Water is the key factor limiting dryland wheat grain yield.Mulching affects crop yield and yield components by affecting soil moisture.Further research is needed to determine the relationships between yield components...Water is the key factor limiting dryland wheat grain yield.Mulching affects crop yield and yield components by affecting soil moisture.Further research is needed to determine the relationships between yield components and soil moisture with yield,and to identify the most important factor affecting grain yield under various mulching measures.A long-term 9-yearifeld experiment in the Loess Plateau of Northwest China was carried out with three treatments:no mulch (CK),plastic mulch (M_(P)) and straw mulch (M_(S)).Yield factors and soil moisture were measured,and the relationships between them were explored by correlation analysis,structural equation modeling and significance analysis.The results showed that compared with CK,the average grain yields of M_(P) and M_(S) increased by 13.0and 10.6%,respectively.The average annual grain yield of the M_(P) treatment was 134 kg ha^(–1) higher than the M_(S) treatment.There were no significant differences in yield components among the three treatments (P<0.05).Soil water storage of the M_(S) treatment was greater than the M_(P) treatment,although the differences were not statistically signifiant.Soil water storage during the summer fallow period (SWSSF) and soil water storage before sowing (SWSS) of M_(S) were significantly higher than in CK,which increased by 38.5 and 13.6%,respectively.The relationship between M_(P) and CK was not statistically significant for SWSSF,but the SWSS in M_(P) was significantly higher than in CK.In terms of soil water storage after harvest (SWSH) and water consumption in the growth period(ET),there were no signi?cant differences among the three treatments.Based on the three analysis methods,we found that spike number and ET were positively correlated with grain yield.However,the relative importance of spike number to yield was the greatest in the M_(P )and M_(S) treatments,while that of ET was the greatest in CK.Suifcient SWSSF could indirectly increase spike number and ET in the three treatments.Based on these results,mulch can improve yield and soil water storage.The most important factor affecting the grain yield of dryland wheat was spike number under mulching,and ET with CK.These findings may help us to understand the main factors influencing dryland wheat grain yield under mulching conditions compared to CK.展开更多
Amplifying drought stress and high precipitation variability impair dryland wheat production.These problems can potentially be minimized by using plastic mulch(PM)or straw mulch(SM).Therefore,wheat grain yield,soil wa...Amplifying drought stress and high precipitation variability impair dryland wheat production.These problems can potentially be minimized by using plastic mulch(PM)or straw mulch(SM).Therefore,wheat grain yield,soil water storage,soil temperature and water-use productivity of PM and SM treatments were compared with no mulch(CK)treatment on dryland wheat over a period of eight seasons.Compared to the CK treatment,PM and SM treatments on average significantly increased grain yield by 12.6 and 10.5%,respectively.Compared to the CK treatment,SM treatment significantly decreased soil daily temperature by 0.57,0.60 and 0.48℃ for the whole seasons,growing periods and summer fallow periods,respectively.In contrast,compared to the CK treatment,PM treatment increased soil daily temperature by 0.44,0.51 and 0.27℃ for the whole seasons,growing periods and summer fallow periods,respectively.Lower soil temperature under SM allowed greater soil water storage than under PM.Soil water storage pre-seeding was 17%greater under the SM than under the PM treatment.Soil water storage post-harvest was similar for the PM and SM treatments,but evapotranspiration was 4.5%higher in the SM than in the PM treatment.Consequently,water-use productivity was 6.6%greater under PM than under the SM treatment.Therefore,PM treatment increased dryland wheat yield and water-use productivity,while straw mulch increased soil water storage.展开更多
