle section of SSZ type,8-10 km thick and
This study explored the potential of polysaccharides from Actium lappa(ALPs)as natural wall materials for producing ALP-based nanoparticles to deliver poorly water-soluble oleanolic acid(OA)and ursolic acid(UA).Encaps...This study explored the potential of polysaccharides from Actium lappa(ALPs)as natural wall materials for producing ALP-based nanoparticles to deliver poorly water-soluble oleanolic acid(OA)and ursolic acid(UA).Encapsulating OA+UA with ALPs(ALP:OA+UA,50:1;OA:UA,1:1)changed the crystalline nature to a more amorphous state through hydrogen bonding and involving O-H/C-O/O-C-O groups.ALP-OA/UA nanoparticles had a particle size and zeta potential(in water)of 199.1 nm/-7.15 mV,with a narrow unimodal size distribution,and excellent pH,salt solution,temperature and storage stability.Compared with ALPs,ALPOA/UA nanoparticles showed enhanced anti-inflammatory activity(especially at a dose of 100μg/mL)in a CuSO-induced zebrafish inflammation model via down-regulating the NF-κB signalling pathway and gene expression of associated transcription factors and cytokines(TNF-α,IL-1βand IL-8).Therefore,ALP-based nanoparticles are natural and anti-inflammatory carriers for hydrophobic bioactive molecules.展开更多
In order to expand the advantages of strong durability and high compressive strength of calcium silicate hydrates(C-S-H),at the same time to make up for the poor early mechanical strength of magnesium silicate hydrate...In order to expand the advantages of strong durability and high compressive strength of calcium silicate hydrates(C-S-H),at the same time to make up for the poor early mechanical strength of magnesium silicate hydrates (M-S-H),we present the features and advantages of C-S-H and M-S-H and a comprehensive review of the progress on CaO-MgO-SiO_(2)-H_(2)O.Moreover,we systematically describe natural calcium and magnesium silicate minerals and thermodynamic properties of CaO-MgO-SiO_(2)-H_(2)O.The effect of magnesium on C-S-H and calcium on M-S-H is summarized deeply;the formation and structural feature of CaO-MgO-SiO_(2)-H_(2)O is also explained in detail.Finally,the development of calcium and magnesium silicate hydrates in the future is pointed out,and the further research is discussed and estimated.展开更多
Based on the definition of a logic structure feature to relate logically functional requirements to geometric representation independent upon detailed geometric representation, this paper presents an idea of logical s...Based on the definition of a logic structure feature to relate logically functional requirements to geometric representation independent upon detailed geometric representation, this paper presents an idea of logical structure modeling for computer aided conceptual design and makes attempt to establish a representation formalism of logic structure modeling. The definition and representation of logical structure feature are given and an assembly module definition for supporting top down conceptual design is also proposed. The proposed scheme contributes to several aspects of conceptual design research, especially to provide elementarily a formal methodology for computer aided conceptual design system development and operation.展开更多
A squall line on 14 June 2009 in the provinces of Jiangsu and Anhui was well simulated using the Advanced Regional Prediction System (ARPS) model. Based on high resolution spatial and temporal data, a detailed analy...A squall line on 14 June 2009 in the provinces of Jiangsu and Anhui was well simulated using the Advanced Regional Prediction System (ARPS) model. Based on high resolution spatial and temporal data, a detailed analysis of the structural features and propagation mechanisms of the squall line was conducted. The dynamic and thermodynamic structural charac- teristics and their causes were analyzed in detail. Unbalanced flows were found to play a key role in initiating gravity waves during the squall line's development. The spread and development of the gravity waves were sustained by convection in the wave-CISK process. The squall line's propagation and development mainly relied on the combined effect of gravity waves at the midlevel and cold outflow along the gust front. New cells were continuously forced by the cold pool outflow and were enhanced and lifted by the intense upward motion. At a particular phase, the new cells merged with the updraft of the gravity waves, leading to an intense updraft that strengthened the squall line.展开更多
The deep-water area of the northern South China Sea, which has active and complicated tectonics, is rich in natural gas and gas hydrate. While the tectonic characteristics is different obviously between the east and t...The deep-water area of the northern South China Sea, which has active and complicated tectonics, is rich in natural gas and gas hydrate. While the tectonic characteristics is different obviously between the east and the west because of the special tectonic position and tectonic evolution process. In terms of submarine geomorphology, the eastern shelf-slope structure in Pearl River Mouth Basin is characterized by having wide sub-basins and narrow intervening highs, whereas the western (Qiongdongnan Basin) structure is characterized by narrow sub- basins and wide uplift. As to the structural features, the deep-water sags in the east are all structurally half- grabens, controlled by a series of south-dipping normal faults. While the west sags are mainly characterised by graben structures with faulting in both the south and north. With regards to the tectonic evolution, the east began neotectonic activity when the post-rifting stage had completed at the end of the Middle Miocene. In the Baiyun Sag, tectonic activity became strong and was characterised by rapid subsidence and obvious faulting. Whereas in the west, neotectonic activity began at the end of the Late Miocene with rapid deposition and weak fault activity.展开更多
