期刊文献+
共找到2,860篇文章
< 1 2 143 >
每页显示 20 50 100
Analysis of Observed and Modelled Near-Surface Wind Extremes over the Sub-Arctic Northeast Pacific 被引量:1
1
作者 Alexander Kislov Vladimir Platonov 《Atmospheric and Climate Sciences》 2019年第1期146-158,共13页
Wind speed extremes in the sub-Arctic realm of the North-East Pacific region were investigated through extreme value analysis of wind speed obtained from wind simulations of the COSMO-CLM (Consortium for Small-scale M... Wind speed extremes in the sub-Arctic realm of the North-East Pacific region were investigated through extreme value analysis of wind speed obtained from wind simulations of the COSMO-CLM (Consortium for Small-scale Modelling, climate version) mesoscale model, as well as using observed data. The analysis showed that the set of wind speed extremes obtained from observations is a mixture of two different subsets each neatly described by the Weibull distribution. Using special metaphoric terminology, they are labelled as “Black Swans” and “Dragons”. The “Dragons” are responsible for strongest extremes. It has been shown that both reanalysis and GCM (general circulation model) data have no “Dragons”. This means that such models underestimate wind speed maxima, and the important circulation process generating the anomalies is not simulated. The COSMO-CLM data have both “Black Swans” and “Dragons”. This evidence provides a clue that an atmospheric model with a detailed spatial resolution (we used in this work the data from domain with 13.2 km spatial resolution) does reproduce the special mechanism responsible for the generation of the largest wind speed extremes. However, a more thorough analysis shows that the differences in the parameters of the cumulative distribution functions are still significant. The ratio between the modelled Dragons and Black Swans can reach up to only 10%. It is much less than 30%, which was the level established for observations. 展开更多
关键词 EXTREME WIND SPEED ANALYSIS Modelled EXTREME WIND SPEED Arctic and sub-arctic Circulation
下载PDF
Variation in the permafrost active layer over the Tibetan Plateau during 1980–2020 被引量:1
2
作者 Jinglong Huang Chaofan Li +2 位作者 Binghao Jia Chujie Gao Ruichao Li 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第5期34-39,共6页
The active layer,acting as an intermediary of water and heat exchange between permafrost and atmosphere,greatly influences biogeochemical cycles in permafrost areas and is notably sensitive to climate fluctuations.Uti... The active layer,acting as an intermediary of water and heat exchange between permafrost and atmosphere,greatly influences biogeochemical cycles in permafrost areas and is notably sensitive to climate fluctuations.Utilizing the Chinese Meteorological Forcing Dataset to drive the Community Land Model,version 5.0,this study simulates the spatial and temporal characteristics of active layer thickness(ALT)on the Tibetan Plateau(TP)from 1980 to 2020.Results show that the ALT,primarily observed in the central and western parts of the TP where there are insufficient station observations,exhibits significant interdecadal changes after 2000.The average thickness on the TP decreases from 2.54 m during 1980–1999 to 2.28 m during 2000–2020.This change is mainly observed in the western permafrost region,displaying a sharp regional inconsistency compared to the eastern region.A persistent increasing trend of ALT is found in the eastern permafrost region,rather than an interdecadal change.The aforementioned changes in ALT are closely tied to the variations in the surrounding atmospheric environment,particularly air temperature.Additionally,the area of the active layer on the TP displays a profound interdecadal change around 2000,arising from the permafrost thawing and forming.It consistently decreases before 2000 but barely changes after 2000.The regional variation in the permafrost active layer over the TP revealed in this study indicates a complex response of the contemporary climate under global warming. 展开更多
关键词 Active layer thickness permafrost Tibetan plateau Climatological characteristics
下载PDF
Significant lake expansion has accelerated permafrost degradation on the Qinghai-Tibet Plateau
3
作者 LI Qingpeng LIU Wenhui +6 位作者 LIU Hairui ZHOU Guanghao SONG Xianteng LI Qing LUO Bingnan SONG Bangxu ZHANG Qi 《Journal of Mountain Science》 SCIE CSCD 2024年第1期68-83,共16页
