In existing methods for segmented images,either edge point extraction or preservation of edges,compromising contrast images is so sensitive to noise.The Degeneration Threshold Image Detection(DTID)framework has been p...In existing methods for segmented images,either edge point extraction or preservation of edges,compromising contrast images is so sensitive to noise.The Degeneration Threshold Image Detection(DTID)framework has been proposed to improve the contrast of edge filtered images.Initially,DTID uses a Rapid Bilateral Filtering process for filtering edges of contrast images.This filter decomposes input images into base layers in the DTID framework.With minimal filtering time,Rapid Bilateral Filtering handles high dynamic contrast images for smoothening edge preservation.In the DTID framework,Rapid Bilateral Filtering with Shift-Invariant Base Pass Domain Filter is insensitive to noise.This Shift-Invariant Filtering estimates value across edges for removing outliers(i.e.,noise preserving base layers of the contrast image).The intensity values are calculated in the base layer of the contrast image for accurately detecting nearby spatial locations using Shift-Invariant base Pass Domain Filter(SIDF).At last,Affine Planar Transformation is applied to detect edge filtered contrast images in the DTID framework for attaining a high quality of the image.It normalizes the translation and rotation of images.With this,Degeneration Threshold Image Detection maximizes average contrast enhancement quality and performs an experimental evaluation of factors such as detection accuracy,rate,and filtering time on contrast images.Experimental analysis shows that the DTID framework reduces the filtering time taken on contrast images by 54%and improves average contrast enhancement quality by 27%compared to GUMA,HMRF,SWT,and EHS.It provides better performance on the enhancement of average contrast enhancement quality by 28%,detection accuracy rate by 26%,and reduction in filtering time taken on contrast images by 30%compared to state-of-art methods.展开更多
空间域去噪方法中的非局部均值去噪算法(Non-local means,NLM)在图像去噪方面应用较为广泛.然而,传统NLM方法在对图像边缘结构信息处理上易产生过平滑现象,且算法的固定参数对不同图像特征难以自适应调整.针对NLM算法中相似性权重忽略...空间域去噪方法中的非局部均值去噪算法(Non-local means,NLM)在图像去噪方面应用较为广泛.然而,传统NLM方法在对图像边缘结构信息处理上易产生过平滑现象,且算法的固定参数对不同图像特征难以自适应调整.针对NLM算法中相似性权重忽略边缘信息而导致的上述问题,文中提出了一种自适应边缘相似度非局部均值(Adaptive non-local mean based on edge similarity,ANLM-ES)图像去噪方法.在NLM相似性权重的基础上,依据图像边缘信息构造基于距离与角度双维度边缘相似性的图像相似性权值,并通过加权其自身和相邻像素来估算中心像素,从而保留局部邻域信息,将所有生成的中心像素进行组合构成最终的去噪图像.最后,自适应参数的选择运用4方向差分因子检测模板提取的边缘信息及噪声方差确定.文中ANLM-ES方法与传统NLM算法、NLM-SVB算法及NLM-BDPCA算法在公开数据集上的实验结果表明,ANLM-ES方法能够更好地保留图像的边缘细节信息,提升图像的去噪性能.展开更多
文摘In existing methods for segmented images,either edge point extraction or preservation of edges,compromising contrast images is so sensitive to noise.The Degeneration Threshold Image Detection(DTID)framework has been proposed to improve the contrast of edge filtered images.Initially,DTID uses a Rapid Bilateral Filtering process for filtering edges of contrast images.This filter decomposes input images into base layers in the DTID framework.With minimal filtering time,Rapid Bilateral Filtering handles high dynamic contrast images for smoothening edge preservation.In the DTID framework,Rapid Bilateral Filtering with Shift-Invariant Base Pass Domain Filter is insensitive to noise.This Shift-Invariant Filtering estimates value across edges for removing outliers(i.e.,noise preserving base layers of the contrast image).The intensity values are calculated in the base layer of the contrast image for accurately detecting nearby spatial locations using Shift-Invariant base Pass Domain Filter(SIDF).At last,Affine Planar Transformation is applied to detect edge filtered contrast images in the DTID framework for attaining a high quality of the image.It normalizes the translation and rotation of images.With this,Degeneration Threshold Image Detection maximizes average contrast enhancement quality and performs an experimental evaluation of factors such as detection accuracy,rate,and filtering time on contrast images.Experimental analysis shows that the DTID framework reduces the filtering time taken on contrast images by 54%and improves average contrast enhancement quality by 27%compared to GUMA,HMRF,SWT,and EHS.It provides better performance on the enhancement of average contrast enhancement quality by 28%,detection accuracy rate by 26%,and reduction in filtering time taken on contrast images by 30%compared to state-of-art methods.
文摘空间域去噪方法中的非局部均值去噪算法(Non-local means,NLM)在图像去噪方面应用较为广泛.然而,传统NLM方法在对图像边缘结构信息处理上易产生过平滑现象,且算法的固定参数对不同图像特征难以自适应调整.针对NLM算法中相似性权重忽略边缘信息而导致的上述问题,文中提出了一种自适应边缘相似度非局部均值(Adaptive non-local mean based on edge similarity,ANLM-ES)图像去噪方法.在NLM相似性权重的基础上,依据图像边缘信息构造基于距离与角度双维度边缘相似性的图像相似性权值,并通过加权其自身和相邻像素来估算中心像素,从而保留局部邻域信息,将所有生成的中心像素进行组合构成最终的去噪图像.最后,自适应参数的选择运用4方向差分因子检测模板提取的边缘信息及噪声方差确定.文中ANLM-ES方法与传统NLM算法、NLM-SVB算法及NLM-BDPCA算法在公开数据集上的实验结果表明,ANLM-ES方法能够更好地保留图像的边缘细节信息,提升图像的去噪性能.