The dense solid-phase governing equations for two-phase flows are obtained by using the kinetic theory of gas molecules.Assuming that the solid-phase velocity distributions obey the Maxwell equations,the collision ter...The dense solid-phase governing equations for two-phase flows are obtained by using the kinetic theory of gas molecules.Assuming that the solid-phase velocity distributions obey the Maxwell equations,the collision term for particles under dense two-phase flow conditions is also derived. In comparison with the governing equations of a dilute two-phase flow,the solid-particle's governing equations are developed for a dense turbulent solid-liquid flow by adopting some relevant terms from the dilute two-phase governing equations.Based on Cauchy-Helmholtz theorem and Smagorinsky model, a second-order dynamic sub-grid-scale(SGS)model,in which the sub-grid-scale stress is a function of both the strain-rate tensor and the rotation-rate tensor,is proposed to model the two-phase governing equations by applying dimension analyses.Applying the SIMPLEC algorithm and staggering grid system to the two-phase discretized governing equations and employing the slip boundary conditions on the walls,the velocity and pressure fields,and the volumetric concentration are calculated.The simulation results are in a fairly good agreement with experimental data in two operating cases in a conduit with a rectangular cross-section and these comparisons imply that these models are practical.展开更多
According to modeling principle that a model must be more accurate ifincluding more flow information, and based on the Cauchy-Helmholtz theorem and the Smagorinskymodel, a second-order dynamic model with double dynami...According to modeling principle that a model must be more accurate ifincluding more flow information, and based on the Cauchy-Helmholtz theorem and the Smagorinskymodel, a second-order dynamic model with double dynamic coefficients was proposed by applyingdimension analyses. The Subgrid-Scale (SGS) stress is a function of both strain-rate tensor androtation-rate tensor. The SIMPLEC algorithm and staggering grid system was applied to give thesolution of the discretized governing equations, and for the turbulent flow through a 90° bend, thedistributions of velocity and pressure were achieved. The comparison between experimental data andsimulation results at a Reynolds- number 40000 shows a good agreement and implies that this model ispracticable and credible.展开更多
In this paper, two sub-grid scale (SGS) models are introduced into the Lattice Boltzmann Method (LBM), i.e., the dynamics SGS model and the dynamical system SGS model, and applied to numerically solving three-dimensio...In this paper, two sub-grid scale (SGS) models are introduced into the Lattice Boltzmann Method (LBM), i.e., the dynamics SGS model and the dynamical system SGS model, and applied to numerically solving three-dimensional high Re turbulent cavity flows. Results are compared with those obtained from the Smagorinsky model and direct numerical simulation for the same cases. It is shown that the method with LBM dynamics SGS model has advantages of fast computation speed, suitable to simulate high Re turbulent flows. In addition, it can capture detailed fine structures of turbulent flow fields. The method with LBM dynamical system SGS model dose not contain any adjustable parameters, and can be used in simulations of various complicated turbulent flows to obtain correct information of sub-grid flow field, such as the backscatter of energy transportation between large and small scales. A new average method of eliminating the inherent unphysical oscillation of LBM is also given in the paper.展开更多
基金The project supported by the National Natural Science Foundation of China (50176022)
文摘The dense solid-phase governing equations for two-phase flows are obtained by using the kinetic theory of gas molecules.Assuming that the solid-phase velocity distributions obey the Maxwell equations,the collision term for particles under dense two-phase flow conditions is also derived. In comparison with the governing equations of a dilute two-phase flow,the solid-particle's governing equations are developed for a dense turbulent solid-liquid flow by adopting some relevant terms from the dilute two-phase governing equations.Based on Cauchy-Helmholtz theorem and Smagorinsky model, a second-order dynamic sub-grid-scale(SGS)model,in which the sub-grid-scale stress is a function of both the strain-rate tensor and the rotation-rate tensor,is proposed to model the two-phase governing equations by applying dimension analyses.Applying the SIMPLEC algorithm and staggering grid system to the two-phase discretized governing equations and employing the slip boundary conditions on the walls,the velocity and pressure fields,and the volumetric concentration are calculated.The simulation results are in a fairly good agreement with experimental data in two operating cases in a conduit with a rectangular cross-section and these comparisons imply that these models are practical.
文摘According to modeling principle that a model must be more accurate ifincluding more flow information, and based on the Cauchy-Helmholtz theorem and the Smagorinskymodel, a second-order dynamic model with double dynamic coefficients was proposed by applyingdimension analyses. The Subgrid-Scale (SGS) stress is a function of both strain-rate tensor androtation-rate tensor. The SIMPLEC algorithm and staggering grid system was applied to give thesolution of the discretized governing equations, and for the turbulent flow through a 90° bend, thedistributions of velocity and pressure were achieved. The comparison between experimental data andsimulation results at a Reynolds- number 40000 shows a good agreement and implies that this model ispracticable and credible.
基金Supported by the Key Project of National Natural Science Foundation of China (Grant No. 10532030)
文摘In this paper, two sub-grid scale (SGS) models are introduced into the Lattice Boltzmann Method (LBM), i.e., the dynamics SGS model and the dynamical system SGS model, and applied to numerically solving three-dimensional high Re turbulent cavity flows. Results are compared with those obtained from the Smagorinsky model and direct numerical simulation for the same cases. It is shown that the method with LBM dynamics SGS model has advantages of fast computation speed, suitable to simulate high Re turbulent flows. In addition, it can capture detailed fine structures of turbulent flow fields. The method with LBM dynamical system SGS model dose not contain any adjustable parameters, and can be used in simulations of various complicated turbulent flows to obtain correct information of sub-grid flow field, such as the backscatter of energy transportation between large and small scales. A new average method of eliminating the inherent unphysical oscillation of LBM is also given in the paper.