In terms of the characteristic topology parameters of climate complex networks, the spatial connection structural complexity of the circulation system and the influence of four teleconnection patterns are quantitative...In terms of the characteristic topology parameters of climate complex networks, the spatial connection structural complexity of the circulation system and the influence of four teleconnection patterns are quantitatively described. Results of node degrees for the Northern Hemisphere (NH) mid-high latitude (30° N-90°N) circulation system (NHS) networks with and without the Arctic Oscillations (AO), the North Atlantic Oscillations (NAO) and the Pacific-North American pattern (PNA) demonstrate that the teleconnections greatly shorten the mean shortest path length of the networks, thus being advantageous to the rapid transfer of local fluctuation information over the network and to the stability of the NHS. The impact of the AO on the NHS connection structure is most important and the impact of the NAO is the next important. The PNA is a relatively independent teleconnection, and its role in the NHS is mainly manifested in the connection between the NHS and the tropical circulation system (TRS). As to the Southern Hemisphere mid-high latitude (30°S-90°S) circulation system (SHS), the impact of the Antarctic Arctic Oscillations (AAO) on the structural stability of the system is most important. In addition, there might be a stable correlation dipole (AACD) in the SHS, which also has important influence on the structure of the SHS networks.展开更多
Chronic diseases have drawn much attention as the primary cause of death and disability. In exploring novel sideeffect-free agents against chronic diseases, significant efforts have been devoted to mushroom polysaccha...Chronic diseases have drawn much attention as the primary cause of death and disability. In exploring novel sideeffect-free agents against chronic diseases, significant efforts have been devoted to mushroom polysaccharides due to their diverse biological activities. This work reviewed the structural features, biological performances and molecular mechanisms of mushroom polysaccharides in managing cancers, diabetes mellitus and cardiovascular diseases. The potentials of mushroom polysaccharides against chronic diseases highly depend on their structural features, including monosaccharide composition, molecular weight, the type and configuration of glycosidic bonds, degree of branching, the type of substituent pattern and chain conformation. Regarding their working mechanisms, shared and diseasespecific pathways were found. The three chronic diseases shared the regulation of specific signalling pathways and the adjustment of gut microbiota. In addition, the roles of transcription factors, receptors, enzymes, hormones and other functional proteins involved in the molecular mechanisms of mushroom polysaccharides against chronic diseases are first elaborated herein. The present review describes the state of the art of mushroom polysaccharides in treating chronic diseases and addresses the perspectives, and will further promote research on this topic.展开更多
基金funded by the Natural Science Foundation of Shandong Province, China (ZR2023MB049)the China Postdoctoral Science Foundation (2020M670483)the Science Foundation of Weifang University (2023BS11)。
文摘The catalyst layers(CLs) electrode is the key component of the membrane electrode assembly(MEA) in proton exchange membrane fuel cells(PEMFCs). Conventional electrodes for PEMFCs are composed of carbon-supported, ionomer, and Pt nanoparticles, all immersed together and sprayed with a micron-level thickness of CLs. They have a performance trade-off where increasing the Pt loading leads to higher performance of abundant triple-phase boundary areas but increases the electrode cost. Major challenges must be overcome before realizing its wide commercialization. Literature research revealed that it is impossible to achieve performance and durability targets with only high-performance catalysts, so the controllable design of CLs architecture in MEAs for PEMFCs must now be the top priority to meet industry goals. From this perspective, a 3D ordered electrode circumvents this issue with a support-free architecture and ultrathin thickness while reducing noble metal Pt loadings. Herein, we discuss the motivation in-depth and summarize the necessary CLs structural features for designing ultralow Pt loading electrodes. Critical issues that remain in progress for 3D ordered CLs must be studied and characterized. Furthermore, approaches for 3D ordered CLs architecture electrode development, involving material design, structure optimization, preparation technology, and characterization techniques, are summarized and are expected to be next-generation CLs for PEMFCs. Finally, the review concludes with perspectives on possible research directions of CL architecture to address the significant challenges in the future.
