Spatiotemporal information,positioning and navigation services have become important elements of new type infrastructure.The rapid development of global digital trade provides a large-scale application scenario for th...Spatiotemporal information,positioning and navigation services have become important elements of new type infrastructure.The rapid development of global digital trade provides a large-scale application scenario for the use of Beidou Navigation Satellite System(BDS)spatiotemporal information to support the certification of origin of agricultural products.The BDS spatiotemporal information agricultural product digital credit system uses such modules as BDS,spatiotemporal information collection,spatiotemporal coding,and spatiotemporal blockchain.It incorporates multi-level joint supervision mechanisms such as government,associations,and users.Starting from the initial production link of agricultural products,it realizes the correspondence and locking of online and offline products,effectively improves the integrity and credibility of information in the production process,finished product quality and circulation process of products,effectively manages the green production and anti-channel conflicts of producers,and provides credible information for consumers,thus realizing the digital credit certification of products.The successful practice of characteristic agricultural products in Yunnan Province has verified the application ability of the BDS spatiotemporal information agricultural product digital credit system.This system has played a significant role in promoting the online and offline locking,credible information,effective supervision and high quality and high price of characteristic agricultural products from the field.The BDS provides services for global digital trade and contributes to the further enhancement of the global application scale of GNSS.展开更多
Formal credit is critical in agricultural production,allowing more expenditure and productive input,thereby improving farmers'welfare.In pastoral China,formal financial institutions are gradually increasing.Howeve...Formal credit is critical in agricultural production,allowing more expenditure and productive input,thereby improving farmers'welfare.In pastoral China,formal financial institutions are gradually increasing.However,a limited understanding remains of how formal credit affects herders'household expenses.Based on a survey of 544 herders from the Qinghai-Xizang Plateau of China,this study adopted the propensity score matching approach to identify the effect of formal credit on herders'total household expenses,daily expenses,and productive expenses.The results found that average age,grassland mortgage,and other variables significantly affected herders'participation in formal credit.Formal credit could significantly improve household expenses,especially productive expenses.A heterogeneity analysis showed that formal credit had a greater impact on the household total expense for those at higher levels of wealth;however,it significantly affected the productive expense of herders at lower wealth levels.Moreover,the mediating effect indicated that formal credit could affect herders'household income,thus influencing their household expenses.Finally,this study suggests that policies should improve herders'accessibility to formal credit.展开更多
In this paper,we consider the price of catastrophe options with credit risk in a regime-switching model.We assume that the macroeconomic states are described by a continuous-time Markov chain with a finite state space...In this paper,we consider the price of catastrophe options with credit risk in a regime-switching model.We assume that the macroeconomic states are described by a continuous-time Markov chain with a finite state space.By using the measure change technique,we derive the price expressions of catastrophe put options.Moreover,we conduct some numerical analysis to demonstrate how the parameters of the model affect the price of the catastrophe put option.展开更多
To explore the green development of automobile enterprises and promote the achievement of the“dual carbon”target,based on the bounded rationality assumptions,this study constructed a tripartite evolutionary game mod...To explore the green development of automobile enterprises and promote the achievement of the“dual carbon”target,based on the bounded rationality assumptions,this study constructed a tripartite evolutionary game model of gov-ernment,commercial banks,and automobile enterprises;introduced a dynamic reward and punishment mechanism;and analyzed the development process of the three parties’strategic behavior under the static and dynamic reward and punish-ment mechanism.Vensim PLE was used for numerical simulation analysis.Our results indicate that the system could not reach a stable state under the static reward and punishment mechanism.A dynamic reward and punishment mechanism can effectively improve the system stability and better fit real situations.Under the dynamic reward and punishment mechan-ism,an increase in the initial probabilities of the three parties can promote the system stability,and the government can im-plement effective supervision by adjusting the upper limit of the reward and punishment intensity.Finally,the implementa-tion of green credit by commercial banks plays a significant role in promoting the green development of automobile enter-prises.展开更多
The relationship between credit expansion and banking crises is complex and cannot be fully explained by total credit alone.A systematic analysis of the relationship between the amount and structure of total credit an...The relationship between credit expansion and banking crises is complex and cannot be fully explained by total credit alone.A systematic analysis of the relationship between the amount and structure of total credit and banking crises is important for an objective prediction of the influence of potential financial risks.This paper,drawing on data from 15 selected countries,delves into the power of credit indicators in the early warning of banking crises from the perspectives of industrial structure,sector structure,and term structure of credit.Various machine learning methods were used,including Logistic Regression,Random Forest,Decision Tree,Support Vector Machine(SVM),Bagging,and Boosting models.The empirical findings indicate that credit expansion plays a crucial role in triggering banking crises.However,total credit is better suited for the early warning of short-term banking crises,whereas credit structure is more useful for the early warning of long-term banking crises.Moreover,in an early warning system,identifying key early warning indicators is more meaningful than merely increasing the number of indicators.Machine learning can somewhat enhance the early warning power,but it may not always be robust.Therefore,more attention should be paid to potential systemic banking crises resulting from an imbalance in credit structure while regulating the total credit threshold.展开更多
