This research investigates the comparative efficacy of generating zero divisor graphs (ZDGs) of the ring of integers ℤ<sub>n</sub> modulo n using MAPLE algorithm. Zero divisor graphs, pivotal in the study ...This research investigates the comparative efficacy of generating zero divisor graphs (ZDGs) of the ring of integers ℤ<sub>n</sub> modulo n using MAPLE algorithm. Zero divisor graphs, pivotal in the study of ring theory, depict relationships between elements of a ring that multiply to zero. The paper explores the development and implementation of algorithms in MAPLE for constructing these ZDGs. The comparative study aims to discern the strengths, limitations, and computational efficiency of different MAPLE algorithms for creating zero divisor graphs offering insights for mathematicians, researchers, and computational enthusiasts involved in ring theory and mathematical computations.展开更多
For a graph G, let be the chromatic number of G. It is well-known that holds for any graph G with clique number . For a hereditary graph class , whether there exists a function f such that holds for every has been wid...For a graph G, let be the chromatic number of G. It is well-known that holds for any graph G with clique number . For a hereditary graph class , whether there exists a function f such that holds for every has been widely studied. Moreover, the form of minimum such an f is also concerned. A result of Schiermeyer shows that every -free graph G with clique number has . Chudnovsky and Sivaraman proved that every -free with clique number graph is -colorable. In this paper, for any -free graph G with clique number , we prove that . The main methods in the proof are set partition and induction.展开更多
Let G = (V;E) be a simple connected graph. The Wiener index is the sum of distances between all pairs of vertices of a connected graph. The Schultz topological index is equal to and the Modified Schultz topological in...Let G = (V;E) be a simple connected graph. The Wiener index is the sum of distances between all pairs of vertices of a connected graph. The Schultz topological index is equal to and the Modified Schultz topological index is . In this paper, the Schultz, Modified Schultz polynomials and their topological indices of Jahangir graphs J<sub>2,m</sub> for all integer number m ≥ 3 are calculated.展开更多
In this study, the SK, SK<sub>1</sub> and SK<sub>2</sub> indices are defined on weighted graphs. Then, the SK, SK<sub>1</sub> and SK<sub>2</sub> indices are defined on i...In this study, the SK, SK<sub>1</sub> and SK<sub>2</sub> indices are defined on weighted graphs. Then, the SK, SK<sub>1</sub> and SK<sub>2</sub> indices are defined on interval weighted graphs. Their behaviors are investigated under some graph operations by using these definitions.展开更多
Let G = Γ(S) be a semigroup graph, i.e., a zero-divisor graph of a semigroup S with zero element 0. For any adjacent vertices x, y in G, denote C(x,y) = {z∈V(G) | N (z) = {x,y}}. Assume that in G there exi...Let G = Γ(S) be a semigroup graph, i.e., a zero-divisor graph of a semigroup S with zero element 0. For any adjacent vertices x, y in G, denote C(x,y) = {z∈V(G) | N (z) = {x,y}}. Assume that in G there exist two adjacent vertices x, y, a vertex s∈C(x,y) and a vertex z such that d (s,z) = 3. This paper studies algebraic properties of S with such graphs G = Γ(S), giving some sub-semigroups and ideals of S. It constructs some classes of such semigroup graphs and classifies all semigroup graphs with the property in two cases.展开更多
The hardware optimization technique of mono similarity system generation is presented based on hardware/software(HW/SW) co design.First,the coarse structure of sub graphs' matching based on full customized HW...The hardware optimization technique of mono similarity system generation is presented based on hardware/software(HW/SW) co design.First,the coarse structure of sub graphs' matching based on full customized HW/SW co design is put forward.Then,a universal sub graphs' combination method is discussed.Next,a more advanced vertexes' compression algorithm based on sub graphs' combination method is discussed with great emphasis.Experiments are done successfully with perfect results verifying all the formulas and the methods above.展开更多
文摘This research investigates the comparative efficacy of generating zero divisor graphs (ZDGs) of the ring of integers ℤ<sub>n</sub> modulo n using MAPLE algorithm. Zero divisor graphs, pivotal in the study of ring theory, depict relationships between elements of a ring that multiply to zero. The paper explores the development and implementation of algorithms in MAPLE for constructing these ZDGs. The comparative study aims to discern the strengths, limitations, and computational efficiency of different MAPLE algorithms for creating zero divisor graphs offering insights for mathematicians, researchers, and computational enthusiasts involved in ring theory and mathematical computations.
文摘For a graph G, let be the chromatic number of G. It is well-known that holds for any graph G with clique number . For a hereditary graph class , whether there exists a function f such that holds for every has been widely studied. Moreover, the form of minimum such an f is also concerned. A result of Schiermeyer shows that every -free graph G with clique number has . Chudnovsky and Sivaraman proved that every -free with clique number graph is -colorable. In this paper, for any -free graph G with clique number , we prove that . The main methods in the proof are set partition and induction.
文摘Let G = (V;E) be a simple connected graph. The Wiener index is the sum of distances between all pairs of vertices of a connected graph. The Schultz topological index is equal to and the Modified Schultz topological index is . In this paper, the Schultz, Modified Schultz polynomials and their topological indices of Jahangir graphs J<sub>2,m</sub> for all integer number m ≥ 3 are calculated.
文摘In this study, the SK, SK<sub>1</sub> and SK<sub>2</sub> indices are defined on weighted graphs. Then, the SK, SK<sub>1</sub> and SK<sub>2</sub> indices are defined on interval weighted graphs. Their behaviors are investigated under some graph operations by using these definitions.
文摘Let G = Γ(S) be a semigroup graph, i.e., a zero-divisor graph of a semigroup S with zero element 0. For any adjacent vertices x, y in G, denote C(x,y) = {z∈V(G) | N (z) = {x,y}}. Assume that in G there exist two adjacent vertices x, y, a vertex s∈C(x,y) and a vertex z such that d (s,z) = 3. This paper studies algebraic properties of S with such graphs G = Γ(S), giving some sub-semigroups and ideals of S. It constructs some classes of such semigroup graphs and classifies all semigroup graphs with the property in two cases.
文摘The hardware optimization technique of mono similarity system generation is presented based on hardware/software(HW/SW) co design.First,the coarse structure of sub graphs' matching based on full customized HW/SW co design is put forward.Then,a universal sub graphs' combination method is discussed.Next,a more advanced vertexes' compression algorithm based on sub graphs' combination method is discussed with great emphasis.Experiments are done successfully with perfect results verifying all the formulas and the methods above.