基金‘Research on Deep Structural Differences between Potential Oil-rich Depressions in Offshore basins of China Sea’from the scientific and technological project of CNOOC Research Institute Co.,Ltd.,under contract No.CCL2021RCPS0167KQN‘Resource Potential,Accumulation Mechanism and Breakthrough Direction of Potential Oil-rich Depressions in Offshore China Sea’,under contract No.220226220101+1 种基金the Project of China Geological Survey under contract No.DD20191003the National Natural Science Foundation of Shandong Province of China under contract No.ZR2022MD047。
文摘The Kyushu–Palau Ridge(KPR),an anti-S-shaped submarine highland at the center of the Philippine Sea Plate(PSP),is considered the residual arc of the Izu–Bonin–Mariana Island Arc,which retains key information about the cessation of the Western Philippine Basin(WPB)expansion and the Parece Vela Basin(PVB)breakup.Herein,using the new generation of satellite altimetry gravity data,high-precision seafloor topography data,and newly acquired ship-borne gravity data,the topographic and gravity characteristics of the KPR mid-southern section and adjacent region are depicted.The distribution characteristics of the faults were delineated using the normalized vertical derivative–total horizontal derivative method(NVDR-THDR)and the minimum curvature potential field separation method.The Moho depth and crustal thickness were inverted using the rapid inversion method for a double-interface model with depth constraints.Based on these results,the crust structure features in the KPR mid-southern section,and the“triangular”structure geological significance where the KPR and Central Basin Rift(CBR)of the WPB intersect are interpreted.The KPR crustal thickness is approximately 6–16 km,with a distinct discontinuity that is slightly thicker than the normal oceanic crust.The KPR mid-southern section crust structure was divided into four segments(S1–S4)from north to south,formed by the CBR eastward extension joint action and clockwise rotation of the PVB expansion axis and the Mindanao fault zone blocking effect.
基金projects of the National Natural Science Foundation of China(Grant Nos.40405007 , 40505009)the National Key Basic Research and Development Project of China(Grant No.2004CB418302) projects of Chinese Academy of Sciences (Nos.KZCX3-SW-225 and 2005r-2-16)
文摘The daily 1°× 1° data of the Aviation (AVN) model, the black body temperature (TBB) data of cloud top, and cloud images by geostationary meteorological satellite (GMS) are used to identify a dew-point front near the periphery of the western Pacific subtropical high (WPSH). The results clearly demonstrate the existence of the dew-point front, and its thermodynamic and dynamic structural characteristics are analyzed in detail. The dew-point front is a transitional belt between the moist southwest monsoon flow and the dry adiabatic sinking flow near the WPSH, manifested by a large horizontal moisture gradient in the mid-lower troposphere and conjugated with the mei-yu front to form a predominant double-front structure associated with intense rainfall in the mei-yu period. The mei-yu front is located between 30° and 35°N, vertically extends from the ground level to the upper level and shifts northward. The dew-point front is to the south of the mei-yu front and lies up against the periphery of the WPSH. Generally, it is located between 850 hPa and 500 hPa. On the dew-point front side, the southwesterly prevails at the lower level and the northeasterly at the upper level; this wind distribution is different from that on the mei-yu front side. Vertical ascending motion exists between the two fronts, and there are descending motions on the north side of the mei^yu front and on the south side of the dew-point front~ which form a secondary circulation. The dynamics of the double fronts also have some interesting features. At the lower level, positive vertical vorticity and obvious convergence between the two fronts are clearly identified. At the mid-lower level, negative local change of the divergence (corresponding to increasing convergence) is often embedded in the two fronts or against the mei-yu front. Most cloud clusters occur between the two fronts and propagate down stream in a wave-like manner.
