The N-doped, yellow colored titanium oxide photocatalysts were prepared with Ti(SO4)2 and NH4HCO3 as precursors by precipitation method. The photocatalytic ability under the irradiation of UV or visible light for the ...The N-doped, yellow colored titanium oxide photocatalysts were prepared with Ti(SO4)2 and NH4HCO3 as precursors by precipitation method. The photocatalytic ability under the irradiation of UV or visible light for the catalysts prepared was studied by degradation of styphnic acid. The materials were characterized by EDS, XRD, FTIR, UV-Vis DRS, and XPS. The results indicate that the photocatalytic ability of catalysts is improved, especially the ability of visible light response. The results of UV-Vis DRS show that the response wavelength range of N-dopped nitrogen is red shifted, the absorption region is expanded to 476 nm.展开更多
文摘The N-doped, yellow colored titanium oxide photocatalysts were prepared with Ti(SO4)2 and NH4HCO3 as precursors by precipitation method. The photocatalytic ability under the irradiation of UV or visible light for the catalysts prepared was studied by degradation of styphnic acid. The materials were characterized by EDS, XRD, FTIR, UV-Vis DRS, and XPS. The results indicate that the photocatalytic ability of catalysts is improved, especially the ability of visible light response. The results of UV-Vis DRS show that the response wavelength range of N-dopped nitrogen is red shifted, the absorption region is expanded to 476 nm.