In recent years, lakes on the Qinghai-Tibet Plateau have become more responsive to climate change. In September 2011, Zonag Lake in Hoh Xil experienced sudden drainage, the water eventually flowed into Yanhu Lake, whi... In recent years, lakes on the Qinghai-Tibet Plateau have become more responsive to climate change. In September 2011, Zonag Lake in Hoh Xil experienced sudden drainage, the water eventually flowed into Yanhu Lake, which caused Yanhu Lake to continue to expand. The potential collapse of Yanhu Lake could directly threaten the operational safety of the adjacent Qinghai-Tibet Highway, Qinghai-Tibet Railway. To explore the implications of expanding lakes on the surrounding permafrost, we selected Hoh Xil Yanhu Lake on the Qinghai-Tibet Plateau to study the effect of lake expansion on permafrost degradation. The permafrost degradation in the Yanhu Lake basin from October 2017 to December 2022 was inverted using Sentinel-1 satellite image data and small baseline subset interferometry synthetic aperture radar(SBAS-In SAR) technology. Additionally, permafrost degradation from February 2007 and February 2010 was analyzed using advanced land observing satellite phased array-type L-band synthetic aperture radar(ALOS PALSAR) satellite images and differential interferometric synthetic aperture radar(D-In SAR) technique. The results showed that the permafrost around Yanhu Lake experienced accelerated degradation. Prior to the expansion of Yanhu Lake, the average annual deformation rate along the line of sight(LOS) direction was 6.7 mm/yr. After the expansion, the rate increased to 20.9 mm/yr. The integration of spatial-temporal distribution maps of surface subsidence, Wudaoliang borehole geothermal data, meteorological data, Yanhu Lake surface area changes, and water level changes supports the assertion that the intensified permafrost degradation could be attributed to lake expansion rather than the rising air temperature. Furthermore, permafrost degradation around Yanhu Lake could impact vital infrastructure such as the adjacent Qinghai-Tibet Highway and Qinghai-Tibet Railway. 展开更多
关键词 Lake expansion SBAS-InSAR D-INSAR permafrost deformation Qinghai-Tibet Plateau
下载PDF
Thermal performance of cast-in-place piles with artificial ground freezing in permafrost regions
4
作者 WANG Xinbin CHEN Kun +3 位作者 YU Qihao GUO Lei YOU Yanhui JIN Mingyang 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1307-1328,共22页
During the construction of cast-in-place piles in warm permafrost,the heat carried by concrete and the cement hydration reaction can cause strong thermal disturbance to the surrounding permafrost.Since the bearing cap... During the construction of cast-in-place piles in warm permafrost,the heat carried by concrete and the cement hydration reaction can cause strong thermal disturbance to the surrounding permafrost.Since the bearing capacity of the pile is quite small before the full freeze-back,the quick refreezing of the native soils surrounding the cast-in-place pile has become the focus of the infrastructure construction in permafrost.To solve this problem,this paper innovatively puts forward the application of the artificial ground freezing(AGF)method at the end of the curing period of cast-in-place piles in permafrost.A field test on the AGF was conducted at the Beiluhe Observation and Research Station of Frozen Soil Engineering and Environment(34°51.2'N,92°56.4'E)in the Qinghai Tibet Plateau(QTP),and then a 3-D numerical model was established to investigate the thermal performance of piles using AGF under different engineering conditions.Additionally,the long-term thermal performance of piles after the completion of AGF under different conditions was estimated.Field experiment results demonstrate that AGF is an effective method to reduce the refreezing time of the soil surrounding the piles constructed in permafrost terrain,with the ability to reduce the pile-soil interface temperatures to below the natural ground temperature within 3 days.Numerical results further prove that AGF still has a good cooling effect even under unfavorable engineering conditions such as high pouring temperature,large pile diameter,and large pile length.Consequently,the application of this method is meaningful to save the subsequent latency time and solve the problem of thermal disturbance in pile construction in permafrost.The research results are highly relevant for the spread of AGF technology and the rapid building of pile foundations in permafrost. 展开更多
关键词 permafrost engineering Cast-in-place pile Artificial ground freezing Thermal performance.
