The properties of styrene-butadiene rubber (SBR) reinforced by modified silica was investigated according to national standards. Silica was modified by silane coupling agents KH-570, KH-590, and KH-792. The optimized ...The properties of styrene-butadiene rubber (SBR) reinforced by modified silica was investigated according to national standards. Silica was modified by silane coupling agents KH-570, KH-590, and KH-792. The optimized geome-tries of molecular modified silica reinforced SBR were obtained by using B3LYP calculation of density functional theory with the 6-31+G basis sets. The natural bond orbital analyses were carried out. The Si—O bond length of silica modified by KH-792 was the shortest and the electronegative of O was the highest. It indicated that the connection between silica and KH-792 was the tightest. Higher tensile strength and elongation of reinforced SBR was obtained by silica modified with the KH-792. It was caused by large delocalization of lone pair electrons of the two N atoms in KH-792. The S—C bond length in silica modified by KH-590 was longer than the ordinary S—C bond length. Then the sulfur free radical (·S·) was produced more easily in vulcanization. The degree of crosslink was increased by the cross-linkage of the rubber molecule and the sulfur free radical. That was why the highest stress and tear strength of reinforced SBR was produced when silane coupling agent KH-590 was used. The calculation results was in accord with experimental data.展开更多
The environmental hazards and"carbon footprint"of oil and gas drilling can be significantly reduced by replacing traditional petroleum-based chemical additives with natural materials derived from plants and ...The environmental hazards and"carbon footprint"of oil and gas drilling can be significantly reduced by replacing traditional petroleum-based chemical additives with natural materials derived from plants and animals.This paper explored for the first time the interaction mechanism between natural rubber latex(NRL)and bentonite suspensions(BTs)through a series of characterization experiments,as well as the potential applications in water-based drilling fluids(WBDF).The gel viscoelasticity experiments showed that NRL could decrease the consistency coefficient(k)and flow index(n)of BTs,and enhance the shear thinning performance of BTs as pseudo-plastic fluids.In addition,0.5 w/v%NRL not only increased the critical yield stress and strengthened the structural strength between the bentonite particles,but also facilitated the compatibility of pressure loss and flow efficiency.The evaluation of colloidal stability and WBDF performance indicated that NRL particles could promote the hydration and charge stability on the surface of BTs particles,and optimize the particle size distribution and flow resistance of WBDF under the"intercalation-exfoliation-encapsulation"synergistic interaction.Moreover,NRL can improve the rheological properties of WBDF at high temperatures(<150.C),and form a dense blocking layer by bridging and sealing the pores and cracks of the filter cake,which ultimately reduces the permeability of the cake and the filtration loss of WBDF.展开更多
Rubber latex is an important economic resource. However, the residues from its harvesting are thrown away, even though they contain lipids that can be recycled. This recovery of the residues from the bottom of the cup...Rubber latex is an important economic resource. However, the residues from its harvesting are thrown away, even though they contain lipids that can be recycled. This recovery of the residues from the bottom of the cup requires first and foremost their characterization. The aim of this study is therefore to determine the main physical and chemical characteristics of rubber latex cup bottom oil. Oil’s physical parameters determination shows that it has a density of 951 kg∙m−3, a kinematic viscosity of 48.57 cSt and a water content of 0.0845%. Chemical parameters, meanwhile, indicate that this cup bottom residue has a fat content of 95.96%, an acid number of 2.805 mg KOH/g and an iodine number of 92.42 g I2/100g. Therefore, rubber latex cup bottom oil can be used in the formulation of biofuels, biolubricants, paints, varnishes, alkyd resins, polishing oils, soaps, and insecticides.展开更多