Salt stress has been increasingly constraining crop productivity in arid lands of the world. In our recent study, salt stress was aleviated and crop productivity was improved remarkably by straw layer burial plus plas...Salt stress has been increasingly constraining crop productivity in arid lands of the world. In our recent study, salt stress was aleviated and crop productivity was improved remarkably by straw layer burial plus plastic iflm mulching in a saline soil. However, its impact on the microlfora diversity is not wel documented. Field micro-plot experiments were conducted from 2010 to 2011 using four tilage methods: (i) deep tilage with plastic iflm mulching (CK), (i) straw layer burial at 40 cm (S), (ii) straw layer burial plus surface soil mulching with straw material (S+S), and (iv) plastic iflm mulching plus buried straw layer (P+S). Culturable microbes and predominant bacterial communities were studied; based on 16S rDNA, bacterial com-munity structure and abundance were characterized using denaturing gradient gel electrophoresis (DGGE) and polymerase chain reaction (PCR). Results showed that P+S was the most favorable for culturable bacteria, actinomyces and fungi and induced the most diverse genera of bacteria compared to other tilage methods. Soil temperature had signiifcant positive correlations with the number of bacteria, actinomyces and fungi (P〈0.01). However, soil water was poorly correlated with any of the microbes. Salt content had a signiifcant negative correlation with the number of microbers, especialy for bacteria and fungi (P〈0.01). DGGE analysis showed that the P+S exhibited the highest diversity of bacteria with 20 visible bands folowed by S+S, S and CK. Moreover, P+S had the highest similarity (68%) of bacterial communities with CK. The major bacterial genera in al soil samples wereFirmicutes,Proteobacteria andActinobacteria. Given the considerable increase in microbial growth, the combined use of straw layer burial and plastic iflm mulching could be a practical option for aleviating salt stress effects on soil microbial community and thereby improving crop production in arid saline soils.展开更多
A long-term field experiment (started at 2003) was conducted to determine the effects of different dce cultivation methods on growth characteristics and grain yield of late-season rice under double-rice cropping sys...A long-term field experiment (started at 2003) was conducted to determine the effects of different dce cultivation methods on growth characteristics and grain yield of late-season rice under double-rice cropping system in seasonal drought region of southeast China (Yujiang County, Jiangxi Province). The rice cultivation methods included no-tillage and flooded rice cultivation (N-F), no-tillage and non-flooded rice cultivation with straw mulching (N-SM), and no-tillage and non-flooded rice cultivation without straw mulching (N-ZM). There was no significant difference in rice grain yield between the N-SM and N-F treatments. However, the rice grain yields in the N-SM and N-F treatments were significantly higher than that in the N-ZM treatment. The late-season rice plants in the N-SM treatment had significantly higher numbers of effective panicles and total grains per hill compared with those in the N-ZM treatment. The above-ground dry matter of late-season rice was similar between the N-SM and N-F treatments. Compared with the N-F treatment, the N-ZM and N-SM treatments significantly decreased the leaf area at the heading stage. Moreover, the N-SM treatment could significantly increase total root length and root tip number at the grain-filling stage compared with the N-ZM treatment.展开更多
A field experiment was conducted to study water use efficiency and agronomic traits in rice cultivated in flooded soil and non-flooded soils with and without straw mulching. The total amount of water used by rice unde...A field experiment was conducted to study water use efficiency and agronomic traits in rice cultivated in flooded soil and non-flooded soils with and without straw mulching. The total amount of water used by rice under flooded cultivation (FC) was 2.42 and 3.31 times as much as that by rice under the non-flooded cultivation with and without straw mulching, respectively. The average water seepage was 13 560 m^3/ha under the flooded cultivation, 4 750 m^3/ha under the non-flooded cultivation without straw mulching (ZM) and 4 680 m^3/ha under non-flooded cultivation with straw mulching (SM). The evapotranspiration in the SM treatment was only 38.2% and 63.6% of the FC treatment and ZM treatment, respectively. Compared with the ZM treatment, straw mulching significantly increased leaf area per plant, main root length, gross root length and root dry weight per plant of rice. The highest grain yield under the SM treatment (6 747 kg/ha) was close to the rice cultivated in flooded soil (6 811.5 kg / ha). However, the yield under the ZM treatment (4 716 kg/ha) was much lower than that under the FS treatment and SM treatment. The order of water use efficiency and irrigation water use efficiency were both as follows: SM〉 ZM〉 FC.展开更多