下载PDF
Recent advances in hydrology studies under changing permafrost on the Qinghai-Xizang Plateau
5
作者 Lu Zhou YuZhong Yang +1 位作者 DanDan Zhang HeLin Yao 《Research in Cold and Arid Regions》 CSCD 2024年第4期159-169,共11页
Due to the great influences of both climate warming and human activities,permafrost on the Qinghai-Xizang Plateau(QXP) has been undergoing considerable degradation.Continuous degradation of plateau permafrost dramatic... Due to the great influences of both climate warming and human activities,permafrost on the Qinghai-Xizang Plateau(QXP) has been undergoing considerable degradation.Continuous degradation of plateau permafrost dramatically modifies the regional water cycle and hydrological processes,affecting the hydrogeological conditions,and ground hydrothermal status in cold regions.Permafrost thawing impacts the ecological environment,engineering facilities,and carbon storage functions,releasing some major greenhouse gases and exacerbating climate change.Despite the utilization of advanced research methodologies to investigate the changing hydrological processes and the corresponding influencing factors in permafrost regions,there still exist knowledge gaps in multivariate data,quantitative analysis of permafrost degradation's impact on various water bodies,and systematic hydrological modeling on the QXP.This review summarizes the main research methods in permafrost hydrology and elaborates on the impacts of permafrost degradation on regional precipitation distribution patterns,changes in surface runoff,expansion of thermokarst lakes/ponds,and groundwater dynamics on the QXP.Then,we discuss the current inadequacies and future research priorities,including multiple methods,observation data,and spatial and temporal scales,to provide a reference for a comprehensive analysis of the hydrological and environmental effects of permafrost degradation on the QXP under a warming climate. 展开更多
关键词 Qinghai-Xizang Plateau permafrost degradation Hydrological processes
下载PDF
The Performance Evolution Characteristics of Insitu Concrete at the Permafrost Regions
6
作者 NING Zuojun LI Haoxin +3 位作者 NIE Kangjun Nueraili Maimaitituersun Aihemaitijiang Tuerhong GAO Xiang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1534-1540,共7页
This study aimed to investigate the performance evolution characteristics of concrete under permafrost ambient temperatures and to explore methods to mitigate the thermal perturbation by concrete on the permafrost env... This study aimed to investigate the performance evolution characteristics of concrete under permafrost ambient temperatures and to explore methods to mitigate the thermal perturbation by concrete on the permafrost environment.A program was designed to investigate the properties of various concretes at three curing conditions.The compressive strength development pattern of each group was evaluated and the concrete's performance was characterized by compressive strength damage degree,hydration temperature and SEM analysis in a low temperature environment.The experimental results show that the incorporation of fly ash alone or incombination with other admixtures in concrete under low-temperature curing does not deteriorate its microstructure,and at the same time,it can slow down the hydration rate of cement and significantly reduce the exothermic heat of hydration of concrete.These findings are expected to provide valuable references for the proportioning design of concrete in permafrost environments. 展开更多