A dandelion algorithm(DA) is a recently developed intelligent optimization algorithm for function optimization problems. Many of its parameters need to be set by experience in DA,which might not be appropriate for all...A dandelion algorithm(DA) is a recently developed intelligent optimization algorithm for function optimization problems. Many of its parameters need to be set by experience in DA,which might not be appropriate for all optimization problems. A self-adapting and efficient dandelion algorithm is proposed in this work to lower the number of DA's parameters and simplify DA's structure. Only the normal sowing operator is retained;while the other operators are discarded. An adaptive seeding radius strategy is designed for the core dandelion. The results show that the proposed algorithm achieves better performance on the standard test functions with less time consumption than its competitive peers. In addition, the proposed algorithm is applied to feature selection for credit card fraud detection(CCFD), and the results indicate that it can obtain higher classification and detection performance than the-state-of-the-art methods.展开更多
Average credit scores for people in the United States (US) differ from state to state. Some states have high, and some states have low average credit scores. Since lenders and employers use credit scores to make loa...Average credit scores for people in the United States (US) differ from state to state. Some states have high, and some states have low average credit scores. Since lenders and employers use credit scores to make loan and employment decisions, people living in states where average credit scores are high should experience the benefits of living where credit scores tend to allow more favorable loan and employment decisions. Although credit scores are the direct result of credit histories, credit histories may be impacted by demographic factors. If the demographic factors that impact credit histories are identified, ways to improve credit scores are likely to be discovered and available to people and state government policymakers. This study looks for demographic factors to indirectly explain the average credit scores for people living in each state of the US. The methodology includes statistical analyses and geographic information systems (GIS) mapping. Statistical analyses provide evidence to suggest that state average credit scores are explained by the demographic factors of education, family, income, and health. GIS mapping reveals clusters of states with similar demographics and credit scores.展开更多
Based on Bayes' theorem we point out that the false positive rate must be lower than the intrusion base rate in order to make the Alarm Credibility Probability of the intrusion detection system exceed 50%. We pres...Based on Bayes' theorem we point out that the false positive rate must be lower than the intrusion base rate in order to make the Alarm Credibility Probability of the intrusion detection system exceed 50%. We present the methods that have been used in our developing intrusion detection system AIIDS (artificial immune intrusion detection systems) to increase the creditability of anomaly detection system. These methods include increasing the regularities of the system call trace by use of Hidden Markov Model (HMM), making every antibody or detector has finite lifetime, offering the detector a co-stimulate signal to illustrate whether there is damage in the system according to the integrity, confidentiality, or availability of the system resource.展开更多
Biopharmaceutical discipline is an interdisciplinary subject with strong comprehensiveness and wide coverage. Under the background of credit system,it is an important task for application-oriented undergraduate colleg...Biopharmaceutical discipline is an interdisciplinary subject with strong comprehensiveness and wide coverage. Under the background of credit system,it is an important task for application-oriented undergraduate colleges and universities to optimize the cultivation program for innovative and entrepreneurial bio-pharmaceutical professionals. According to the characteristics of biopharmaceutical discipline,Binzhou University biopharmaceutical teaching and research office,based on the social demand for biopharmaceutical discipline talents,defined the principle of optimizing the cultivation of innovative and entrepreneurial biopharmaceutical discipline talents,and constructed the cultivation program of innovative and entrepreneurial biopharmaceutical discipline talents under the credit system. The development of this cultivation program is expected to build a new mode for cultivating high-level biopharmaceutical professionals with strong innovative spirit and entrepreneurial potential.展开更多
The adaptive fault-tolerant control scheme of dynamic nonlinear system based on the credit assigned fuzzy CMAC neural network is presented. The proposed learning approach uses the learned times of addressed hypercubes...The adaptive fault-tolerant control scheme of dynamic nonlinear system based on the credit assigned fuzzy CMAC neural network is presented. The proposed learning approach uses the learned times of addressed hypercubes as the credibility, the amounts of correcting errors are proportional to the inversion of the learned times of addressed hypercubes. With this idea, the learning speed can indeed be improved. Based on the improved CMAC learning approach and using the sliding control technique, the effective control law reconfiguration strategy is presented. The system stability and performance are analyzed under failure scenarios. The numerical simulation demonstrates the effectiveness of the improved CMAC algorithm and the proposed fault-tolerant controller.展开更多
Federated learning has been used extensively in business inno-vation scenarios in various industries.This research adopts the federated learning approach for the first time to address the issue of bank-enterprise info...Federated learning has been used extensively in business inno-vation scenarios in various industries.This research adopts the federated learning approach for the first time to address the issue of bank-enterprise information asymmetry in the credit assessment scenario.First,this research designs a credit risk assessment model based on federated learning and feature selection for micro and small enterprises(MSEs)using multi-dimensional enterprise data and multi-perspective enterprise information.The proposed model includes four main processes:namely encrypted entity alignment,hybrid feature selection,secure multi-party computation,and global model updating.Secondly,a two-step feature selection algorithm based on wrapper and filter is designed to construct the optimal feature set in multi-source heterogeneous data,which can provide excellent accuracy and interpretability.In addition,a local update screening strategy is proposed to select trustworthy model parameters for aggregation each time to ensure the quality of the global model.The results of the study show that the model error rate is reduced by 6.22%and the recall rate is improved by 11.03%compared to the algorithms commonly used in credit risk research,significantly improving the ability to identify defaulters.Finally,the business operations of commercial banks are used to confirm the potential of the proposed model for real-world implementation.展开更多