To reveal the influencing effect of the long-term straw mulching on the soil moisture, this paper employed the field experiment data in 2010 of a typical area of Taihang Mountains plain, observed the soil moisture dyn...To reveal the influencing effect of the long-term straw mulching on the soil moisture, this paper employed the field experiment data in 2010 of a typical area of Taihang Mountains plain, observed the soil moisture dynamic regularities under different mulching patterns by virtue of depressimeter and neutron probe, analyzed the characteristics of soil water content and storage in different depths and seasons under the long-term straw mulching. The results showed that the long-term straw mulching can keep the soil moisture conservation of the deep, while decreased the shallow.(1) The long-term straw mulching can changed the type of soil water movement. If no straw mulching, the type is mainly evaporation-infiltration. And with straw mantle the type would change into infiltration. The number of zero flux plane would be reduced or absent.(2) The long-term straw mulching can increase the soil water reserves of the whole soil profile with the depth between 0 cm and 220 cm. But the soil water content of the layer from 30 cm to 80 cm decreased and the soil water content of the layer from 80 cm to 220 cm increased instead., The effect of soil moisture conservation on winter wheat is not obvious;(3) With no straw mulching, the depth of infiltration recharge by rainfall or irrigation is shallower than 80 cm. In a straw mulching, the influence depth is can extend to 120 cm;(4) With no straw mulching, there is a deep layer on the depth of 220 cm between March and June, while this layer will disappear with a long-term straw mulching.展开更多
Yongzhou often encounters drought condition in July and August. Sometimes no rainfall lasts for 20 to 40 days, causes a great damage to grape production Our four-year rice straw mulching test on vineyard indicates tha...Yongzhou often encounters drought condition in July and August. Sometimes no rainfall lasts for 20 to 40 days, causes a great damage to grape production Our four-year rice straw mulching test on vineyard indicates that if favorable mulching is supplied properly, it reduces soil temperature and conserves soil moisture in summer, increases soil temperature in winter, keeps soil loose and mellow, depresses weeds, and increases soil organic matter content in vineyard to secure good quality and higher yield even under drought condition.展开更多
[Objectives] The ecological environment of orchard has a direct impact on fruit quality,and straw mulching can effectively improve the physicochemical indicators of orchard soil,so as to achieve environmental protecti...[Objectives] The ecological environment of orchard has a direct impact on fruit quality,and straw mulching can effectively improve the physicochemical indicators of orchard soil,so as to achieve environmental protection and yield increase.[Methods]Tests were carried out for 3 consecutive years of mulching straw in vineyard of southern Jiangsu Province.[Results]The results showed that mulching straw continuously could effectively improve soil physicochemical properties,weed controlling effect,and the photosynthetic rate of leaves,as well as the yield and quality of grapes.The contents of total nitrogen,available phosphorus,quickacting potassium and organic matter increased up to 91.67%,259.76%,442.39% and 34.30%,respectively.Soil bulk density decreased by 7.15%,and the weed plant control effect reached 87.45%.The increased of fresh weight was up to 93.55%,and the increase of the leaf parenthetical rate was up to 18.24%.The increases of soluble solids content and single grain weight reached up to 8.82% and 12.75%.The rate of dehiscent fruit was decreased by 50.89%.The grape could pick for sale 3 days ahead,and the increase of unit area yield reached up to 13.16%.[Conclusions]Straw mulching cultivation in vineyard is a good model for efficient recycling of crop straw and safe production of quality grape,and it provides a new technical approach for straw utilization,promising with good economic and ecological benefits.展开更多
With the improvement of agricultural mechanization equipment levels, the mechanized wheat harvesting level has been above 80% and the rate of wheat straw returned has increased significantly in the main wheat producti...With the improvement of agricultural mechanization equipment levels, the mechanized wheat harvesting level has been above 80% and the rate of wheat straw returned has increased significantly in the main wheat production of wheat of northern countryside in China. Chinese government popularized the beneficial agronomic measures in the process of wheat straw returned field by mechanization. The agronomic measure was reducing the wheat straw stubble height(WSSH) not more than 20 cm.However, local government didn't apply and disseminate the measure, because in practice the cost of fuel consumption was high, and the operation time of harvesting was longer than ever. The machinery operators and farmers needed to support extra fuel cost and time if they took government's