关键词 permafrost ambient mineral admixture compressive strength hydration temperature damage degree
下载PDF
Rill erosion and controlling factors on highway side-slopes in the permafrost region
7
作者 LI Rui WU Lilei +3 位作者 CAO Longxi KONG Yaping CHEN Guo WU Ting 《Journal of Mountain Science》 SCIE CSCD 2024年第11期3669-3682,共14页
Soil erosion on highway side-slope has been recognized as a cause of environmental damage and a potential threat to road embankments in the high-altitude permafrost regions.To assess the risk to roads and to protect t... Soil erosion on highway side-slope has been recognized as a cause of environmental damage and a potential threat to road embankments in the high-altitude permafrost regions.To assess the risk to roads and to protect them effectively,it is crucial to clarify the mechanisms governing roadside erosion.However,the cold climate and extremely vulnerable environment under permafrost conditions may result in a unique process of roadside erosion,which differs from the results of current studies conducted at lower altitudes.In this study,a field survey was conducted to investigate side-slope rill erosion along the permafrost section of a highway on the Qinghai‒Tibet Plateau of China.Variations in erosion rates have been revealed,and intense erosion risks(with an average erosion rate of 13.05 kg/m^(2)/a)have been identified on the northern side of the Tanggula Mountains.In the case of individual rills,the detailed rill morphology data indicate that the rill heads are generally close to the slope top and that erosion predominantly occurs in the upper parts of highway slopes,as they are affected by road surface runoff.In the road segment scale,the Pearson correlation and principal component analysis results revealed that the protective effect of vegetation,which was influenced by precipitation,was greater than the erosive effect of precipitation on roadside erosion.A random forest model was then adopted to quantify the importance of influencing factors,and the slope gradient was identified as the most significant factor,with a value of 0.474.Accordingly,the integrated slope and slope length index(L0.5S2)proved to be a reliable predictor,and a comprehensive model was built for highway side-slope rill erosion prediction(model efficiency=0.802).These results could be helpful for highway side-slope conservation and ecological risk prediction in alpine permafrost areas. 展开更多
关键词 Rill erosion Rill morphology Highway side-slope permafrost region Qinghai‒Tibet Highway
下载PDF
Impact of Initial Soil Conditions on Soil Hydrothermal and Surface Energy Fluxes in the Permafrost Region of the Tibetan Plateau
8
作者 Siqiong LUO Zihang CHEN +3 位作者 Jingyuan WANG Tonghua WU Yao XIAO Yongping QIAO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第4期717-736,共20页
Accurate initial soil conditions play a crucial role in simulating soil hydrothermal and surface energy fluxes in land surface process modeling.This study emphasized the influence of the initial soil temperature(ST)an... Accurate initial soil conditions play a crucial role in simulating soil hydrothermal and surface energy fluxes in land surface process modeling.This study emphasized the influence of the initial soil temperature(ST)and soil moisture(SM)conditions on a land surface energy and water simulation in the permafrost region in the Tibetan Plateau(TP)using the Community Land Model version 5.0(CLM5.0).The results indicate that the