Styrene-butadiene rubber(SBR)is widely used in tires in the automotive segment and vulcanization using sulfur is a common process to enhance its mechanical properties.However,the addition of sulfur as the cross-linkin...Styrene-butadiene rubber(SBR)is widely used in tires in the automotive segment and vulcanization using sulfur is a common process to enhance its mechanical properties.However,the addition of sulfur as the cross-linking agent usually results in impurities in pyrolysis products during rubber recycling,and thus the desulfurization during tire pyrolysis attracts much attention.In this work,the pyrolysis of vulcanized SBR is studied in detail with the help of Reax FF molecular dynamics simulation.A series of crosslinked SBR models were built with different sulfur contents and densities.The following Reax FF MD simulations were performed to show products distributions at different pyrolysis conditions.The simulation results show that sulfur products distribution is mainly controlled by sulfur contents and temperatures.The reaction mechanism is proposed based on the analysis of sulfur products conversion pathway,where most sulfur atoms are bonded with hydrocarbon radicals and the rest transfer to H_(2)S.High sulfur contents tend to the formation of elemental sulfur intermediate,and temperature increase facilitates the release of H_(2)S.展开更多
A natural nanotubular material,halloysite nanotubes(HNTs),was introduced to prepare styrene-butadiene rubber/modified halloysite nanotube(SBR/m-HNT) nanocomposites.Complex of resorcinol and hexamethylenetetramine (RH)...A natural nanotubular material,halloysite nanotubes(HNTs),was introduced to prepare styrene-butadiene rubber/modified halloysite nanotube(SBR/m-HNT) nanocomposites.Complex of resorcinol and hexamethylenetetramine (RH) was used as the interfacial modifier.The structure,morphology and mechanical properties of SBR/m-HNT nanocomposites,especially the interfacial interactions,were investigated.SEM and TEM observations showed that RH can not only facilitate the dispersion and orientation of HNTs in SBR matrix at ...展开更多
Rule of similarity and latex compounding techniques were combined for the first time to prepare natural rubber/nanosilica (NR/SiO2) nanocomposite with core-shell nanosilica-poly (methyl methacrylate) (SiO2-PMMA)...Rule of similarity and latex compounding techniques were combined for the first time to prepare natural rubber/nanosilica (NR/SiO2) nanocomposite with core-shell nanosilica-poly (methyl methacrylate) (SiO2-PMMA) particles and PMMA-modified natural rubber matrix (NR-PMMA). The micro- structure of SiO2 and nanocomposites with different SiO2 contents was characterized by fourier transform infrared spectroscopy (FTIR); the morphology of nanocomposites was investigated with scanning electron microscopy (SEM); the tensile strength was characterized by tensile testing machine and the thermal stability of composites was studied by thermal gravimetric analysis. Results showed that PMMA chains have successfully grafted onto the surface of SiO2, and the core-shell SiO2-PMMA nanoparticles and NR-PMMA latex have been perfectly incorporated. SiO2-PMMA nanoparticles are evenly distributed over the NR matrix with an average size in the range of 60-100 nm at the low content (SiO2≤ 3 wt%), while aggregations are apparently observed when 5 wt% SiO2 is loaded. In addition, NP/SiO2 composities possess a considerable improvement in ageing resistance compared with the pure NR. The tensile strength of composite increases from 6.99 to 12.72 MPa, reaching the highest value at a 0.5 wt% SiO2 loading, and then the figure decreases gradually because of the aggregation of SiO2 nanoparticles. It is anticipated that the reported process is to provide a simple and economic way for preparing NR composites.展开更多
Raw rubber Latex contents, from 0% to 30% were used to stabilize lateritic samples to provide an alternative to cement stabilization. These samples were submitted to physical tests (water resistance test, absorption t...Raw rubber Latex contents, from 0% to 30% were used to stabilize lateritic samples to provide an alternative to cement stabilization. These samples were submitted to physical tests (water resistance test, absorption test) and mechanical tests (dry compressive strength test). The results indicate that samples made of latex content less than 15% dissolve completely into water. So it was impossible to make sample with these contents. Samples with 15% of raw rubber content or more are steady after water resistance test. The absorption rate of these samples decreases as the latex content increases. It goes from 14.45% for the samples at 15% to 5.87% for those at 30%. Therefore, the compressive strength test indicates that the resistance increases from 0.37 MPa for samples without latex to 3.15 MPa for those at 30% of latex content. Also, the rheological study shows that the samples pass from a brittle behaviour to a plastic behaviour when the latex content increases. The behaviour of the sample according to these different tests shows that this material can be used in several activity areas, such as construction, road building and sports area.展开更多