With the popularity of online payment, how to perform creditcard fraud detection more accurately has also become a hot issue. And withthe emergence of the adaptive boosting algorithm (Adaboost), credit cardfraud detec...With the popularity of online payment, how to perform creditcard fraud detection more accurately has also become a hot issue. And withthe emergence of the adaptive boosting algorithm (Adaboost), credit cardfraud detection has started to use this method in large numbers, but thetraditional Adaboost is prone to overfitting in the presence of noisy samples.Therefore, in order to alleviate this phenomenon, this paper proposes a newidea: using the number of consecutive sample misclassifications to determinethe noisy samples, while constructing a penalty factor to reconstruct thesample weight assignment. Firstly, the theoretical analysis shows that thetraditional Adaboost method is overfitting in a noisy training set, which leadsto the degradation of classification accuracy. To this end, the penalty factorconstructed by the number of consecutive misclassifications of samples isused to reconstruct the sample weight assignment to prevent the classifierfrom over-focusing on noisy samples, and its reasonableness is demonstrated.Then, by comparing the penalty strength of the three different penalty factorsproposed in this paper, a more reasonable penalty factor is selected.Meanwhile, in order to make the constructed model more in line with theactual requirements on training time consumption, the Adaboost algorithmwith adaptive weight trimming (AWTAdaboost) is used in this paper, so thepenalty factor-based AWTAdaboost (PF_AWTAdaboost) is finally obtained.Finally, PF_AWTAdaboost is experimentally validated against other traditionalmachine learning algorithms on credit card fraud datasets and otherdatasets. The results show that the PF_AWTAdaboost method has betterperformance, including detection accuracy, model recall and robustness, thanother methods on the credit card fraud dataset. And the PF_AWTAdaboostmethod also shows excellent generalization performance on other datasets.From the experimental results, it is shown that the PF_AWTAdaboost algorithmhas better classification performance.展开更多
The use of credit default swaps (CDSs) has become increasingly popular over time. Between 2002 and 2007, gross notional amounts outstanding grew from below S2 trillion to nearly S60 trillion. The recent crisis has r...The use of credit default swaps (CDSs) has become increasingly popular over time. Between 2002 and 2007, gross notional amounts outstanding grew from below S2 trillion to nearly S60 trillion. The recent crisis has revealed several shortcomings in CDS market practices and structure. In addition, management of counterparty risk has proved insufficient, as has in some instances the settlement of contracts following a credit event. However, past problems should not distract from the potential benefits of these instruments. In particular, CDSs help complete markets, as they provide an effective means to hedge and trade credit risk. CDSs allow financial institutions to better manage their exposures, and investors benefit from an enhanced investment universe. The purpose of this paper is to present a complete and practical exposition of the CDS market and to explore how the development of the CDS market has played an important role in the credit risk markets. Currently, the CDS market is transforming into a more stable system. Various measures are being put in place to help enhance market transparency and mitigate operational and systemic risk. In particular, central counterparties have started to operate, which will eventually lead to an improved management of individual as well as system-wide risks.展开更多
Credit Card Fraud Detection(CCFD)is an essential technology for banking institutions to control fraud risks and safeguard their reputation.Class imbalance and insufficient representation of feature data relating to cr...Credit Card Fraud Detection(CCFD)is an essential technology for banking institutions to control fraud risks and safeguard their reputation.Class imbalance and insufficient representation of feature data relating to credit card transactions are two prevalent issues in the current study field of CCFD,which significantly impact classification models’performance.To address these issues,this research proposes a novel CCFD model based on Multifeature Fusion and Generative Adversarial Networks(MFGAN).The MFGAN model consists of two modules:a multi-feature fusion module for integrating static and dynamic behavior data of cardholders into a unified highdimensional feature space,and a balance module based on the generative adversarial network to decrease the class imbalance ratio.The effectiveness of theMFGAN model is validated on two actual credit card datasets.The impacts of different class balance ratios on the performance of the four resamplingmodels are analyzed,and the contribution of the two different modules to the performance of the MFGAN model is investigated via ablation experiments.Experimental results demonstrate that the proposed model does better than state-of-the-art models in terms of recall,F1,and Area Under the Curve(AUC)metrics,which means that the MFGAN model can help banks find more fraudulent transactions and reduce fraud losses.展开更多
For the emerging peer-to-peer(P2P)lending markets to survive,they need to employ credit-risk management practices such that an investor base is profitable in the long run.Traditionally,credit-risk management relies on...For the emerging peer-to-peer(P2P)lending markets to survive,they need to employ credit-risk management practices such that an investor base is profitable in the long run.Traditionally,credit-risk management relies on credit scoring that predicts loans’probability of default.In this paper,we use a profit scoring approach that is based on modeling the annualized adjusted internal rate of returns of loans.To validate our profit scoring models with traditional credit scoring models,we use data from a European P2P lending market,Bondora,and also a random sample of loans from the Lending Club P2P lending market.We compare the out-of-sample accuracy and profitability of the credit and profit scoring models within several classes of statistical and machine learning models including the following:logistic and linear regression,lasso,ridge,elastic net,random forest,and neural networks.We found that our approach outperforms standard credit scoring models for Lending Club and Bondora loans.More specifically,as opposed to credit scoring models,returns across all loans are 24.0%(Bondora)and 15.5%(Lending Club)higher,whereas accuracy is 6.7%(Bondora)and 3.1%(Lending Club)higher for the proposed profit scoring models.Moreover,our results are not driven by manual selection as profit scoring models suggest investing in more loans.Finally,even if we consider data sampling bias,we found that the set of superior models consists almost exclusively of profit scoring models.Thus,our results contribute to the literature by suggesting a paradigm shift in modeling credit-risk in the P2P market to prefer profit as opposed to credit-risk scoring models.展开更多