default initial schemes for ST and SM in CLM5.0 were simplistic,and inaccurately represented the soil characteristics of permafrost in the TP which led to underestimating ST during the freezing period while overestimating ST and underestimating SLW during the thawing period at the XDT site.Applying the long-term spin-up method to obtain initial soil conditions has only led to limited improvement in simulating soil hydrothermal and surface energy fluxes.The modified initial soil schemes proposed in this study comprehensively incorporate the characteristics of permafrost,which coexists with soil liquid water(SLW),and soil ice(SI)when the ST is below freezing temperature,effectively enhancing the accuracy of the simulated soil hydrothermal and surface energy fluxes.Consequently,the modified initial soil schemes greatly improved upon the results achieved through the long-term spin-up method.Three modified initial soil schemes experiments resulted in a 64%,88%,and 77%reduction in the average mean bias error(MBE)of ST,and a 13%,21%,and 19%reduction in the average root-mean-square error(RMSE)of SLW compared to the default simulation results.Also,the average MBE of net radiation was reduced by 7%,22%,and 21%. 展开更多
关键词 initial soil conditions soil temperature soil liquid water soil ice surface energy fluxes permafrost
下载PDF
A distributed modeling approach to water balance implications from changing land cover dynamics in permafrost environments
9
作者 Naveed Ahmed Haishen Lu +3 位作者 Zhongbo Yu Oluwafemi E.Adeyeri Muhammad Shahid Iqbal Jinbin Su 《Geography and Sustainability》 CSCD 2024年第4期561-576,共16页
There is 78%permafrost and seasonal frozen soil in the Yangtze River’s Source Region(SRYR),which is situated in the middle of the Qinghai-Xizang Plateau.Three distinct scenarios were developed in the Soil and Water A... There is 78%permafrost and seasonal frozen soil in the Yangtze River’s Source Region(SRYR),which is situated in the middle of the Qinghai-Xizang Plateau.Three distinct scenarios were developed in the Soil and Water Assessment Tool(SWAT)to model the effects of land cover change(LCC)on various water balance components.Discharge and percolation of groundwater have decreased by mid-December.This demonstrates the seasonal contributions of subsurface water,which diminish when soil freezes.During winter,when surface water inputs are low,groundwater storage becomes even more critical to ensure water supply due to this periodic trend.An impermeable layer underneath the active layer thickness decreases GWQ and PERC in LCC+permafrost scenario.The water transport and storage phase reached a critical point in August when precipitation,permafrost thawing,and snowmelt caused LATQ to surge.To prevent waterlogging and save water for dry periods,it is necessary to control this peak flow phase.Hydrological processes,permafrost dynamics,and land cover changes in the SRYR are difficult,according to the data.These interactions enhance water circulation throughout the year,recharge of groundwater supplies,surface runoff,and lateral flow.For the region’s water resource management to be effective in sustaining ecohydrology,ensuring appropriate water storage,and alleviating freshwater scarcity,these dynamics must be considered. 展开更多
关键词 Cold region Land cover change permafrost hydrology SWAT model Source region Yangtze river
下载PDF
Effect of soil archaea on N_(2)O emission in alpine permafrost
10