Natural rubber latex (NRL) and methyl methacrylate (MMA) grafted rubber latex were blended in different ratios and irradiated at various absorbed doses by gamma rays from Co-60 source at room temperature. The tens...Natural rubber latex (NRL) and methyl methacrylate (MMA) grafted rubber latex were blended in different ratios and irradiated at various absorbed doses by gamma rays from Co-60 source at room temperature. The tensile properties, swelling ratio and permanent set were measured. The maximum tensile strength and modulus at 500% elongation were obtained at an absorbed dose of 8 kGy. Modulus increases from 6.99 MPa to 9.87 MPa for an increase in proportion of MMA grafted rubber from 40% to 60% in the blend at similar absorbed dose. Elongation at break and swelling ratio decrease with increasing absorbed dose as well as the MMA grafted rubber content in the blends. The decreasing trend of permanent set is high up to 5 kGy absorbed dose, and beyond that dose, it becomes almost flat.展开更多
Natural rubber(NR)grafted with 2-ethylhexyl acrylate(2-EHA)and methacrylic acid(MAA,collectively NR-g-PEHA/MAA)was synthesized by emulsion polymerization.Tetraethylenepentamine and cumene hydroperoxide were used as re...Natural rubber(NR)grafted with 2-ethylhexyl acrylate(2-EHA)and methacrylic acid(MAA,collectively NR-g-PEHA/MAA)was synthesized by emulsion polymerization.Tetraethylenepentamine and cumene hydroperoxide were used as redox initiators.The successful grafting of 2-EHA and MAA onto NR was confirmed by Fourier transform infrared spectroscopy.The morphology of the NR latex particles was observed by transmission electron microscopy.The effects of reaction temperature,initiator dosage,feeding mode,and hard monomer content on the mechanical properties of the modified NR film were investigated.Grafted polymer chains were unevenly wrapped on the outside of NR particles,and smaller particles were more easily grafted.Crosslinking was characterized using a toluene swelling method.Thermal stability and glass transition temperature were examined by differential scanning calorimetry and thermogravimetric analysis.The results showed that the thermal stability of NR-g-PEHA/MAA had been improved,and the glass transition temperature(Tg)was unchanged.展开更多
This work focuses on the development of carpets from sand, fabrics of cotton fiber and mosquito nets and rubber latex. Following a study on the choice of the best formulations, the quantity of rubber latex used for sh...This work focuses on the development of carpets from sand, fabrics of cotton fiber and mosquito nets and rubber latex. Following a study on the choice of the best formulations, the quantity of rubber latex used for shaping varies between 14% and 18% (latex/sand + latex ratio) for the carpet with the fabric of mosquito nets and between 16% and 18% for the one made with the fabric of cotton fiber. Thus, with a mixture of sand, fiber fabrics (cotton and mosquito nets) and rubber latex, carpets were developed. In addition, the wear test carried out on these samples indicates that it is possible to produce carpets with the new material made of rubber sand and latex: SABLATEX At room temperature. Following the characterization test, it resorts to only 16% latex with cotton fiber fabric, allowing to have carpets with good mechanical characteristics.展开更多
Styrene-butadiene rubber(SBR)is an indispensable material in modern society,and the necessity for enhanced mechanical properties in SBR persists,particularly to withstand the rigors of challenging environmental condit...Styrene-butadiene rubber(SBR)is an indispensable material in modern society,and the necessity for enhanced mechanical properties in SBR persists,particularly to withstand the rigors of challenging environmental conditions.To surmount the limitations of conventional cross-linking modes,mechanical bonds stabilized by host-guest recognition are incorporated as the cross-linking points of SBR to form mechanically interlocked networks(MINs).Compared with covalently cross-linked network,the representative MIN exhibits superior mechanical performance in terms of elongation(1392%)and breaking strength(4.6 MPa),whose toughness has surged by 17 times.Dissociation of host-guest recognition and subsequent sliding motion provide an effective energy dissipation mechanism,and the release of hidden length is also beneficial to enhance toughness.Furthermore,the introduction of the rotaxane cross-links made the network more pliable and possess damping and elastic properties,which can return to initial state with one minute rest interval.We aspire that this direct introduction method can serve as a blueprint,offering valuable insights for the enhancement of mechanical properties in conventional commercial polymer materials.展开更多
