International students choosing to study abroad face a change in self-identity, which in many cases takes them by surprise and which is affected by a multiplicity of factors. Within the framework of Tajfel's Social I...International students choosing to study abroad face a change in self-identity, which in many cases takes them by surprise and which is affected by a multiplicity of factors. Within the framework of Tajfel's Social Identity Theory, we examine the nature of identity and the many contexts in which it is shaped, mainly in reference to the ESL (English as a Second Language) classroom, but with broader implications for the students' experiences in Western classroom as a whole. We discuss the challenges facing not only students, but also faculty who wish to assist students in the formation of their new identities展开更多
With the rapid spread of the coronavirus epidemic all over the world,educational and other institutions are heading towards digitization.In the era of digitization,identifying educational e-platform users using ear an...With the rapid spread of the coronavirus epidemic all over the world,educational and other institutions are heading towards digitization.In the era of digitization,identifying educational e-platform users using ear and iris based multi-modal biometric systems constitutes an urgent and interesting research topic to pre-serve enterprise security,particularly with wearing a face mask as a precaution against the new coronavirus epidemic.This study proposes a multimodal system based on ear and iris biometrics at the feature fusion level to identify students in electronic examinations(E-exams)during the COVID-19 pandemic.The proposed system comprises four steps.Thefirst step is image preprocessing,which includes enhancing,segmenting,and extracting the regions of interest.The second step is feature extraction,where the Haralick texture and shape methods are used to extract the features of ear images,whereas Tamura texture and color histogram methods are used to extract the features of iris images.The third step is feature fusion,where the extracted features of the ear and iris images are combined into one sequential fused vector.The fourth step is the matching,which is executed using the City Block Dis-tance(CTB)for student identification.Thefindings of the study indicate that the system’s recognition accuracy is 97%,with a 2%False Acceptance Rate(FAR),a 4%False Rejection Rate(FRR),a 94%Correct Recognition Rate(CRR),and a 96%Genuine Acceptance Rate(GAR).In addition,the proposed recognition sys-tem achieved higher accuracy than other related systems.展开更多
文摘International students choosing to study abroad face a change in self-identity, which in many cases takes them by surprise and which is affected by a multiplicity of factors. Within the framework of Tajfel's Social Identity Theory, we examine the nature of identity and the many contexts in which it is shaped, mainly in reference to the ESL (English as a Second Language) classroom, but with broader implications for the students' experiences in Western classroom as a whole. We discuss the challenges facing not only students, but also faculty who wish to assist students in the formation of their new identities
文摘With the rapid spread of the coronavirus epidemic all over the world,educational and other institutions are heading towards digitization.In the era of digitization,identifying educational e-platform users using ear and iris based multi-modal biometric systems constitutes an urgent and interesting research topic to pre-serve enterprise security,particularly with wearing a face mask as a precaution against the new coronavirus epidemic.This study proposes a multimodal system based on ear and iris biometrics at the feature fusion level to identify students in electronic examinations(E-exams)during the COVID-19 pandemic.The proposed system comprises four steps.Thefirst step is image preprocessing,which includes enhancing,segmenting,and extracting the regions of interest.The second step is feature extraction,where the Haralick texture and shape methods are used to extract the features of ear images,whereas Tamura texture and color histogram methods are used to extract the features of iris images.The third step is feature fusion,where the extracted features of the ear and iris images are combined into one sequential fused vector.The fourth step is the matching,which is executed using the City Block Dis-tance(CTB)for student identification.Thefindings of the study indicate that the system’s recognition accuracy is 97%,with a 2%False Acceptance Rate(FAR),a 4%False Rejection Rate(FRR),a 94%Correct Recognition Rate(CRR),and a 96%Genuine Acceptance Rate(GAR).In addition,the proposed recognition sys-tem achieved higher accuracy than other related systems.