作者 YuZheng Gu ChenJie Dong +5 位作者 ShengYun Chen JingWei Jin PeiZhi Yang JianWei Chen PeiJie Wei Ali Bahadur 《Research in Cold and Arid Regions》 CSCD 2024年第2期45-62,共18页
Soil microbial communities are pivotal in permafrost biogeochemical cycles,yet the variations of abundant and rare microbial taxa and their impacts on greenhouse gas emissions in different seasons,remain elusive,espec... Soil microbial communities are pivotal in permafrost biogeochemical cycles,yet the variations of abundant and rare microbial taxa and their impacts on greenhouse gas emissions in different seasons,remain elusive,especially in the case of soil archaea.Here,we conducted a study on soil abundant and rare archaeal taxa during the growing and non-growing seasons in the active layer of alpine permafrost in the Qinghai-Tibetan Plateau.The results suggested that,for the archaeal communities in the sub-layer,abundant taxa exhibited higher diversity,while rare taxa maintained a more stable composition from the growing to non-growing season.Water soluble organic carbon and soil porosity were the most significant environmental variables affecting the compositions of abundant and rare taxa,respectively.Stochastic and deterministic processes dominated the assemblies of rare and abundant taxa,respectively.The archaeal ecological network influenced N_(2)O flux through different modules.Rare taxa performed an essential role in stabilizing the network and exerting important effects on N_(2)O flux.Our study provides a pioneering and comprehensive investigation aimed at unravelling the mechanisms by which archaea or other microorganisms influence greenhouse gas emissions in the alpine permafrost. 展开更多
关键词 Alpine permafrost Abundant and rare archaea Assembly processes Co-occurrence network N_(2)O flux
下载PDF
Spatiotemporal dynamics of vegetation response to permafrost degradation in Northeast China
11
作者 QIU Lisha SHAN Wei +3 位作者 GUO Ying ZHANG Chengcheng LIU Shuai YAN Aoxiang 《Journal of Arid Land》 SCIE CSCD 2024年第11期1562-1583,共22页
Permafrost in Northeast China is undergoing extensive and rapid degradation,and it is of great importance to understand the dynamics of vegetation response to permafrost degradation during different periods in this re... Permafrost in Northeast China is undergoing extensive and rapid degradation,and it is of great importance to understand the dynamics of vegetation response to permafrost degradation during different periods in this region.Based on the meteorological station data and MODIS land surface temperature data,we mapped the distribution of permafrost using the surface frost number(SFN)model to analyze the permafrost degradation processes in Northeast China from 1981 to 2020.We investigated the spatiotemporal variation characteristics of vegetation and its response to permafrost degradation during different periods from 1982 to 2020 using the normalized difference vegetation index(NDVI).We further discussed the dominant factors influencing the vegetation dynamics in the permafrost degradation processes.Results indicated that the permafrost area in Northeast China decreased significantly by 1.01×10^(5) km^(2) in the past 40 a.The permafrost stability continued to weaken,with large areas of stable permafrost(SP)converted to semi-stable permafrost(SSP)and unstable permafrost(UP)after 2000.From 1982 to 2020,NDVI exhibited a significant decreasing trend in the seasonal frost(SF)region,while it exhibited an increasing trend in the permafrost region.NDVI in the UP and SSP regions changed