advice. In fact, the objective subsidy policy of fuel cost on reducing WSSH was not been formulated by all levels of government. Therefore, the set of agronomic measure couldn't be popularized in main wheat production area of North China. Our research addressed to master the changing feature of fuel cost and mechanical efficiency,seeking suitable subsidy standard, providing some useful and constructive suggestions to improve subsidy policy of fuel consumption cost for national government department. The study carried out the tracking experiments of the operation efficiency and fuel costs of farm harvester in the situation of different WSSH in 2010 in Xushui District of Hebei Province. In conclusion, the operation time of harvesting decline and machinery fuel consumption cost increased along with the decreasing of WSSH. First for the older harvester, the operation efficiency would decline by 18.7% when the WSSH changed from 20 cm to 10 cm, the cost would increase 4.7%, exact cost was 152.2CNY per hectare. For the new harvester, the operation efficiency would decline by 39.9% when the WSSH changed from 20 cm to 15 cm, the cost would increase 4.6%, exact cost was 368.4CNY per hectare. We provided about 375 CNY per hectare to the mechanical operators and farmer who attended this project, and they were willing to accept the subsidies. We also put forwards some policy suggestions on promoting agronomic measures of reducing WSSH including strengthen the construction of agricultural machinery service system, practise a special fuel consumption subsidies of agricultural machinery and open up new paths for combine sales and circulation.展开更多
西南冬麦区气候冬干春旱频发、土壤速效磷缺乏,限制冬小麦氮素吸收。本研究探究秋闲期秸秆覆盖与施磷对小麦根系NO3-吸收动力势、氮素吸收利用、叶绿素含量和籽粒产量的影响,以期为小麦高产稳产及养分的高效利用提供理论依据。试验于202...西南冬麦区气候冬干春旱频发、土壤速效磷缺乏,限制冬小麦氮素吸收。本研究探究秋闲期秸秆覆盖与施磷对小麦根系NO3-吸收动力势、氮素吸收利用、叶绿素含量和籽粒产量的影响,以期为小麦高产稳产及养分的高效利用提供理论依据。试验于2020—2022年在四川仁寿进行,采用二因素裂区设计,以秸秆覆盖(SM)和不覆盖(NSM)为主区;3个磷水平0(P0)、75(P75)和120(P120) kg hm-2为裂区。结果表明:秸秆覆盖与施磷显著提高地上部磷素积累量, SM较NSM的小麦根尖NO3-净吸收速率、籽粒氮积累量、氮素转运量、氮素同化量、氮肥偏生产力和籽粒产量分别增加28.2%、8.4%、9.0%、41.9%、23.3%和21.9%。与P0相比, P75和P120增加幅度分别达到35.1%~37.6%、12.6%~19.0%、7.1%~9.3%、35.7%~60.5%、17.6%~23.8%、17.2%~23.6%。与NSM相比, SM的小麦旗叶灌浆期叶绿素含量上升,进而提高籽粒产量。综上所述,秸秆覆盖与施磷可促进小麦根尖NO3-吸收,提高叶绿素含量,从而显著增加花后氮素的吸收及营养器官临时贮存氮素向籽粒的再分配,最终提高籽粒产量。考虑经济效益和产量回报,西南地区小麦高产高效栽培时,推荐采用秋闲期秸秆覆盖配施磷肥75 kg hm-2。展开更多
基金supported financially by the National Key Research and Development Program of China(2021YFD1900703)the National Natural Science Foundation of China(31272250)。
文摘Water is the key factor limiting dryland wheat grain yield.Mulching affects crop yield and yield components by affecting soil moisture.Further research is needed to determine the relationships between yield components and soil moisture with yield,and to identify the most important factor affecting grain yield under various mulching measures.A long-term 9-yearifeld experiment in the Loess Plateau of Northwest China was carried out with three treatments:no mulch (CK),plastic mulch (M_(P)) and straw mulch (M_(S)).Yield factors and soil moisture were measured,and the relationships between them were explored by correlation analysis,structural equation modeling and significance analysis.The results showed that compared with CK,the average grain yields of M_(P) and M_(S) increased by 13.0and 10.6%,respectively.The average annual grain yield of the M_(P) treatment was 134 kg ha^(–1) higher than the M_(S) treatment.There were no significant differences in yield components among the three treatments (P<0.05).Soil water storage of the M_(S) treatment was greater than the M_(P) treatment,although the differences were not statistically signifiant.Soil water storage during the summer fallow period (SWSSF) and soil water storage before sowing (SWSS) of M_(S) were significantly higher than in CK,which increased by 38.5 and 13.6%,respectively.The relationship between M_(P) and CK was not statistically significant for SWSSF,but the SWSS in M_(P) was significantly higher than in CK.In terms of soil water storage after harvest (SWSH) and water consumption in the growth period(ET),there were no signi?cant differences among the three treatments.Based on the three analysis methods,we found that spike number and ET were positively correlated with grain yield.However,the relative importance of spike number to yield was the greatest in the M_(P )and M_(S) treatments,while that of ET was the greatest in CK.Suifcient SWSSF could indirectly increase spike number and ET in the three treatments.Based on these results,mulch can improve yield and soil water storage.The most important factor affecting the grain yield of dryland wheat was spike number under mulching,and ET with CK.These findings may help us to understand the main factors influencing dryland wheat grain yield under mulching conditions compared to CK.