Credit risk assessment involves conducting a fair review and evaluation of an assessed subject’s solvency and creditworthiness.In the context of real estate enterprises,credit risk assessment provides a basis for ban...Credit risk assessment involves conducting a fair review and evaluation of an assessed subject’s solvency and creditworthiness.In the context of real estate enterprises,credit risk assessment provides a basis for banks and other financial institutions to choose suitable investment objects.Additionally,it encourages real estate enterprises to abide by market norms and provide reliable information for the standardized management of the real estate industry.However,Chinese real estate companies are hesitant to disclose their actual operating data due to privacy concerns,making subjective evalu-ation approaches inevitable,occupying important roles in accomplishing Chinese real estate enterprise credit risk assessment tasks.To improve the normative and reliability of credit risk assessment for Chinese real estate enterprises,this study proposes an integrated multi-criteria group decision-making approach.First,a credit risk assessment index for Chinese real estate enterprises is established.Then,the proposed framework combines proportional hesitant fuzzy linguistic term sets and preference ranking organization method for enrichment evaluation II methods.This approach is suitable for processing large amounts of data with high uncertainty,which is often the case in credit risk assessment tasks of Chinese real estate enterprises involving massive subjec-tive evaluation information.Finally,the proposed model is validated through a case study accompanied by sensitivity and comparative analyses to verify its rationality and feasibility.This study contributes to the research on credit assessment for Chinese real estate enterprises and provides a revised paradigm for real estate enterprise credit risk assessment.展开更多
Internet finance is a new emerging financial model,using the Internet as a platform,big data and cloud computing as the basis.Supply Chain Finance is the easiest way to enter Internet finance.The thirdparty companies ...Internet finance is a new emerging financial model,using the Internet as a platform,big data and cloud computing as the basis.Supply Chain Finance is the easiest way to enter Internet finance.The thirdparty companies or institutions can invest in Internet financial companies by integrating their industrial chain practices into designing the financial products to reduce credit costs and improve safety.At the same time,it will increase mobile Internet,big data and operational services.Also,it can make full use of the Internet financial platform to provide value-added services for higher and lower enterprise and consolidate the core status of the company in the industrial chain.However,an important issue that needs to be concerned during developing Supply Chain Finance is the construction of a system for credit evaluation.Due to the lack of a unified credit evaluation system,the development of the existing Supply Chain Financial companies suffers from difficulties.Many newly launched companies have difficulties operating due to the lack of a credit evaluation system.Therefore,proper and effective credit indicators are essential for the development of enterprises under Internet finance.From the micro perspective,it is conducive for enterprises to improve their credit under the constraints of indicators,and it can solve the problem of capital raising;from the macro perspective,it is conducive to the standardized development of China’s Internet finance and promotes the comprehensive economic development.Based on this,analyzing the model of Internet financial business and developing an enterprise’s credit index system is beneficial to the development of China’s Internet finance.展开更多
A Multi-Agent System ( MAS ) is a promising approach to build complex system. This paper introduces the research of the Inner-Enterprise Credit Rating MAS ( IECRMAS). To raise the rating accuracy, we not only cons...A Multi-Agent System ( MAS ) is a promising approach to build complex system. This paper introduces the research of the Inner-Enterprise Credit Rating MAS ( IECRMAS). To raise the rating accuracy, we not only consider the rating-target's information, but also focus on the evaluators' feature information and propose the rational rating-group formation algorithm based on an anti-bias measurement of the group. We also propose the rational rating individual, which consists of the evaluator and the assistant rating agent. A rational group formation protocol is designed to coordinate autonomous agents to perform the rating job.展开更多
Purpose:The purpose of this study is to propose an improved credit allocation method that makes the leading author of the paper more distinguishable and makes the deification more robust under malicious manipulations....Purpose:The purpose of this study is to propose an improved credit allocation method that makes the leading author of the paper more distinguishable and makes the deification more robust under malicious manipulations.Design/methodology/approach:We utilize a modified Sigmoid function to handle the fat-tail distributed citation counts.We also remove the target paper in calculating the contribution of co-citations.Following previous studies,we use 30 Nobel Prize-winning papers and their citation networks based on the American Physical Society(APS)and the Microsoft Academic Graph(MAG)dataset to test the accuracy of our proposed method(NCCAS).In addition,we use 654,148 articles published in the field of computer science from 2000 to 2009 in the MAG dataset to validate the distinguishability and robustness of NCCAS.Finding:Compared with the state-of-the-art methods,NCCAS gives the most accurate prediction of Nobel laureates.Furthermore,the leading author of the paper identified by NCCAS is more distinguishable compared with other co-authors.The results by NCCAS are also more robust to malicious manipulation.Finally,we perform ablation studies to show the contribution of different components in our methods.Research limitations:Due to limited ground truth on the true leading author of a work,the accuracy of NCCAS and other related methods can only be tested in Nobel Physics Prize-winning papers.Practical implications:NCCAS is successfully applied to a large number of publications,demonstrating its potential in analyzing the relationship between the contribution and the recognition of authors with different by-line orders.Originality/value:Compared with existing methods,NCCAS not only identifies the leading author of a paper more accurately,but also makes the deification more distinguishable and more robust,providing a new tool for related studies.展开更多
基金Supported by Yunnan Provincial Science and Technology Plan Project(202102AE090051).
