Background CH<sub>4</sub> concentration and seasonal variations measured at Zhongshan Station (69°22'2''S, 76°21'49''E, 18.5 m) in Antarctica from 2008 through 2013 are pr...Background CH<sub>4</sub> concentration and seasonal variations measured at Zhongshan Station (69°22'2''S, 76°21'49''E, 18.5 m) in Antarctica from 2008 through 2013 are presented and discussed. From 2008-2013 CH<sub>4</sub> was measured in weekly<sub> </sub>flask samples and started on line measurement by Picarro CO<sub>2</sub>/CH<sub>4</sub>/H<sub>2</sub>O analyzer from March, 2010-2013. These CH<sub>4</sub> measurements show the expected growth period of CH<sub>4</sub> concentration during February (Antarctic spring) with a peak in September (fall). Irrespective of wind direction, CH<sub>4</sub> concentrations distribute evenly after the removal of polluted air from station operations, accounting for 1% of the data. The mean daily cycle of CH<sub>4</sub> concentration in all four seasons is small. The monthly mean CH<sub>4</sub> concentration at Zhongshan station is similar to those at other stations in Antarctica showing that CH<sub>4</sub> observed in Antarctica is fully mixed in the atmosphere as it is transported from the northern through the southern hemisphere. The annual CH<sub>4</sub> increase in recent years at Zhongshan station is 4.8 ppb·yr<sup>-1</sup>.展开更多
The variations noticed in the atmospheric electric field recorded at Pune (18°32'N, 73°51'E, 559 m ASL), a tropical inland station located in Dcccan Plateau, India, during the period 1930-1987, have ...The variations noticed in the atmospheric electric field recorded at Pune (18°32'N, 73°51'E, 559 m ASL), a tropical inland station located in Dcccan Plateau, India, during the period 1930-1987, have been examined in relation to the variations observed in the Angstrom turbidity coefficient (β) and selected meteorological parameters. The monthly and annual mean values of the atmospheric electric field. Angstrom turbidity coefficient (β), rainfall, temperature and relative humidity for the years 1930-1938, 1957-1958, 1964-1965, 1973-1974 and 1987 were considered in the study.The results of the above study indicated gradual increases in the atmospheric electric field over the period of study (1930-1987) which is statistically significant at less than 5%level. The increases noticed during different periods varied from 30 to 109%. The increase noticed during the period (1930-1938) and (1973-1974) was maximum (109%). The Angstrom turbidity coefficient also showed systematic increases during the period of study, which is consistent. The diurnal curve of the atmospheric electric field at the station by and large, showed a double oscillation, which is generally observed in the conlinental environments.展开更多
The well-documented decrease in the discharge of sediment into the Yellow River has attracted considerable attention in recent years. The present study analyzed the spatial and temporal variation of sediment yield bas...The well-documented decrease in the discharge of sediment into the Yellow River has attracted considerable attention in recent years. The present study analyzed the spatial and temporal variation of sediment yield based on data from 46 hydrological stations in the sediment-rich region of the Yellow River from 1955 to 2010. The results showed that since 1970 sediment yield in the region has clearly decreased at different rates in the 45 sub-areas controlled by hydrological stations. The decrease in sediment yield was closely related to the intensity and extent of soil erosion control measures and rainstorms that occurred in different periods and sub-areas. The average sediment delivery modulus(SDM) in the study area decreased from 7,767.4 t/(km^2·a) in 1951–1969 to 980.5 t/(km^2·a) in 2000–2010. Our study suggested that 65.5% of the study area with the SDM below 1,000 t/(km^2·a) is still necessary to control soil deterioration caused by erosion, and soil erosion control measures should be further strengthened in the areas with the SDM above 1,000 t/(km^2·a).展开更多
Observations of atmospheric methane-sulfonic acid(MSA) and non-sea-salt sulfate(nss-SO4^2-) from December 2010 to November 2011 at Zhongshan Station are presented in this paper. MSA and nss-SO4^2- average concentr...Observations of atmospheric methane-sulfonic acid(MSA) and non-sea-salt sulfate(nss-SO4^2-) from December 2010 to November 2011 at Zhongshan Station are presented in this paper. MSA and nss-SO4^2- average concentrations were 24.2 ± 37.9 ng·m^-3(0.5-158.3 ng·m^-3) and 53.0 ± 82.6 ng·m^-3(not detected [n.d.]) - 395.4 ng·m^-3), respectively. Strong seasonal variations of MSA and nss-SO4^2-, with maxima in austral summer and minima in winter, were examined. The high concentrations of sulfur compounds in December may be attributed the dimethyl sulfide(DMS) emissions from the marginal ice zone, when open water near the sampling site was important in impacting the sulfur species of January and February at Zhongshan Station. In austral winter, there was almost no phytoplanktonic activity in offshore waters, and atmospheric sulfur compounds likely had long-range transport sources.展开更多
文摘Background CH<sub>4</sub> concentration and seasonal variations measured at Zhongshan Station (69°22'2''S, 76°21'49''E, 18.5 m) in Antarctica from 2008 through 2013 are presented and discussed. From 2008-2013 CH<sub>4</sub> was measured in weekly<sub> </sub>flask samples and started on line measurement by Picarro CO<sub>2</sub>/CH<sub>4</sub>/H<sub>2</sub>O analyzer from March, 2010-2013. These CH<sub>4</sub> measurements show the expected growth period of CH<sub>4</sub> concentration during February (Antarctic spring) with a peak in September (fall). Irrespective of wind direction, CH<sub>4</sub> concentrations distribute evenly after the removal of polluted air from station operations, accounting for 1% of the data. The mean daily cycle of CH<sub>4</sub> concentration in all four seasons is small. The monthly mean CH<sub>4</sub> concentration at Zhongshan station is similar to those at other stations in Antarctica showing that CH<sub>4</sub> observed in Antarctica is fully mixed in the atmosphere as it is transported from the northern through the southern hemisphere. The annual CH<sub>4</sub> increase in recent years at Zhongshan station is 4.8 ppb·yr<sup>-1</sup>.