基金supported by the National Key R&D Program of China(2021YFD1900703)the National Natural Science Foundation of China(31272250).
文摘Amplifying drought stress and high precipitation variability impair dryland wheat production.These problems can potentially be minimized by using plastic mulch(PM)or straw mulch(SM).Therefore,wheat grain yield,soil water storage,soil temperature and water-use productivity of PM and SM treatments were compared with no mulch(CK)treatment on dryland wheat over a period of eight seasons.Compared to the CK treatment,PM and SM treatments on average significantly increased grain yield by 12.6 and 10.5%,respectively.Compared to the CK treatment,SM treatment significantly decreased soil daily temperature by 0.57,0.60 and 0.48℃ for the whole seasons,growing periods and summer fallow periods,respectively.In contrast,compared to the CK treatment,PM treatment increased soil daily temperature by 0.44,0.51 and 0.27℃ for the whole seasons,growing periods and summer fallow periods,respectively.Lower soil temperature under SM allowed greater soil water storage than under PM.Soil water storage pre-seeding was 17%greater under the SM than under the PM treatment.Soil water storage post-harvest was similar for the PM and SM treatments,but evapotranspiration was 4.5%higher in the SM than in the PM treatment.Consequently,water-use productivity was 6.6%greater under PM than under the SM treatment.Therefore,PM treatment increased dryland wheat yield and water-use productivity,while straw mulch increased soil water storage.
基金funded by the National Natural Science Foundation of China(31471455,31000692 and 31070002)the Fundamental Research Funds for National Public Research Institutions,China(ZYQHS2015-25)the Beijing Natural Science Foundation,China(5152017)
文摘Salt stress has been increasingly constraining crop productivity in arid lands of the world. In our recent study, salt stress was aleviated and crop productivity was improved remarkably by straw layer burial plus plastic iflm mulching in a saline soil. However, its impact on the microlfora diversity is not wel documented. Field micro-plot experiments were conducted from 2010 to 2011 using four tilage methods: (i) deep tilage with plastic iflm mulching (CK), (i) straw layer burial at 40 cm (S), (ii) straw layer burial plus surface soil mulching with straw material (S+S), and (iv) plastic iflm mulching plus buried straw layer (P+S). Culturable microbes and predominant bacterial communities were studied; based on 16S rDNA, bacterial com-munity structure and abundance were characterized using denaturing gradient gel electrophoresis (DGGE) and polymerase chain reaction (PCR). Results showed that P+S was the most favorable for culturable bacteria, actinomyces and fungi and induced the most diverse genera of bacteria compared to other tilage methods. Soil temperature had signiifcant positive correlations with the number of bacteria, actinomyces and fungi (P〈0.01). However, soil water was poorly correlated with any of the microbes. Salt content had a signiifcant negative correlation with the number of microbers, especialy for bacteria and fungi (P〈0.01). DGGE analysis showed that the P+S exhibited the highest diversity of bacteria with 20 visible bands folowed by S+S, S and CK. Moreover, P+S had the highest similarity (68%) of bacterial communities with CK. The major bacterial genera in al soil samples wereFirmicutes,Proteobacteria andActinobacteria. Given the considerable increase in microbial growth, the combined use of straw layer burial and plastic iflm mulching could be a practical option for aleviating salt stress effects on soil microbial community and thereby improving crop production in arid saline soils.
基金the National High-Tech Research and Development Program of China(Grant No.2002AA2Z4331)for generous financial support
文摘A long-term field experiment (started at 2003) was conducted to determine the effects of different dce cultivation methods on growth characteristics and grain yield of late-season rice under double-rice cropping system in seasonal drought region of southeast China (Yujiang County, Jiangxi Province). The rice cultivation methods included no-tillage and flooded rice cultivation (N-F), no-tillage and non-flooded rice cultivation with straw mulching (N-SM), and no-tillage and non-flooded rice cultivation without straw mulching (N-ZM). There was no significant difference in rice grain yield between the N-SM and N-F treatments. However, the rice grain yields in the N-SM and N-F treatments were significantly higher than that in the N-ZM treatment. The late-season rice plants in the N-SM treatment had significantly higher numbers of effective panicles and total grains per hill compared with those in the N-ZM treatment. The above-ground dry matter of late-season rice was similar between the N-SM and N-F treatments. Compared with the N-F treatment, the N-ZM and N-SM treatments significantly decreased the leaf area at the heading stage. Moreover, the N-SM treatment could significantly increase total root length and root tip number at the grain-filling stage compared with the N-ZM treatment.