基金supported by the Funds for the program of the National Natural Science Foundation (Noes. 41572060, U1133602)Projects of YM Lab (2011)Innovation Team of Yunnan province and KMUST (2008,2012)
文摘1 Introduction The huize Zn-Pb ore district in Yunnan province is locatedinthecentralsouthernofthe Sichuan—Yunnan—GuizhouPb-ZnPoly-metallic Mineralization Area in the southwestern margin of the Yangtze Block,and is strictly controlled by fault structures.It has developed to one of the famous production bases of lead&zinc and germanium in China.
文摘This study presents a transfer learning approach for discovering potential Mg-based superconductors utilizing a comprehensive target dataset.Initially,a large source dataset(Bandgap dataset)comprising approximately∼75k compounds is utilized for pretraining,followed by fine-tuning with a smaller Critical Temperature(T_(c))dataset containing∼300 compounds.Comparatively,there is a significant improvement in the performance of the transfer learning model over the traditional deep learning(DL)model in predicting Tc.Subsequently,the transfer learning model is applied to predict the properties of approximately 150k compounds.Predictions are validated computationally using density functional theory(DFT)calculations based on lattice dynamics-related theory.Moreover,to demonstrate the extended predictive capability of the transfer learning model for new materials,a pool of virtual compounds derived from prototype crystal structures from the Materials Project(MP)database is generated.T_(c) predictions are obtained for∼3600 virtual compounds,which underwent screening for electroneutrality and thermodynamic stability.An Extra Trees-based model is trained to utilize E_(hull)values to obtain thermodynamically stable materials,employing a dataset containing Ehull values for approximately 150k materials for training.Materials with Ehull values exceeding 5 meV/atom were filtered out,resulting in a refined list of potential Mg-based superconductors.This study showcases the effectiveness of transfer learning in predicting superconducting properties and highlights its potential for accelerating the discovery of Mg-based materials in the field of superconductivity.
基金Supported by the Fundamental Research Funds for the Central Universities(2017BSCXB27)the Research and the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX17_1507)
文摘Fushun oil shale(FOS) was subjected to thermal dissolution(TD) under different conditions. The results show that the optimal solvent, temperature, time, and ratio of solvent to FOS are ethanol, 300 °C, 2 h, and 5 ml·g^(-1),respectively and the corresponding yield of the soluble portion(SP) is 32.2%(daf), which is much higher than the oil content of FOS(ca. 6%), suggesting that TD in ethanol is an excellent way to extract organics from FOS.According to 3 direct analyses, aliphatic moieties in FOS are the most abundant followed by C\\O-containing moieties and each cluster in FOS has 3 conjugated aromatic rings on average with fewer substituents. According to the analysis with a gas chromatograph/mass spectrometer, alkanes are predominant in all the SPs. A number of alkenes were identified in the SPs from the TD, while none of the alkenes were detected in acetone-SP obtained at room temperature, implying that the TD can destroy the π-π and intertwining interactions between alkenes and macromolecular structures in FOS. Moreover, a small amount of alkyl-substituted phenols and alkoxysubstituted phenols were detected in ethanol-SP from the TD, which could be the products from ethanolyzing the macromolecular moiety of FOS.