The antioxidant N-isopropyl-N'-phenyl-p-phenylenediamine(4010NA)was dissolved in ethanol and impregnated into silica aerogel(SAG)via vacuum-pressure cycles,yielding composite particles(A-N)with enhanced sustained-...The antioxidant N-isopropyl-N'-phenyl-p-phenylenediamine(4010NA)was dissolved in ethanol and impregnated into silica aerogel(SAG)via vacuum-pressure cycles,yielding composite particles(A-N)with enhanced sustained-release and reinforcing capabilities.The effect of A-N on the mechanical properties and thermal-oxidative aging resistance of styrene-butadiene rubber(SBR)vulcanizates was investigated.TGA and BET assessments indicated that the loading efficiency of 4010NA in SAG reached 14.26%within ethanol's solu bility limit.Incorporating A-N into SBR vulcanizates significantly elevated tensile strength by 17.5%and elongation at break by 41.9%over those with fumed silica and free4010NA.Furthermore,A-N notably enhanced the thermal-oxidative aging resistance of SBR.After aging for 96 h at 100℃,the tensile strength and elongation at break of SBR with A-N sustained 70.09%and 58.61%of their initial values,respectively,with the retention rate of elongation at break being 62.8%higher than that of SBR with fumed silica and free antioxidant.The study revealed that A-N composite particles significantly inhibited the crosslinking in SBR's molecular chains,reducing hardening and embrittlement during later thermal-oxidative aging stages.展开更多
Latex is one of the natural rubbers that is used to enhance the performance of asphalt pavement for the last few decades.The presence of latex,which is categorized as an elastomer,helps to improve pavement performance...Latex is one of the natural rubbers that is used to enhance the performance of asphalt pavement for the last few decades.The presence of latex,which is categorized as an elastomer,helps to improve pavement performance and durability.Conversely,higher viscosity of latex modified asphalt binder increases the production-temperatures of asphalt mixture,thus consuming higher energy during asphalt mixture’s production stage.In this study,the effectiveness of methanol as an energy-efficient foaming agent was assessed to reduce the viscosity and enhance the workability of the modified asphalt binder.The basic and rheological properties of the asphalt binders were determined through multiple laboratory tests including expansion ratio and half-life,rotational viscosity,softening point,torsional recovery,and dynamic shear rheometer.The properties of asphalt mixtures were assessed through the service characteristics,mechanical performance,and moisture resistance criteria.It was found that the presence of latex results in an approximately twofold higher expansion ratio and a lower half-life of the asphalt binder at about the same ratio.Through the rotational viscosity test,the application of methanol into asphalt binder decreased the viscosity and led to better workability,despite the addition of latex as an asphalt modifier.The application of methanol into asphalt binder improved the workability of mixture samples and lowered the compaction energy of the compaction process,which are the crucial criteria for a better mixing and compaction process.Methanol foamed asphalt mixtures with latex show much higher resistance to moisture damage and stiffness than control sample even though they were prepared at a lower temperature.展开更多
Natural rubber (NR)/multi-walled carbon nanotube (MWCNTs) composites were prepared by combining self-assembly and latex compounding techniques.The acid-treated MWCNTs (H2SO4:HNO3=3:1,volume ratio) were self-as...Natural rubber (NR)/multi-walled carbon nanotube (MWCNTs) composites were prepared by combining self-assembly and latex compounding techniques.The acid-treated MWCNTs (H2SO4:HNO3=3:1,volume ratio) were self-assembled with poly (diallyldimethylammonium chloride) (PDDA) through electrostatic adhesion.In the second assembling,NR/MWCNTs composites were developed by mixing MWCNTs/PDDA solution with NR latex.The results show that MWCNTs are homogenously distributed throughout the NR matrix as single tube and present a great interfacial adhesion with NR phase when MWCNTs contents are less than 3 wt%.Moreover,the addition of the MWCNTs brings about the remarkable enhancement in tensile strength and crosslink density compared with the NR host,and the data peak at 2 wt% MWCNTs loadings.When more MWCNTs are loaded,aggregations of MWCNTs are gradually generated,and the tensile strength and crosslink both decrease to a certain extent.展开更多