文摘A field experiment was conducted to study water use efficiency and agronomic traits in rice cultivated in flooded soil and non-flooded soils with and without straw mulching. The total amount of water used by rice under flooded cultivation (FC) was 2.42 and 3.31 times as much as that by rice under the non-flooded cultivation with and without straw mulching, respectively. The average water seepage was 13 560 m^3/ha under the flooded cultivation, 4 750 m^3/ha under the non-flooded cultivation without straw mulching (ZM) and 4 680 m^3/ha under non-flooded cultivation with straw mulching (SM). The evapotranspiration in the SM treatment was only 38.2% and 63.6% of the FC treatment and ZM treatment, respectively. Compared with the ZM treatment, straw mulching significantly increased leaf area per plant, main root length, gross root length and root dry weight per plant of rice. The highest grain yield under the SM treatment (6 747 kg/ha) was close to the rice cultivated in flooded soil (6 811.5 kg / ha). However, the yield under the ZM treatment (4 716 kg/ha) was much lower than that under the FS treatment and SM treatment. The order of water use efficiency and irrigation water use efficiency were both as follows: SM〉 ZM〉 FC.
基金supported by National Fund Science and Technology Project(41672249 and 41602271)China Geological Survey Project(DD20160190)Shallow Geothermal Energy Development and Geothermal Reservoir Injection(SK201501)
文摘To reveal the influencing effect of the long-term straw mulching on the soil moisture, this paper employed the field experiment data in 2010 of a typical area of Taihang Mountains plain, observed the soil moisture dynamic regularities under different mulching patterns by virtue of depressimeter and neutron probe, analyzed the characteristics of soil water content and storage in different depths and seasons under the long-term straw mulching. The results showed that the long-term straw mulching can keep the soil moisture conservation of the deep, while decreased the shallow.(1) The long-term straw mulching can changed the type of soil water movement. If no straw mulching, the type is mainly evaporation-infiltration. And with straw mantle the type would change into infiltration. The number of zero flux plane would be reduced or absent.(2) The long-term straw mulching can increase the soil water reserves of the whole soil profile with the depth between 0 cm and 220 cm. But the soil water content of the layer from 30 cm to 80 cm decreased and the soil water content of the layer from 80 cm to 220 cm increased instead., The effect of soil moisture conservation on winter wheat is not obvious;(3) With no straw mulching, the depth of infiltration recharge by rainfall or irrigation is shallower than 80 cm. In a straw mulching, the influence depth is can extend to 120 cm;(4) With no straw mulching, there is a deep layer on the depth of 220 cm between March and June, while this layer will disappear with a long-term straw mulching.
文摘Yongzhou often encounters drought condition in July and August. Sometimes no rainfall lasts for 20 to 40 days, causes a great damage to grape production Our four-year rice straw mulching test on vineyard indicates that if favorable mulching is supplied properly, it reduces soil temperature and conserves soil moisture in summer, increases soil temperature in winter, keeps soil loose and mellow, depresses weeds, and increases soil organic matter content in vineyard to secure good quality and higher yield even under drought condition.
基金Supported by the Science and Technology Project of Changzhou City(CE20155037)
文摘[Objectives] The ecological environment of orchard has a direct impact on fruit quality,and straw mulching can effectively improve the physicochemical indicators of orchard soil,so as to achieve environmental protection and yield increase.[Methods]Tests were carried out for 3 consecutive years of mulching straw in vineyard of southern Jiangsu Province.[Results]The results showed that mulching straw continuously could effectively improve soil physicochemical properties,weed controlling effect,and the photosynthetic rate of leaves,as well as the yield and quality of grapes.The contents of total nitrogen,available phosphorus,quickacting potassium and organic matter increased up to 91.67%,259.76%,442.39% and 34.30%,respectively.Soil bulk density decreased by 7.15%,and the weed plant control effect reached 87.45%.The increased of fresh weight was up to 93.55%,and the increase of the leaf parenthetical rate was up to 18.24%.The increases of soluble solids content and single grain weight reached up to 8.82% and 12.75%.The rate of dehiscent fruit was decreased by 50.89%.The grape could pick for sale 3 days ahead,and the increase of unit area yield reached up to 13.16%.[Conclusions]Straw mulching cultivation in vineyard is a good model for efficient recycling of crop straw and safe production of quality grape,and it provides a new technical approach for straw utilization,promising with good economic and ecological benefits.