基金Supported by the Natural Science Foundation of Fujian Province(2016J05068)High Level University Construction Projects of Fujian Agriculture and Forestry University(612014042)+2 种基金Science and Technology Development Foundation Project of Fujian Agriculture and Forestry University(KF2015101)Leading Talents Support Program of Science and Technology Innovation in Fujian Province(KRC16002A)Excellent Talents Support Program of Colleges and Universities in Fujian Province(JA14094)
文摘Fortunella margarita(Lour.) Swingle, commonly known as kumquat, is the smallest citrus fruit. It thrives in southeastern China and is widely cultivated and consumed in the world due to its multiple health benefits. It has been used as an important herbal medicine in traditional Chinese medicine and also as one of the most popular fruits. There are various kinds of bioactive compounds in F. margarita, such as polysaccharides, limonoids, essential oils, flavonoids, phenolic acids, vitamins, dietary fiber, etc. In addition, many studies have reported that these bioactive compounds can be used as antioxidant, antimicrobial, hypolipidemic, drosophila lure components in functional foods, pharmaceuticals and daily chemical products due to their biological activities. This review focuses on the structural features and biological activities of polysaccharides, limonoids, essential oils and flavonoids and other bioactive substances from F. margarita and their potential applications in food, daily chemical and pharmaceutical industries.
基金funded by the Special Public Welfare Industry Research of China Earthquake Administration(201408023)Academician Chen Yong Workstation Special Funds of Yunnan Province and Natural Science Foundation of China(41374062,41174075)
文摘The Deep Seismic Sounding( DSS) projects carried out from the 1970 s in the lower Yangtze region and its neighboring area were reviewed in this paper,then the basic wave group features of those wide angle reflection / refraction record sections,and of the crustal structure are summarized. It shows that there were in total five clear wave groups on the record sections,which include the first arrival Pg,the reflection P1 from the bottom interface of the upper crust,the reflection P3 from the bottom interface of the middle crust,the strong reflection Pm from the Moho boundary,and the refraction Pn from uppermost mantle. In general,these phases are easily consistently traced and compared,despite some first arrivals being delayed or arriving earlier than normal due to the shallow sedimentary cover or bedrocks. In particular,in the Dabie Mountain region the seismic events of a few gathered shots always have weak reflection energy,are twisted,or exhibit disorganized waveforms, which could be attributed to the disruption variations of reflection depth,the broken Moho,and the discontinuity of the reflection boundary within crust. The regional crustal structures are composed of the upper,middle and lower crust,of which the middle and lower layers can be divided into two weak reflection ones. The crustal thickness of the North China and Yangtze platform are 30km- 36 km,and the Moho exhibits a flat geometry despite some local uplifts. The average pressure velocity in lower crust beneath this two tectonic area is 6. 7 ± 0. 3km / s. Nevertheless,beneath the Dabieshan area the crustal thickness is 32km- 41 km,the Moho bends down sharply andtakes an abrupt 4km- 7km dislocation in the vertical direction. The average pressure velocity in the lower crust beneath the Dabieshan area is 6. 8 ± 0. 2km / s.
基金National Basic Research Program of China(Project 973:2013CB430103)National Natural Science Foundation of China(41530427)+1 种基金Chinese Academy of Meteorological Sciences(2015LASW-A07)State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences
文摘This paper uses the ARW-WRF model to carry out a numerical simulation of a warm-sector heavy rainfall event over southern China on the 22-23 May, 2014. A composite analysis method was used to analyze the evolution process and structural features of the convective cells on a convection line during this rainfall event. This analysis identified three stages:(1) Stage of activation: the equivalent potential temperature surfaces as lower layers start to bulge and form warm cells and weak vertical convective cloud towers which are subject to the impact of low-level warm moist updrafts in the rainfall sector;(2) Stage of development: the warm cells continue to bulge and form warm air columns and the convective cloud towers develop upwards becoming stronger as they rise;(3) Stage of maturity: the warm air columns start to connect with the stable layer in the upper air; the convective cloud tower will bend and tilt westward with each increasing in height, and the convection cell is characterized by a "crescent-shaped echo" above the 700 h Pa plane. During this stage the internal temperature of the cell is higher than the ambient temperature and the dynamic structural field is manifested as intensive vertical upward movement. The large-value centers of the northerly and westerly winds in the middle layer correspond to the warm moist center in the cells and the relatively cold center south of the warm air column. Further analysis shows that the formation of the "crescent-shaped" convective cell is associated with horizontal vorticity. Horizontal vorticity in the center and west of the warm cell experiences stronger cyclonic and anticyclonic shear transformation over time; this not only causes the original suborbicular cell echo shape to develop into a crescent-like shape, but also makes a convection line consisting of cells that develop to the northwest.