Natural rubber latex is </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">white liquid in the form of </span><span style="...Natural rubber latex is </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">white liquid in the form of </span><span style="font-family:Verdana;">the</span><span style="font-family:Verdana;"> colloidal dispersion of rubber globules suspended in </span><span style="font-family:Verdana;">the </span><span style="font-family:""><span style="font-family:Verdana;">aqueous liquid. Produced in large quantities in Ivory Coast, the local transformation of natural latex has so far remained insignificant, although some attempts have been made to use it in the manufacture of flexible facade briquettes for rounded walls. Thus, this study aims to incorporate clay as a filler in natural latex for use as an adhesive for tile installation. To do this, diffe</span><span style="font-family:Verdana;">rent proportions of clay paste were added to the natural latex and the resulting mixtures were used to make the sample and tile adhesive. From the analysis of the results obtained, it appears that the samples with a clay paste density of 0.8 and 1 absorb less water and show</span></span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> good pull-out strength. The mixtu</span><span style="font-family:""><span style="font-family:Verdana;">res of 30% and 35% latex and 0.8 </span><span><span style="font-family:Verdana;">and 1 clay paste density respectively have pullout stresses greater than 1 N/mm</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">. According to</span></span><span style="font-family:Verdana;"> NF EN 1348, these adhesives can therefore be used as tile adhesive.展开更多
文摘The properties of styrene-butadiene rubber (SBR) reinforced by modified silica was investigated according to national standards. Silica was modified by silane coupling agents KH-570, KH-590, and KH-792. The optimized geome-tries of molecular modified silica reinforced SBR were obtained by using B3LYP calculation of density functional theory with the 6-31+G basis sets. The natural bond orbital analyses were carried out. The Si—O bond length of silica modified by KH-792 was the shortest and the electronegative of O was the highest. It indicated that the connection between silica and KH-792 was the tightest. Higher tensile strength and elongation of reinforced SBR was obtained by silica modified with the KH-792. It was caused by large delocalization of lone pair electrons of the two N atoms in KH-792. The S—C bond length in silica modified by KH-590 was longer than the ordinary S—C bond length. Then the sulfur free radical (·S·) was produced more easily in vulcanization. The degree of crosslink was increased by the cross-linkage of the rubber molecule and the sulfur free radical. That was why the highest stress and tear strength of reinforced SBR was produced when silane coupling agent KH-590 was used. The calculation results was in accord with experimental data.
基金supported by the National Natural Science Foundation of China (Grant No.51991361 and Grant No.51874329)。
文摘The environmental hazards and"carbon footprint"of oil and gas drilling can be significantly reduced by replacing traditional petroleum-based chemical additives with natural materials derived from plants and animals.This paper explored for the first time the interaction mechanism between natural rubber latex(NRL)and bentonite suspensions(BTs)through a series of characterization experiments,as well as the potential applications in water-based drilling fluids(WBDF).The gel viscoelasticity experiments showed that NRL could decrease the consistency coefficient(k)and flow index(n)of BTs,and enhance the shear thinning performance of BTs as pseudo-plastic fluids.In addition,0.5 w/v%NRL not only increased the critical yield stress and strengthened the structural strength between the bentonite particles,but also facilitated the compatibility of pressure loss and flow efficiency.The evaluation of colloidal stability and WBDF performance indicated that NRL particles could promote the hydration and charge stability on the surface of BTs particles,and optimize the particle size distribution and flow resistance of WBDF under the"intercalation-exfoliation-encapsulation"synergistic interaction.Moreover,NRL can improve the rheological properties of WBDF at high temperatures(<150.C),and form a dense blocking layer by bridging and sealing the pores and cracks of the filter cake,which ultimately reduces the permeability of the cake and the filtration loss of WBDF.
文摘Rubber latex is an important economic resource. However, the residues from its harvesting are thrown away, even though they contain lipids that can be recycled. This recovery of the residues from the bottom of the cup requires first and foremost their characterization. The aim of this study is therefore to determine the main physical and chemical characteristics of rubber latex cup bottom oil. Oil’s physical parameters determination shows that it has a density of 951 kg∙m−3, a kinematic viscosity of 48.57 cSt and a water content of 0.0845%. Chemical parameters, meanwhile, indicate that this cup bottom residue has a fat content of 95.96%, an acid number of 2.805 mg KOH/g and an iodine number of 92.42 g I2/100g. Therefore, rubber latex cup bottom oil can be used in the formulation of biofuels, biolubricants, paints, varnishes, alkyd resins, polishing oils, soaps, and insecticides.
基金The authors would like to express appreciation for the support of National Key Research and Development Program of China(Grant No.2018YFC1902601).