基金Supported by National Nonprofit Institute Research Grant of CAAS(IARRP-2015-7)Key Laboratory of Nonpoint Source Pollution Control,Ministry of Agriculture,P.R.China,Chinese Academy of Agricultural Sciences Science and Technology Innovation Project in 2017the Public Welfare Industry Science and Technology Projects for financing the research (no.200903011)
文摘With the improvement of agricultural mechanization equipment levels, the mechanized wheat harvesting level has been above 80% and the rate of wheat straw returned has increased significantly in the main wheat production of wheat of northern countryside in China. Chinese government popularized the beneficial agronomic measures in the process of wheat straw returned field by mechanization. The agronomic measure was reducing the wheat straw stubble height(WSSH) not more than 20 cm.However, local government didn't apply and disseminate the measure, because in practice the cost of fuel consumption was high, and the operation time of harvesting was longer than ever. The machinery operators and farmers needed to support extra fuel cost and time if they took government's advice. In fact, the objective subsidy policy of fuel cost on reducing WSSH was not been formulated by all levels of government. Therefore, the set of agronomic measure couldn't be popularized in main wheat production area of North China. Our research addressed to master the changing feature of fuel cost and mechanical efficiency,seeking suitable subsidy standard, providing some useful and constructive suggestions to improve subsidy policy of fuel consumption cost for national government department. The study carried out the tracking experiments of the operation efficiency and fuel costs of farm harvester in the situation of different WSSH in 2010 in Xushui District of Hebei Province. In conclusion, the operation time of harvesting decline and machinery fuel consumption cost increased along with the decreasing of WSSH. First for the older harvester, the operation efficiency would decline by 18.7% when the WSSH changed from 20 cm to 10 cm, the cost would increase 4.7%, exact cost was 152.2CNY per hectare. For the new harvester, the operation efficiency would decline by 39.9% when the WSSH changed from 20 cm to 15 cm, the cost would increase 4.6%, exact cost was 368.4CNY per hectare. We provided about 375 CNY per hectare to the mechanical operators and farmer who attended this project, and they were willing to accept the subsidies. We also put forwards some policy suggestions on promoting agronomic measures of reducing WSSH including strengthen the construction of agricultural machinery service system, practise a special fuel consumption subsidies of agricultural machinery and open up new paths for combine sales and circulation.
文摘西南冬麦区气候冬干春旱频发、土壤速效磷缺乏,限制冬小麦氮素吸收。本研究探究秋闲期秸秆覆盖与施磷对小麦根系NO3-吸收动力势、氮素吸收利用、叶绿素含量和籽粒产量的影响,以期为小麦高产稳产及养分的高效利用提供理论依据。试验于2020—2022年在四川仁寿进行,采用二因素裂区设计,以秸秆覆盖(SM)和不覆盖(NSM)为主区;3个磷水平0(P0)、75(P75)和120(P120) kg hm-2为裂区。结果表明:秸秆覆盖与施磷显著提高地上部磷素积累量, SM较NSM的小麦根尖NO3-净吸收速率、籽粒氮积累量、氮素转运量、氮素同化量、氮肥偏生产力和籽粒产量分别增加28.2%、8.4%、9.0%、41.9%、23.3%和21.9%。与P0相比, P75和P120增加幅度分别达到35.1%~37.6%、12.6%~19.0%、7.1%~9.3%、35.7%~60.5%、17.6%~23.8%、17.2%~23.6%。与NSM相比, SM的小麦旗叶灌浆期叶绿素含量上升,进而提高籽粒产量。综上所述,秸秆覆盖与施磷可促进小麦根尖NO3-吸收,提高叶绿素含量,从而显著增加花后氮素的吸收及营养器官临时贮存氮素向籽粒的再分配,最终提高籽粒产量。考虑经济效益和产量回报,西南地区小麦高产高效栽培时,推荐采用秋闲期秸秆覆盖配施磷肥75 kg hm-2。