文摘The 1°×1° distribution map of crustmantle structural ratio R for the lithosphere along the Longitudinal Seismic Belt of China has been compiled using computer based on the results of geophysical prospecting by previous researchers, and the latest results by the present authors. Based on this map, an insight into the structural features of the crustmantle assemblage along the Longitudinal Seismic Belt has been gained, while their relation to seismic activity and the distributions of geothermal flux and intracrustal high conductivitylow velocity layers, as well as their tectonic effect to seismicity have been discussed.
基金This work was supported by the National Key Research and Development Program of China(2017YFC0601706 and 2017YFC0601705)Investigation and application of airborne geophysical remote sensing in Bohai Coastal Zone(DD20160150).
文摘The south coastal of Taizhou lies on the magmatic rock belt along the southeast coast of China,which has a complex regional geological structures,intense tectonic movement,and frequent magmatic activities.On the basis of the latest aeromagnetic data,combined with regional geology,gravity,and magnetic susceptibility information,integrated interpretation of the regional aeromagnetic anomalies and their refl ected faults was completed.According to the block features in diff erent zones of the reduction to the pole aeromagnetic data,the magnetic field characteristics and relationship with the structure division were described in detail.The different characteristics of the magnetic field are the concentrated reflection of tectonic movements,magmatic activities,and stratigraphic distributions;the fault structure,especially deep and large fault structures,was inferred and studied.The fault structures were mainly distributed in the NE,NNE,and NW directions,with approximately equal spacing between them.The magnetic anomaly is mainly characterized by the boundary,gradient zones,and beaded anomalies in a different magnetic field.The faults are not only important tectonic boundaries in this region but also tectonic belts that control the distribution of mineralization.Under the interaction of these faults,they form the basic structural pattern of the east-west zone and the north-south block.The NE faults have the largest scale and obviously control the diff erent magnetic fi elds and magmatic activities.The results can provide a reference for further study of the distribution and activity characteristics of magmatic rocks in the coastal zone.
文摘Handwriting recognition is one of the most significant problems in pattern recognition,many studies have been proposed to improve this recognition of handwritten text for different languages.Yet,Fewer studies have been done for the Arabic language and the processing of its texts remains a particularly distinctive problem due to the variability of writing styles and the nature of Arabic scripts compared to other scripts.The present paper suggests a feature extraction technique for offlineArabic handwriting recognition.A handwriting recognition system for Arabic words using a few important structural features and based on a Radial Basis Function(RBF)neural networks is proposed.The methods of feature extraction are central to achieve high recognition performance.The proposed methodology relies on a feature extraction technique based on many structural characteristics extracted from the word skeleton(subwords,diacritics,loops,ascenders,and descenders).In order to reach our purpose,we built our own word database and the proposed system has been successfully tested on a handwriting database of Algerian city names(wilayas).Finally,a simple classifier based on the radial basis function neural network is presented to recognize certain words to verify the reliability of the proposed feature extraction.The experiments on some images of the benchmark IFN/ENIT database show that the proposed system improves recognition and the results obtained are indicative of the efficiency of our technique.