文摘Spatiotemporal information,positioning and navigation services have become important elements of new type infrastructure.The rapid development of global digital trade provides a large-scale application scenario for the use of Beidou Navigation Satellite System(BDS)spatiotemporal information to support the certification of origin of agricultural products.The BDS spatiotemporal information agricultural product digital credit system uses such modules as BDS,spatiotemporal information collection,spatiotemporal coding,and spatiotemporal blockchain.It incorporates multi-level joint supervision mechanisms such as government,associations,and users.Starting from the initial production link of agricultural products,it realizes the correspondence and locking of online and offline products,effectively improves the integrity and credibility of information in the production process,finished product quality and circulation process of products,effectively manages the green production and anti-channel conflicts of producers,and provides credible information for consumers,thus realizing the digital credit certification of products.The successful practice of characteristic agricultural products in Yunnan Province has verified the application ability of the BDS spatiotemporal information agricultural product digital credit system.This system has played a significant role in promoting the online and offline locking,credible information,effective supervision and high quality and high price of characteristic agricultural products from the field.The BDS provides services for global digital trade and contributes to the further enhancement of the global application scale of GNSS.
基金funding from the National Natural Science Foundation of China (72303086)the Leading Scientist Project of Qinghai Province, China (2023-NK-147)+1 种基金the Consulting Project of Chinese Academy of Engineering (2023-XY-28,2022-XY-139)the Fundamental Research Funds for the Central Universities, China (lzujbky-2022-sp13)
文摘Formal credit is critical in agricultural production,allowing more expenditure and productive input,thereby improving farmers'welfare.In pastoral China,formal financial institutions are gradually increasing.However,a limited understanding remains of how formal credit affects herders'household expenses.Based on a survey of 544 herders from the Qinghai-Xizang Plateau of China,this study adopted the propensity score matching approach to identify the effect of formal credit on herders'total household expenses,daily expenses,and productive expenses.The results found that average age,grassland mortgage,and other variables significantly affected herders'participation in formal credit.Formal credit could significantly improve household expenses,especially productive expenses.A heterogeneity analysis showed that formal credit had a greater impact on the household total expense for those at higher levels of wealth;however,it significantly affected the productive expense of herders at lower wealth levels.Moreover,the mediating effect indicated that formal credit could affect herders'household income,thus influencing their household expenses.Finally,this study suggests that policies should improve herders'accessibility to formal credit.
基金supported by the Jiangsu University Philosophy and Social Science Research Project(Grant No.2019SJA1326).
文摘In this paper,we consider the price of catastrophe options with credit risk in a regime-switching model.We assume that the macroeconomic states are described by a continuous-time Markov chain with a finite state space.By using the measure change technique,we derive the price expressions of catastrophe put options.Moreover,we conduct some numerical analysis to demonstrate how the parameters of the model affect the price of the catastrophe put option.
基金supported by the National Natural Science Foundation of China(71973001).
文摘To explore the green development of automobile enterprises and promote the achievement of the“dual carbon”target,based on the bounded rationality assumptions,this study constructed a tripartite evolutionary game model of gov-ernment,commercial banks,and automobile enterprises;introduced a dynamic reward and punishment mechanism;and analyzed the development process of the three parties’strategic behavior under the static and dynamic reward and punish-ment mechanism.Vensim PLE was used for numerical simulation analysis.Our results indicate that the system could not reach a stable state under the static reward and punishment mechanism.A dynamic reward and punishment mechanism can effectively improve the system stability and better fit real situations.Under the dynamic reward and punishment mechan-ism,an increase in the initial probabilities of the three parties can promote the system stability,and the government can im-plement effective supervision by adjusting the upper limit of the reward and punishment intensity.Finally,the implementa-tion of green credit by commercial banks plays a significant role in promoting the green development of automobile enter-prises.
基金funded by the Chongqing Social Sciences Planning Project (2023NDQN22)the Social Sciences and Philosophy Project of the Chongqing Municipal Education Commission (23SKGH097)the Youth Program of Science and Technology Research of Chongqing Municipal Education Commission (KJQN202300545)。
文摘The relationship between credit expansion and banking crises is complex and cannot be fully explained by total credit alone.A systematic analysis of the relationship between the amount and structure of total credit and banking crises is important for an objective prediction of the influence of potential financial risks.This paper,drawing on data from 15 selected countries,delves into the power of credit indicators in the early warning of banking crises from the perspectives of industrial structure,sector structure,and term structure of credit.Various machine learning methods were used,including Logistic Regression,Random Forest,Decision Tree,Support Vector Machine(SVM),Bagging,and Boosting models.The empirical findings indicate that credit expansion plays a crucial role in triggering banking crises.However,total credit is better suited for the early warning of short-term banking crises,whereas credit structure is more useful for the early warning of long-term banking crises.Moreover,in an early warning system,identifying key early warning indicators is more meaningful than merely increasing the number of indicators.Machine learning can somewhat enhance the early warning power,but it may not always be robust.Therefore,more attention should be paid to potential systemic banking crises resulting from an imbalance in credit structure while regulating the total credit threshold.