文摘Styrene-butadiene rubber(SBR)is widely used in tires in the automotive segment and vulcanization using sulfur is a common process to enhance its mechanical properties.However,the addition of sulfur as the cross-linking agent usually results in impurities in pyrolysis products during rubber recycling,and thus the desulfurization during tire pyrolysis attracts much attention.In this work,the pyrolysis of vulcanized SBR is studied in detail with the help of Reax FF molecular dynamics simulation.A series of crosslinked SBR models were built with different sulfur contents and densities.The following Reax FF MD simulations were performed to show products distributions at different pyrolysis conditions.The simulation results show that sulfur products distribution is mainly controlled by sulfur contents and temperatures.The reaction mechanism is proposed based on the analysis of sulfur products conversion pathway,where most sulfur atoms are bonded with hydrocarbon radicals and the rest transfer to H_(2)S.High sulfur contents tend to the formation of elemental sulfur intermediate,and temperature increase facilitates the release of H_(2)S.
基金supported by the National Natural Science Foundation of China(Nos.50573021 and 50603005)
文摘A natural nanotubular material,halloysite nanotubes(HNTs),was introduced to prepare styrene-butadiene rubber/modified halloysite nanotube(SBR/m-HNT) nanocomposites.Complex of resorcinol and hexamethylenetetramine (RH) was used as the interfacial modifier.The structure,morphology and mechanical properties of SBR/m-HNT nanocomposites,especially the interfacial interactions,were investigated.SEM and TEM observations showed that RH can not only facilitate the dispersion and orientation of HNTs in SBR matrix at ...
基金Funded by the National Natural Science Foundation of China(No.50763006)Ministry of Science and Technology R&D Research Institutes(No.2008EG134285)+1 种基金973 Program Special Fund(No.2010CB635109)the Fundamental Research Funds for Rubber Research Institute,CATAS(No.1630022012013)
文摘Rule of similarity and latex compounding techniques were combined for the first time to prepare natural rubber/nanosilica (NR/SiO2) nanocomposite with core-shell nanosilica-poly (methyl methacrylate) (SiO2-PMMA) particles and PMMA-modified natural rubber matrix (NR-PMMA). The micro- structure of SiO2 and nanocomposites with different SiO2 contents was characterized by fourier transform infrared spectroscopy (FTIR); the morphology of nanocomposites was investigated with scanning electron microscopy (SEM); the tensile strength was characterized by tensile testing machine and the thermal stability of composites was studied by thermal gravimetric analysis. Results showed that PMMA chains have successfully grafted onto the surface of SiO2, and the core-shell SiO2-PMMA nanoparticles and NR-PMMA latex have been perfectly incorporated. SiO2-PMMA nanoparticles are evenly distributed over the NR matrix with an average size in the range of 60-100 nm at the low content (SiO2≤ 3 wt%), while aggregations are apparently observed when 5 wt% SiO2 is loaded. In addition, NP/SiO2 composities possess a considerable improvement in ageing resistance compared with the pure NR. The tensile strength of composite increases from 6.99 to 12.72 MPa, reaching the highest value at a 0.5 wt% SiO2 loading, and then the figure decreases gradually because of the aggregation of SiO2 nanoparticles. It is anticipated that the reported process is to provide a simple and economic way for preparing NR composites.
文摘Raw rubber Latex contents, from 0% to 30% were used to stabilize lateritic samples to provide an alternative to cement stabilization. These samples were submitted to physical tests (water resistance test, absorption test) and mechanical tests (dry compressive strength test). The results indicate that samples made of latex content less than 15% dissolve completely into water. So it was impossible to make sample with these contents. Samples with 15% of raw rubber content or more are steady after water resistance test. The absorption rate of these samples decreases as the latex content increases. It goes from 14.45% for the samples at 15% to 5.87% for those at 30%. Therefore, the compressive strength test indicates that the resistance increases from 0.37 MPa for samples without latex to 3.15 MPa for those at 30% of latex content. Also, the rheological study shows that the samples pass from a brittle behaviour to a plastic behaviour when the latex content increases. The behaviour of the sample according to these different tests shows that this material can be used in several activity areas, such as construction, road building and sports area.
文摘Natural rubber latex (NRL) and methyl methacrylate (MMA) grafted rubber latex were blended in different ratios and irradiated at various absorbed doses by gamma rays from Co-60 source at room temperature. The tensile properties, swelling ratio and permanent set were measured. The maximum tensile strength and modulus at 500% elongation were obtained at an absorbed dose of 8 kGy. Modulus increases from 6.99 MPa to 9.87 MPa for an increase in proportion of MMA grafted rubber from 40% to 60% in the blend at similar absorbed dose. Elongation at break and swelling ratio decrease with increasing absorbed dose as well as the MMA grafted rubber content in the blends. The decreasing trend of permanent set is high up to 5 kGy absorbed dose, and beyond that dose, it becomes almost flat.