文摘Tropoje-Has ophiolitic massif of eastern Mirdita(Albania)ophiolitic belt,is a major source for metallurgical chromite ore in Albania.Massif consists of a thick mantle section of SSZ type,8-10 km thick and
基金supported by the Shandong Provincial Natural Science Foundation of China(ZR2019BC100)Science,Education and Industry Integration Innovation Pilot Project of Qilu University of Technology(Shandong Academy of Sciences)(2020KJC-ZD10)Incubation Program of Youth Innovation in Shandong Province。
文摘This study explored the potential of polysaccharides from Actium lappa(ALPs)as natural wall materials for producing ALP-based nanoparticles to deliver poorly water-soluble oleanolic acid(OA)and ursolic acid(UA).Encapsulating OA+UA with ALPs(ALP:OA+UA,50:1;OA:UA,1:1)changed the crystalline nature to a more amorphous state through hydrogen bonding and involving O-H/C-O/O-C-O groups.ALP-OA/UA nanoparticles had a particle size and zeta potential(in water)of 199.1 nm/-7.15 mV,with a narrow unimodal size distribution,and excellent pH,salt solution,temperature and storage stability.Compared with ALPs,ALPOA/UA nanoparticles showed enhanced anti-inflammatory activity(especially at a dose of 100μg/mL)in a CuSO-induced zebrafish inflammation model via down-regulating the NF-κB signalling pathway and gene expression of associated transcription factors and cytokines(TNF-α,IL-1βand IL-8).Therefore,ALP-based nanoparticles are natural and anti-inflammatory carriers for hydrophobic bioactive molecules.
基金Funded by Natural Science Basic Research Plan in Shaanxi Province of China (Nos.2021JQ-500, 2021GY-203, 2023-JCYB-096)Shaanxi Provincial Education Department of Key Scientific Research Plan (No.20JS079)Shaanxi Provincial Education Department of Normal Scientific Research Plan (No.20JK0727)。
文摘In order to expand the advantages of strong durability and high compressive strength of calcium silicate hydrates(C-S-H),at the same time to make up for the poor early mechanical strength of magnesium silicate hydrates (M-S-H),we present the features and advantages of C-S-H and M-S-H and a comprehensive review of the progress on CaO-MgO-SiO_(2)-H_(2)O.Moreover,we systematically describe natural calcium and magnesium silicate minerals and thermodynamic properties of CaO-MgO-SiO_(2)-H_(2)O.The effect of magnesium on C-S-H and calcium on M-S-H is summarized deeply;the formation and structural feature of CaO-MgO-SiO_(2)-H_(2)O is also explained in detail.Finally,the development of calcium and magnesium silicate hydrates in the future is pointed out,and the further research is discussed and estimated.
文摘Based on the definition of a logic structure feature to relate logically functional requirements to geometric representation independent upon detailed geometric representation, this paper presents an idea of logical structure modeling for computer aided conceptual design and makes attempt to establish a representation formalism of logic structure modeling. The definition and representation of logical structure feature are given and an assembly module definition for supporting top down conceptual design is also proposed. The proposed scheme contributes to several aspects of conceptual design research, especially to provide elementarily a formal methodology for computer aided conceptual design system development and operation.
基金supported by the National Basic Research Program of China (Grant No. 2013CB 430105)the Key Program of the Chinese Academy of Sciences (Grant No. KZZD-EW-05)+1 种基金the project of CAMS (Chinese Academy of Meteorological Sciences) (Grant No. 2011LASWB15)the National Natural Sciences Foundation of China (Grant No. 41175060)
文摘A squall line on 14 June 2009 in the provinces of Jiangsu and Anhui was well simulated using the Advanced Regional Prediction System (ARPS) model. Based on high resolution spatial and temporal data, a detailed analysis of the structural features and propagation mechanisms of the squall line was conducted. The dynamic and thermodynamic structural charac- teristics and their causes were analyzed in detail. Unbalanced flows were found to play a key role in initiating gravity waves during the squall line's development. The spread and development of the gravity waves were sustained by convection in the wave-CISK process. The squall line's propagation and development mainly relied on the combined effect of gravity waves at the midlevel and cold outflow along the gust front. New cells were continuously forced by the cold pool outflow and were enhanced and lifted by the intense upward motion. At a particular phase, the new cells merged with the updraft of the gravity waves, leading to an intense updraft that strengthened the squall line.