基金supported by the Institutional Fund Projects(IFPIP-1481-611-1443)the Key Projects of Natural Science Research in Anhui Higher Education Institutions(2022AH051909)+1 种基金the Provincial Quality Project of Colleges and Universities in Anhui Province(2022sdxx020,2022xqhz044)Bengbu University 2021 High-Level Scientific Research and Cultivation Project(2021pyxm04)。
文摘A dandelion algorithm(DA) is a recently developed intelligent optimization algorithm for function optimization problems. Many of its parameters need to be set by experience in DA,which might not be appropriate for all optimization problems. A self-adapting and efficient dandelion algorithm is proposed in this work to lower the number of DA's parameters and simplify DA's structure. Only the normal sowing operator is retained;while the other operators are discarded. An adaptive seeding radius strategy is designed for the core dandelion. The results show that the proposed algorithm achieves better performance on the standard test functions with less time consumption than its competitive peers. In addition, the proposed algorithm is applied to feature selection for credit card fraud detection(CCFD), and the results indicate that it can obtain higher classification and detection performance than the-state-of-the-art methods.
文摘Average credit scores for people in the United States (US) differ from state to state. Some states have high, and some states have low average credit scores. Since lenders and employers use credit scores to make loan and employment decisions, people living in states where average credit scores are high should experience the benefits of living where credit scores tend to allow more favorable loan and employment decisions. Although credit scores are the direct result of credit histories, credit histories may be impacted by demographic factors. If the demographic factors that impact credit histories are identified, ways to improve credit scores are likely to be discovered and available to people and state government policymakers. This study looks for demographic factors to indirectly explain the average credit scores for people living in each state of the US. The methodology includes statistical analyses and geographic information systems (GIS) mapping. Statistical analyses provide evidence to suggest that state average credit scores are explained by the demographic factors of education, family, income, and health. GIS mapping reveals clusters of states with similar demographics and credit scores.
文摘Based on Bayes' theorem we point out that the false positive rate must be lower than the intrusion base rate in order to make the Alarm Credibility Probability of the intrusion detection system exceed 50%. We present the methods that have been used in our developing intrusion detection system AIIDS (artificial immune intrusion detection systems) to increase the creditability of anomaly detection system. These methods include increasing the regularities of the system call trace by use of Hidden Markov Model (HMM), making every antibody or detector has finite lifetime, offering the detector a co-stimulate signal to illustrate whether there is damage in the system according to the integrity, confidentiality, or availability of the system resource.
基金Supported by the Project of the University-level Teaching Reform of Binzhou University in 2017[BYJYYB201736]the School-enterprise Co-construction Course Project of Binzhou University in 2017[BYXQGJ201706]+2 种基金the Natural Science Foundation of Shandong Province[ZR2019MH054]Doctor Foundation of Binzhou University[2016Y17&2016Y02]the Project of Shandong Province Higher Educational Science and Technology Program of China[J17KA120]
文摘Biopharmaceutical discipline is an interdisciplinary subject with strong comprehensiveness and wide coverage. Under the background of credit system,it is an important task for application-oriented undergraduate colleges and universities to optimize the cultivation program for innovative and entrepreneurial bio-pharmaceutical professionals. According to the characteristics of biopharmaceutical discipline,Binzhou University biopharmaceutical teaching and research office,based on the social demand for biopharmaceutical discipline talents,defined the principle of optimizing the cultivation of innovative and entrepreneurial biopharmaceutical discipline talents,and constructed the cultivation program of innovative and entrepreneurial biopharmaceutical discipline talents under the credit system. The development of this cultivation program is expected to build a new mode for cultivating high-level biopharmaceutical professionals with strong innovative spirit and entrepreneurial potential.
基金The Natural Science Foundation of Jiangsu Province (BK200402)Key Project of Chinese Ministry of Education(105088)
文摘The adaptive fault-tolerant control scheme of dynamic nonlinear system based on the credit assigned fuzzy CMAC neural network is presented. The proposed learning approach uses the learned times of addressed hypercubes as the credibility, the amounts of correcting errors are proportional to the inversion of the learned times of addressed hypercubes. With this idea, the learning speed can indeed be improved. Based on the improved CMAC learning approach and using the sliding control technique, the effective control law reconfiguration strategy is presented. The system stability and performance are analyzed under failure scenarios. The numerical simulation demonstrates the effectiveness of the improved CMAC algorithm and the proposed fault-tolerant controller.
基金funded by the State Grid Jiangsu Electric Power Company(Grant No.JS2020112)the National Natural Science Foundation of China(Grant No.62272236).
文摘Federated learning has been used extensively in business inno-vation scenarios in various industries.This research adopts the federated learning approach for the first time to address the issue of bank-enterprise information asymmetry in the credit assessment scenario.First,this research designs a credit risk assessment model based on federated learning and feature selection for micro and small enterprises(MSEs)using multi-dimensional enterprise data and multi-perspective enterprise information.The proposed model includes four main processes:namely encrypted entity alignment,hybrid feature selection,secure multi-party computation,and global model updating.Secondly,a two-step feature selection algorithm based on wrapper and filter is designed to construct the optimal feature set in multi-source heterogeneous data,which can provide excellent accuracy and interpretability.In addition,a local update screening strategy is proposed to select trustworthy model parameters for aggregation each time to ensure the quality of the global model.The results of the study show that the model error rate is reduced by 6.22%and the recall rate is improved by 11.03%compared to the algorithms commonly used in credit risk research,significantly improving the ability to identify defaulters.Finally,the business operations of commercial banks are used to confirm the potential of the proposed model for real-world implementation.