文摘The variations noticed in the atmospheric electric field recorded at Pune (18°32'N, 73°51'E, 559 m ASL), a tropical inland station located in Dcccan Plateau, India, during the period 1930-1987, have been examined in relation to the variations observed in the Angstrom turbidity coefficient (β) and selected meteorological parameters. The monthly and annual mean values of the atmospheric electric field. Angstrom turbidity coefficient (β), rainfall, temperature and relative humidity for the years 1930-1938, 1957-1958, 1964-1965, 1973-1974 and 1987 were considered in the study.The results of the above study indicated gradual increases in the atmospheric electric field over the period of study (1930-1987) which is statistically significant at less than 5%level. The increases noticed during different periods varied from 30 to 109%. The increase noticed during the period (1930-1938) and (1973-1974) was maximum (109%). The Angstrom turbidity coefficient also showed systematic increases during the period of study, which is consistent. The diurnal curve of the atmospheric electric field at the station by and large, showed a double oscillation, which is generally observed in the conlinental environments.
基金funded by the Major Programs of the Chinese Academy of Sciences (KZZD-EW-04-03-04)the National Science-technology Support Plan Project (2006BAD09B10)the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-EW-406)
文摘The well-documented decrease in the discharge of sediment into the Yellow River has attracted considerable attention in recent years. The present study analyzed the spatial and temporal variation of sediment yield based on data from 46 hydrological stations in the sediment-rich region of the Yellow River from 1955 to 2010. The results showed that since 1970 sediment yield in the region has clearly decreased at different rates in the 45 sub-areas controlled by hydrological stations. The decrease in sediment yield was closely related to the intensity and extent of soil erosion control measures and rainstorms that occurred in different periods and sub-areas. The average sediment delivery modulus(SDM) in the study area decreased from 7,767.4 t/(km^2·a) in 1951–1969 to 980.5 t/(km^2·a) in 2000–2010. Our study suggested that 65.5% of the study area with the SDM below 1,000 t/(km^2·a) is still necessary to control soil deterioration caused by erosion, and soil erosion control measures should be further strengthened in the areas with the SDM above 1,000 t/(km^2·a).
基金supported by the National Natural Science Foundation of China (NSFC) (Grant nos. 41476172, 41230529, 40671062, and 41106168)the Chinese Polar Environment Comprehensive Investigation & Assessment Programs (Grant no. CHINARE2012-15 for 01-04-02, 02-01, and 03-0402)International Cooperation Programs, Chinese Arctic and Antarctic Adminstration (Grant nos. 2G22010, IC201201, IC201308, and IC201513)
文摘Observations of atmospheric methane-sulfonic acid(MSA) and non-sea-salt sulfate(nss-SO4^2-) from December 2010 to November 2011 at Zhongshan Station are presented in this paper. MSA and nss-SO4^2- average concentrations were 24.2 ± 37.9 ng·m^-3(0.5-158.3 ng·m^-3) and 53.0 ± 82.6 ng·m^-3(not detected [n.d.]) - 395.4 ng·m^-3), respectively. Strong seasonal variations of MSA and nss-SO4^2-, with maxima in austral summer and minima in winter, were examined. The high concentrations of sulfur compounds in December may be attributed the dimethyl sulfide(DMS) emissions from the marginal ice zone, when open water near the sampling site was important in impacting the sulfur species of January and February at Zhongshan Station. In austral winter, there was almost no phytoplanktonic activity in offshore waters, and atmospheric sulfur compounds likely had long-range transport sources.