文摘Natural rubber(NR)grafted with 2-ethylhexyl acrylate(2-EHA)and methacrylic acid(MAA,collectively NR-g-PEHA/MAA)was synthesized by emulsion polymerization.Tetraethylenepentamine and cumene hydroperoxide were used as redox initiators.The successful grafting of 2-EHA and MAA onto NR was confirmed by Fourier transform infrared spectroscopy.The morphology of the NR latex particles was observed by transmission electron microscopy.The effects of reaction temperature,initiator dosage,feeding mode,and hard monomer content on the mechanical properties of the modified NR film were investigated.Grafted polymer chains were unevenly wrapped on the outside of NR particles,and smaller particles were more easily grafted.Crosslinking was characterized using a toluene swelling method.Thermal stability and glass transition temperature were examined by differential scanning calorimetry and thermogravimetric analysis.The results showed that the thermal stability of NR-g-PEHA/MAA had been improved,and the glass transition temperature(Tg)was unchanged.
文摘This work focuses on the development of carpets from sand, fabrics of cotton fiber and mosquito nets and rubber latex. Following a study on the choice of the best formulations, the quantity of rubber latex used for shaping varies between 14% and 18% (latex/sand + latex ratio) for the carpet with the fabric of mosquito nets and between 16% and 18% for the one made with the fabric of cotton fiber. Thus, with a mixture of sand, fiber fabrics (cotton and mosquito nets) and rubber latex, carpets were developed. In addition, the wear test carried out on these samples indicates that it is possible to produce carpets with the new material made of rubber sand and latex: SABLATEX At room temperature. Following the characterization test, it resorts to only 16% latex with cotton fiber fabric, allowing to have carpets with good mechanical characteristics.
基金the financial support of the National Natural Science Foundation of China(22071152 and 22122105)the financial support of the National Natural Science Foundation of China(22305150)+4 种基金the financial support from the National Natural Science Foundation of China(22101175 and 52333001)Natural Science Foundation of Shanghai(22dz1207603)supported by the Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study(SN-ZJU-SIAS-006)State Key Laboratory of Polyolefins and Catalysis and Shanghai Key Laboratory of Catalysis Technology for Polyolefins(SKL-LCTP-202301)the Shuguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission(22SG11)。
文摘Styrene-butadiene rubber(SBR)is an indispensable material in modern society,and the necessity for enhanced mechanical properties in SBR persists,particularly to withstand the rigors of challenging environmental conditions.To surmount the limitations of conventional cross-linking modes,mechanical bonds stabilized by host-guest recognition are incorporated as the cross-linking points of SBR to form mechanically interlocked networks(MINs).Compared with covalently cross-linked network,the representative MIN exhibits superior mechanical performance in terms of elongation(1392%)and breaking strength(4.6 MPa),whose toughness has surged by 17 times.Dissociation of host-guest recognition and subsequent sliding motion provide an effective energy dissipation mechanism,and the release of hidden length is also beneficial to enhance toughness.Furthermore,the introduction of the rotaxane cross-links made the network more pliable and possess damping and elastic properties,which can return to initial state with one minute rest interval.We aspire that this direct introduction method can serve as a blueprint,offering valuable insights for the enhancement of mechanical properties in conventional commercial polymer materials.
基金financially supported by Natural Science Foundation of Shanxi Province(No.202303021211075)Shanxi Province Science and Technology Key Research and Development Project(No.201903D321065)Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(No.2021SX-TD011)。
文摘The antioxidant N-isopropyl-N'-phenyl-p-phenylenediamine(4010NA)was dissolved in ethanol and impregnated into silica aerogel(SAG)via vacuum-pressure cycles,yielding composite particles(A-N)with enhanced sustained-release and reinforcing capabilities.The effect of A-N on the mechanical properties and thermal-oxidative aging resistance of styrene-butadiene rubber(SBR)vulcanizates was investigated.TGA and BET assessments indicated that the loading efficiency of 4010NA in SAG reached 14.26%within ethanol's solu bility limit.Incorporating A-N into SBR vulcanizates significantly elevated tensile strength by 17.5%and elongation at break by 41.9%over those with fumed silica and free4010NA.Furthermore,A-N notably enhanced the thermal-oxidative aging resistance of SBR.After aging for 96 h at 100℃,the tensile strength and elongation at break of SBR with A-N sustained 70.09%and 58.61%of their initial values,respectively,with the retention rate of elongation at break being 62.8%higher than that of SBR with fumed silica and free antioxidant.The study revealed that A-N composite particles significantly inhibited the crosslinking in SBR's molecular chains,reducing hardening and embrittlement during later thermal-oxidative aging stages.