基金This research was funded by Innovation and Entrepreneurship Training Program for College Students in Hunan Province in 2022(3915).
文摘With the popularity of online payment, how to perform creditcard fraud detection more accurately has also become a hot issue. And withthe emergence of the adaptive boosting algorithm (Adaboost), credit cardfraud detection has started to use this method in large numbers, but thetraditional Adaboost is prone to overfitting in the presence of noisy samples.Therefore, in order to alleviate this phenomenon, this paper proposes a newidea: using the number of consecutive sample misclassifications to determinethe noisy samples, while constructing a penalty factor to reconstruct thesample weight assignment. Firstly, the theoretical analysis shows that thetraditional Adaboost method is overfitting in a noisy training set, which leadsto the degradation of classification accuracy. To this end, the penalty factorconstructed by the number of consecutive misclassifications of samples isused to reconstruct the sample weight assignment to prevent the classifierfrom over-focusing on noisy samples, and its reasonableness is demonstrated.Then, by comparing the penalty strength of the three different penalty factorsproposed in this paper, a more reasonable penalty factor is selected.Meanwhile, in order to make the constructed model more in line with theactual requirements on training time consumption, the Adaboost algorithmwith adaptive weight trimming (AWTAdaboost) is used in this paper, so thepenalty factor-based AWTAdaboost (PF_AWTAdaboost) is finally obtained.Finally, PF_AWTAdaboost is experimentally validated against other traditionalmachine learning algorithms on credit card fraud datasets and otherdatasets. The results show that the PF_AWTAdaboost method has betterperformance, including detection accuracy, model recall and robustness, thanother methods on the credit card fraud dataset. And the PF_AWTAdaboostmethod also shows excellent generalization performance on other datasets.From the experimental results, it is shown that the PF_AWTAdaboost algorithmhas better classification performance.
文摘The use of credit default swaps (CDSs) has become increasingly popular over time. Between 2002 and 2007, gross notional amounts outstanding grew from below S2 trillion to nearly S60 trillion. The recent crisis has revealed several shortcomings in CDS market practices and structure. In addition, management of counterparty risk has proved insufficient, as has in some instances the settlement of contracts following a credit event. However, past problems should not distract from the potential benefits of these instruments. In particular, CDSs help complete markets, as they provide an effective means to hedge and trade credit risk. CDSs allow financial institutions to better manage their exposures, and investors benefit from an enhanced investment universe. The purpose of this paper is to present a complete and practical exposition of the CDS market and to explore how the development of the CDS market has played an important role in the credit risk markets. Currently, the CDS market is transforming into a more stable system. Various measures are being put in place to help enhance market transparency and mitigate operational and systemic risk. In particular, central counterparties have started to operate, which will eventually lead to an improved management of individual as well as system-wide risks.
基金supported by the National Key R&D Program of China(Nos.2022YFB3104103,and 2019QY1406)the National Natural Science Foundation of China(Nos.61732022,61732004,61672020,and 62072131).
文摘Credit Card Fraud Detection(CCFD)is an essential technology for banking institutions to control fraud risks and safeguard their reputation.Class imbalance and insufficient representation of feature data relating to credit card transactions are two prevalent issues in the current study field of CCFD,which significantly impact classification models’performance.To address these issues,this research proposes a novel CCFD model based on Multifeature Fusion and Generative Adversarial Networks(MFGAN).The MFGAN model consists of two modules:a multi-feature fusion module for integrating static and dynamic behavior data of cardholders into a unified highdimensional feature space,and a balance module based on the generative adversarial network to decrease the class imbalance ratio.The effectiveness of theMFGAN model is validated on two actual credit card datasets.The impacts of different class balance ratios on the performance of the four resamplingmodels are analyzed,and the contribution of the two different modules to the performance of the MFGAN model is investigated via ablation experiments.Experimental results demonstrate that the proposed model does better than state-of-the-art models in terms of recall,F1,and Area Under the Curve(AUC)metrics,which means that the MFGAN model can help banks find more fraudulent transactions and reduce fraud losses.
基金Štefan Lyócsa and Branka Hadji Misheva acknowledge the suppot from grant Horizon 2020 No.825215Štefan Lyócsa and Petra Vašaničováacknowledge the support from grant VEGA No.1/0497/21.
文摘For the emerging peer-to-peer(P2P)lending markets to survive,they need to employ credit-risk management practices such that an investor base is profitable in the long run.Traditionally,credit-risk management relies on credit scoring that predicts loans’probability of default.In this paper,we use a profit scoring approach that is based on modeling the annualized adjusted internal rate of returns of loans.To validate our profit scoring models with traditional credit scoring models,we use data from a European P2P lending market,Bondora,and also a random sample of loans from the Lending Club P2P lending market.We compare the out-of-sample accuracy and profitability of the credit and profit scoring models within several classes of statistical and machine learning models including the following:logistic and linear regression,lasso,ridge,elastic net,random forest,and neural networks.We found that our approach outperforms standard credit scoring models for Lending Club and Bondora loans.More specifically,as opposed to credit scoring models,returns across all loans are 24.0%(Bondora)and 15.5%(Lending Club)higher,whereas accuracy is 6.7%(Bondora)and 3.1%(Lending Club)higher for the proposed profit scoring models.Moreover,our results are not driven by manual selection as profit scoring models suggest investing in more loans.Finally,even if we consider data sampling bias,we found that the set of superior models consists almost exclusively of profit scoring models.Thus,our results contribute to the literature by suggesting a paradigm shift in modeling credit-risk in the P2P market to prefer profit as opposed to credit-risk scoring models.