基金The National Basic Research Program(973 Program)of China under contract No.2009CB219401Science and Technology Program of Guangzhou under contract No.201505041038084+2 种基金the Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Southwest Petroleum University)under contract No.PLN1401the Key Laboratory of Gas Hydrate,Ministry of Land and Resources under contract No.SHW(2014)-DX-01the State Key Laboratory Breeding Base of Nuclear Resources and Environment,East China Institute of Technology under contract No.NRE1302
文摘The deep-water area of the northern South China Sea, which has active and complicated tectonics, is rich in natural gas and gas hydrate. While the tectonic characteristics is different obviously between the east and the west because of the special tectonic position and tectonic evolution process. In terms of submarine geomorphology, the eastern shelf-slope structure in Pearl River Mouth Basin is characterized by having wide sub-basins and narrow intervening highs, whereas the western (Qiongdongnan Basin) structure is characterized by narrow sub- basins and wide uplift. As to the structural features, the deep-water sags in the east are all structurally half- grabens, controlled by a series of south-dipping normal faults. While the west sags are mainly characterised by graben structures with faulting in both the south and north. With regards to the tectonic evolution, the east began neotectonic activity when the post-rifting stage had completed at the end of the Middle Miocene. In the Baiyun Sag, tectonic activity became strong and was characterised by rapid subsidence and obvious faulting. Whereas in the west, neotectonic activity began at the end of the Late Miocene with rapid deposition and weak fault activity.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.40930952 and 40705031)the Special Scientific Research Project for Public Interest,China (Grant Nos.GYHY201006021 and GYHY201106016)the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No.2007BAC29B01)
文摘In terms of the characteristic topology parameters of climate complex networks, the spatial connection structural complexity of the circulation system and the influence of four teleconnection patterns are quantitatively described. Results of node degrees for the Northern Hemisphere (NH) mid-high latitude (30° N-90°N) circulation system (NHS) networks with and without the Arctic Oscillations (AO), the North Atlantic Oscillations (NAO) and the Pacific-North American pattern (PNA) demonstrate that the teleconnections greatly shorten the mean shortest path length of the networks, thus being advantageous to the rapid transfer of local fluctuation information over the network and to the stability of the NHS. The impact of the AO on the NHS connection structure is most important and the impact of the NAO is the next important. The PNA is a relatively independent teleconnection, and its role in the NHS is mainly manifested in the connection between the NHS and the tropical circulation system (TRS). As to the Southern Hemisphere mid-high latitude (30°S-90°S) circulation system (SHS), the impact of the Antarctic Arctic Oscillations (AAO) on the structural stability of the system is most important. In addition, there might be a stable correlation dipole (AACD) in the SHS, which also has important influence on the structure of the SHS networks.
基金supported by the National Key Research and Development Program of China(2016YFD0400204-2)。
文摘Chronic diseases have drawn much attention as the primary cause of death and disability. In exploring novel sideeffect-free agents against chronic diseases, significant efforts have been devoted to mushroom polysaccharides due to their diverse biological activities. This work reviewed the structural features, biological performances and molecular mechanisms of mushroom polysaccharides in managing cancers, diabetes mellitus and cardiovascular diseases. The potentials of mushroom polysaccharides against chronic diseases highly depend on their structural features, including monosaccharide composition, molecular weight, the type and configuration of glycosidic bonds, degree of branching, the type of substituent pattern and chain conformation. Regarding their working mechanisms, shared and diseasespecific pathways were found. The three chronic diseases shared the regulation of specific signalling pathways and the adjustment of gut microbiota. In addition, the roles of transcription factors, receptors, enzymes, hormones and other functional proteins involved in the molecular mechanisms of mushroom polysaccharides against chronic diseases are first elaborated herein. The present review describes the state of the art of mushroom polysaccharides in treating chronic diseases and addresses the perspectives, and will further promote research on this topic.