期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Improved Yield Prediction of Ratoon Rice Using Unmanned Aerial Vehicle-Based Multi-Temporal Feature Method
1
作者 ZHOU Longfei MENG Ran +7 位作者 YU Xing LIAO Yigui HUANG Zehua LÜZhengang XU Binyuan YANG Guodong PENG Shaobing XU Le 《Rice science》 SCIE CSCD 2023年第3期247-256,I0039-I0042,共14页
Pre-harvest yield prediction of ratoon rice is critical for guiding crop interventions in precision agriculture.However,the unique agronomic practice(i.e.,varied stubble height treatment)in rice ratooning could lead t... Pre-harvest yield prediction of ratoon rice is critical for guiding crop interventions in precision agriculture.However,the unique agronomic practice(i.e.,varied stubble height treatment)in rice ratooning could lead to inconsistent rice phenology,which had a significant impact on yield prediction of ratoon rice.Multi-temporal unmanned aerial vehicle(UAV)-based remote sensing can likely monitor ratoon rice productivity and reflect maximum yield potential across growing seasons for improving the yield prediction compared with previous methods.Thus,in this study,we explored the performance of combination of agronomic practice information(API)and single-phase,multi-spectral features[vegetation indices(VIs)and texture(Tex)features]in predicting ratoon rice yield,and developed a new UAV-based method to retrieve yield formation process by using multi-temporal features which were effective in improving yield forecasting accuracy of ratoon rice.The results showed that the integrated use of VIs,Tex and API(VIs&Tex+API)improved the accuracy of yield prediction than single-phase UAV imagery-based feature,with the panicle initiation stage being the best period for yield prediction(R^(2) as 0.732,RMSE as 0.406,RRMSE as 0.101).More importantly,compared with previous multi-temporal UAV-based methods,our proposed multi-temporal method(multi-temporal model VIs&Tex:R^(2) as 0.795,RMSE as 0.298,RRMSE as 0.072)can increase R^(2) by 0.020-0.111 and decrease RMSE by 0.020-0.080 in crop yield forecasting.This study provides an effective method for accurate pre-harvest yield prediction of ratoon rice in precision agriculture,which is of great significance to take timely means for ensuring ratoon rice production and food security. 展开更多
关键词 ratoon rice yield prediction unmanned aerial vehicle multi-temporal feature agronomic practice stubble height
下载PDF
Optimal management of nitrogen fertilizer in the main rice crop and its carrying-over effect on ratoon rice under mechanized cultivation in Southeast China 被引量:5
2
作者 HUANG Jin-wen WU Jia-yi +7 位作者 CHEN Hong-fei ZHANG Zhi-xing FANG Chang-xun SHAO Cai-hong LIN Wei-wei WENG Pei-ying Muhammad Umar KHAN LIN Wen-xiong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第2期351-364,共14页
This study attempted to clarify the carrying-over effect of different nitrogen treatments applied to the main crop on the crop population growth and yield formation of ratoon rice under mechanized cultivation in South... This study attempted to clarify the carrying-over effect of different nitrogen treatments applied to the main crop on the crop population growth and yield formation of ratoon rice under mechanized cultivation in Southeast China.Based on the constant total nitrogen application amounts(225.00 kg ha;)in the main crop,an experiment with different ratios of basal and topdressing nitrogen fertilizer(the ratio of basal fertilizer:primary tillering fertilizer:secondary tillering fertilizer:booting fertilizer at 3:1:2:4(N1),3:2:1:4(N2),3:3:0:4(N3),and 4:3:0:3(N4),respectively,and a control without nitrogen treatment(N0))was set up across two consecutive years in field using hybrid rice variety Yongyou 1540 as the test materials.The results showed that the total tiller number and effective tillering percentage increased in the main crop under the N1 treatment,more nitrogen fertilizer applied in late growth stage of the main crop,and its effective tillering percentage of the main crop was the highest at up to 70.18%,which was 9.15%higher than that of conventional fertilization treatment(N4),more nitrogen fertilizer applied in early growth stage of the main crop.The same tendency was observed in leaf area index(LAI)value of the main crop and its subsequent ratoon rice,which were 16.52 and 29.87%higher,respectively,in the N1 treatment than that in the N4 treatment at the full heading stage.The same was true in the case of the transport rates of stem and sheath dry mater and the canopy light interception rates in both the main and its ratoon crops.The transport rate of stem and sheath in main crop rice under N1 treatment increased by 50.57%compared with N4 treatment.The canopy light interception rate of N1 treatment increased by 5.07%compared with N4 treatment at the full heading stage of the ratoon crop.Therefore,the total actual yield was the highest in the main and its ratoon crops under N1 treatment,averaging 17351.23 kg ha;in two-year trials,which was 23.00%higher than that in the conventional fertilization treatment(N4).The results showed that appropriate nitrogen treatment was able to produce a good crop stand in the main crop,which was essential for producing a good ratoon crop population and high yield especially under mechanized cultivation with low stubble height of the main crop.The study suggested that shifting the proper nitrogen application amounts to the late growth stage of the main crop,such as N1 treatment,not only had a higher productive effect on ensuring the yield of the main crop,but also had a positive effect on the axillary bud sprouts from the stubbles for ratoon rice,resulting in an increased percentage of productive panicles and achieving the goal of one planting with two good harvests under the conditions of our study. 展开更多
关键词 main crop ratoon rice nitrogen management crop stand low stubble height grain yield
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部