基金supported by the National Natural Science Foundation of China(Grant Nos.72171182 and 72031009)the Spanish Ministry of Economy and Competitiveness through the Spanish National Research Project(Grant No.PGC2018-099402-B-I00)the Spanish postdoctoral fellowship program Ramon y Cajal(Grant No.RyC-2017-21978).
文摘Credit risk assessment involves conducting a fair review and evaluation of an assessed subject’s solvency and creditworthiness.In the context of real estate enterprises,credit risk assessment provides a basis for banks and other financial institutions to choose suitable investment objects.Additionally,it encourages real estate enterprises to abide by market norms and provide reliable information for the standardized management of the real estate industry.However,Chinese real estate companies are hesitant to disclose their actual operating data due to privacy concerns,making subjective evalu-ation approaches inevitable,occupying important roles in accomplishing Chinese real estate enterprise credit risk assessment tasks.To improve the normative and reliability of credit risk assessment for Chinese real estate enterprises,this study proposes an integrated multi-criteria group decision-making approach.First,a credit risk assessment index for Chinese real estate enterprises is established.Then,the proposed framework combines proportional hesitant fuzzy linguistic term sets and preference ranking organization method for enrichment evaluation II methods.This approach is suitable for processing large amounts of data with high uncertainty,which is often the case in credit risk assessment tasks of Chinese real estate enterprises involving massive subjec-tive evaluation information.Finally,the proposed model is validated through a case study accompanied by sensitivity and comparative analyses to verify its rationality and feasibility.This study contributes to the research on credit assessment for Chinese real estate enterprises and provides a revised paradigm for real estate enterprise credit risk assessment.
文摘Internet finance is a new emerging financial model,using the Internet as a platform,big data and cloud computing as the basis.Supply Chain Finance is the easiest way to enter Internet finance.The thirdparty companies or institutions can invest in Internet financial companies by integrating their industrial chain practices into designing the financial products to reduce credit costs and improve safety.At the same time,it will increase mobile Internet,big data and operational services.Also,it can make full use of the Internet financial platform to provide value-added services for higher and lower enterprise and consolidate the core status of the company in the industrial chain.However,an important issue that needs to be concerned during developing Supply Chain Finance is the construction of a system for credit evaluation.Due to the lack of a unified credit evaluation system,the development of the existing Supply Chain Financial companies suffers from difficulties.Many newly launched companies have difficulties operating due to the lack of a credit evaluation system.Therefore,proper and effective credit indicators are essential for the development of enterprises under Internet finance.From the micro perspective,it is conducive for enterprises to improve their credit under the constraints of indicators,and it can solve the problem of capital raising;from the macro perspective,it is conducive to the standardized development of China’s Internet finance and promotes the comprehensive economic development.Based on this,analyzing the model of Internet financial business and developing an enterprise’s credit index system is beneficial to the development of China’s Internet finance.
基金This paper is supported by National Science Foundation of China under Grant No60542004
文摘A Multi-Agent System ( MAS ) is a promising approach to build complex system. This paper introduces the research of the Inner-Enterprise Credit Rating MAS ( IECRMAS). To raise the rating accuracy, we not only consider the rating-target's information, but also focus on the evaluators' feature information and propose the rational rating-group formation algorithm based on an anti-bias measurement of the group. We also propose the rational rating individual, which consists of the evaluator and the assistant rating agent. A rational group formation protocol is designed to coordinate autonomous agents to perform the rating job.
基金This work was supported by University Innovation Research Group of Chongqing(No.CXQT21005).
文摘Purpose:The purpose of this study is to propose an improved credit allocation method that makes the leading author of the paper more distinguishable and makes the deification more robust under malicious manipulations.Design/methodology/approach:We utilize a modified Sigmoid function to handle the fat-tail distributed citation counts.We also remove the target paper in calculating the contribution of co-citations.Following previous studies,we use 30 Nobel Prize-winning papers and their citation networks based on the American Physical Society(APS)and the Microsoft Academic Graph(MAG)dataset to test the accuracy of our proposed method(NCCAS).In addition,we use 654,148 articles published in the field of computer science from 2000 to 2009 in the MAG dataset to validate the distinguishability and robustness of NCCAS.Finding:Compared with the state-of-the-art methods,NCCAS gives the most accurate prediction of Nobel laureates.Furthermore,the leading author of the paper identified by NCCAS is more distinguishable compared with other co-authors.The results by NCCAS are also more robust to malicious manipulation.Finally,we perform ablation studies to show the contribution of different components in our methods.Research limitations:Due to limited ground truth on the true leading author of a work,the accuracy of NCCAS and other related methods can only be tested in Nobel Physics Prize-winning papers.Practical implications:NCCAS is successfully applied to a large number of publications,demonstrating its potential in analyzing the relationship between the contribution and the recognition of authors with different by-line orders.Originality/value:Compared with existing methods,NCCAS not only identifies the leading author of a paper more accurately,but also makes the deification more distinguishable and more robust,providing a new tool for related studies.