基金support by the National Natural Science Foundation of China(NSFC)(grant no.52078048,51750110491).
文摘Latex is one of the natural rubbers that is used to enhance the performance of asphalt pavement for the last few decades.The presence of latex,which is categorized as an elastomer,helps to improve pavement performance and durability.Conversely,higher viscosity of latex modified asphalt binder increases the production-temperatures of asphalt mixture,thus consuming higher energy during asphalt mixture’s production stage.In this study,the effectiveness of methanol as an energy-efficient foaming agent was assessed to reduce the viscosity and enhance the workability of the modified asphalt binder.The basic and rheological properties of the asphalt binders were determined through multiple laboratory tests including expansion ratio and half-life,rotational viscosity,softening point,torsional recovery,and dynamic shear rheometer.The properties of asphalt mixtures were assessed through the service characteristics,mechanical performance,and moisture resistance criteria.It was found that the presence of latex results in an approximately twofold higher expansion ratio and a lower half-life of the asphalt binder at about the same ratio.Through the rotational viscosity test,the application of methanol into asphalt binder decreased the viscosity and led to better workability,despite the addition of latex as an asphalt modifier.The application of methanol into asphalt binder improved the workability of mixture samples and lowered the compaction energy of the compaction process,which are the crucial criteria for a better mixing and compaction process.Methanol foamed asphalt mixtures with latex show much higher resistance to moisture damage and stiffness than control sample even though they were prepared at a lower temperature.
基金Funded by the National Natural Science Foundation of China (No.50763006)Ministry of Science and Technology R & D Research Institutes (No.2008EG134285)973 Program Special Fund (No.2010CB635109)
文摘Natural rubber (NR)/multi-walled carbon nanotube (MWCNTs) composites were prepared by combining self-assembly and latex compounding techniques.The acid-treated MWCNTs (H2SO4:HNO3=3:1,volume ratio) were self-assembled with poly (diallyldimethylammonium chloride) (PDDA) through electrostatic adhesion.In the second assembling,NR/MWCNTs composites were developed by mixing MWCNTs/PDDA solution with NR latex.The results show that MWCNTs are homogenously distributed throughout the NR matrix as single tube and present a great interfacial adhesion with NR phase when MWCNTs contents are less than 3 wt%.Moreover,the addition of the MWCNTs brings about the remarkable enhancement in tensile strength and crosslink density compared with the NR host,and the data peak at 2 wt% MWCNTs loadings.When more MWCNTs are loaded,aggregations of MWCNTs are gradually generated,and the tensile strength and crosslink both decrease to a certain extent.
文摘Natural rubber latex is </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">white liquid in the form of </span><span style="font-family:Verdana;">the</span><span style="font-family:Verdana;"> colloidal dispersion of rubber globules suspended in </span><span style="font-family:Verdana;">the </span><span style="font-family:""><span style="font-family:Verdana;">aqueous liquid. Produced in large quantities in Ivory Coast, the local transformation of natural latex has so far remained insignificant, although some attempts have been made to use it in the manufacture of flexible facade briquettes for rounded walls. Thus, this study aims to incorporate clay as a filler in natural latex for use as an adhesive for tile installation. To do this, diffe</span><span style="font-family:Verdana;">rent proportions of clay paste were added to the natural latex and the resulting mixtures were used to make the sample and tile adhesive. From the analysis of the results obtained, it appears that the samples with a clay paste density of 0.8 and 1 absorb less water and show</span></span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> good pull-out strength. The mixtu</span><span style="font-family:""><span style="font-family:Verdana;">res of 30% and 35% latex and 0.8 </span><span><span style="font-family:Verdana;">and 1 clay paste density respectively have pullout stresses greater than 1 N/mm</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">. According to</span></span><span style="font-family:Verdana;"> NF EN 1348, these adhesives can therefore be used as tile adhesive.