from a significant increasing trend before 2000 to a nonsignificant decreasing trend after 2000.In 78.63%of the permafrost region,there was a negative correlation between the SFN and NDVI from 1982 to 2020.In the SP and SSP regions,the correlation between the SFN and NDVI was predominantly negative,while in the UP region,it was predominantly positive.Temperature was the dominant factor influencing the NDVI variations in the permafrost region from 1982 to 2020,and the impact of precipitation on NDVI variations increased after 2000.The findings elucidate the complex dynamics of vegetation in the permafrost region of Northeast China and provide deeper insights into the response mechanisms of vegetation in cold regions to permafrost degradation induced by climate change. 展开更多
关键词 permafrost degradation surface frost number(SFN) normalized difference vegetation index(NDVI) vegetation response climate change Northeast China
下载PDF
不同材料覆盖对高寒矿区扰动界面土壤蒸发特性的影响
12
作者 杨春艳 王小展 +3 位作者 史常青 杨建英 孙智龙 邓莫楠 《水土保持研究》 北大核心 2025年第2期198-206,共9页
[目的]探讨不同无机材料的透水性和地表覆盖对土壤蒸发的影响,以期为解决冻土区因矿产资源开采所造成的水分下渗困难、蒸散量增加等问题提供一定理论依据。[方法]以8种无机材料为研究对象,分析了其微观结构及反射特性等基本物理性质;设... [目的]探讨不同无机材料的透水性和地表覆盖对土壤蒸发的影响,以期为解决冻土区因矿产资源开采所造成的水分下渗困难、蒸散量增加等问题提供一定理论依据。[方法]以8种无机材料为研究对象,分析了其微观结构及反射特性等基本物理性质;设置了3种降雨强度条件,研究材料在不同使用厚度下的透水性能;开展蒸发试验,探究了不同材料覆盖对土壤水分蒸发特性的影响。[结果](1)材料间的干湿容重、总孔隙度、通气孔隙度、持水孔隙度及反射率差异极显著(p<0.01),其中玻璃轻石J1、玻璃轻石J2及陶粒3种材料通气性和持水性较适中;(2)在透水性能方面,火山石、麦饭石、陶粒、玻璃轻石J1及玻璃轻石J2性能较优,且材料透水性与雨强、使用厚度分别呈极显著正相关和负相关关系(p<0.01);(3)在蒸发抑制性能方面,玻璃轻石J1、玻璃轻石J2、陶粒、火山石及膨胀珍珠岩可显著降低土壤累积蒸发量(p<0.05)。[结论]不同材料之间物理特性(微观结构、反射率等)差异明显,玻璃轻石J1、玻璃轻石J2及陶粒3种覆盖材料较其他材料能更好地抑制土壤蒸发的发生,可为高寒矿区冻土层近自然重构提供物质基础。 展开更多
关键词 高寒矿区 冻土退化 透水性 无机多孔材料 蒸发抑制特性
下载PDF
人类活动与全球变暖对冻土环境的双重影响
13
作者 李红霞 张洪泽 +1 位作者 王文杰 柳艳杰 《黑龙江水利科技》 2025年第1期1-4,23,共5页
通过回顾全球范围内冻土的分布、特性及其退化趋势,进一步探讨了气候变暖、地面工程活动及土地利用变化对冻土环境的影响。目前受人类活动与气候变暖的双重影响,出现生态系统的破坏、水资源的变化和地质灾害的增加现象,还对村镇饮水安... 通过回顾全球范围内冻土的分布、特性及其退化趋势,进一步探讨了气候变暖、地面工程活动及土地利用变化对冻土环境的影响。目前受人类活动与气候变暖的双重影响,出现生态系统的破坏、水资源的变化和地质灾害的增加现象,还对村镇饮水安全和基础设施安全构成威胁,对地区乃至全球环境安全构成了严峻挑战。文章强调了采取有效的环境保护措施和气候适应策略的迫切性,旨在为政策制定者和研究者提供科学依据和建议,以缓解和适应这些变化。 展开更多
关键词 多年冻土退化 气候变暖 生态系统 水资源 地质灾害
下载PDF
基于集成学习的多年冻土区路堑边坡稳定性预测
14
作者 张永顺 常明军 +1 位作者 刘宇航 明锋 《公路交通科技》 北大核心 2025年第1期131-139,共9页
【目标】随着多年冻土区路基工程建设活动增加,形成了大量路堑边坡,因此有必要对冻融作用下多年冻土区路堑边坡的稳定性进行分析。【方法】针对其随机性、小样本、非线性等特点,利用支持向量机、随机森林和梯度提升3种算法构建基础模型... 【目标】随着多年冻土区路基工程建设活动增加,形成了大量路堑边坡,因此有必要对冻融作用下多年冻土区路堑边坡的稳定性进行分析。【方法】针对其随机性、小样本、非线性等特点,利用支持向量机、随机森林和梯度提升3种算法构建基础模型,并采用Voting集成学习技术将它们组合,构建了4个多年冻土区路堑边坡安全系数预测模型。【数据】为了反映冻土区边坡的特殊性,引入了活动层厚度和冻融损伤系数,并结合了普通边坡稳定性影响中的4个关键指标(边坡坡度、土体重度、黏聚力和内摩擦角),确定了6个输入指标。利用25组数据对4个预测模型进行了训练和测试,并采用最小均方误差评价了模型预测效果。【结果】支持向量机模型的最大相对误差为9.61%,随机森林模型的最大相对误差为―6.23%,梯度提升模型的最大相对误差为4.44%,而Voting集成学习模型的预测值与实测值最大相对误差为―0.51%。相对于单一预测方法,Voting集成学习模型能够更加准确地预测边坡安全系数变化趋势。【应用】Voting集成模型可以更好地描述边坡稳定性与其影响因素之间的非线性关系,更适于实际工程应用。研究成果为多年冻土区路堑边坡稳定性评价提供了一种新的有效方法。 展开更多
关键词 道路工程 集成学习 安全系数 冻土边坡 预测模型
下载PDF
热融湖塘的提取方法
15
作者 王浩 李诗彤 魏莹莹 《北京测绘》 2025年第1期84-89,共6页
热融湖塘是多年冻土退化所引起的热融灾害之一,其中准确地监测热融湖塘的分布和变化是评估这一灾害的前提。根据以往对热融湖塘的研究发现,小型热融湖塘较多,但由于热融湖塘分布在湿地、草地等不同区域,部分热融湖塘在影像上与周边环境... 热融湖塘是多年冻土退化所引起的热融灾害之一,其中准确地监测热融湖塘的分布和变化是评估这一灾害的前提。根据以往对热融湖塘的研究发现,小型热融湖塘较多,但由于热融湖塘分布在湿地、草地等不同区域,部分热融湖塘在影像上与周边环境出现同谱异物的现象,导致无法对小型热融湖塘进行准确统计。本文选取高分六号影像作为数据源,分别采用归一化差异水体指数(NDWI)阈值法、面向对象提取法、LBV变换法对研究区内热融湖塘进行提取。通过解译结果分析,LBV变换法提取精度最高;GF-6影像经过LBV变换之后,水体与其他地物之间的差异更加突出,对小型热融湖塘的提取有较好的适用性。 展开更多
关键词 多年冻土 热融湖塘 归一化差异水体指数(NDWI)阈值法 LBV变换法 面向对象提取法
下载PDF
Gas Hydrates in the Qilian Mountain Permafrost, Qinghai, Northwest China 被引量:24
16
作者 ZHU Youhai ZHANG Yongqin +7 位作者 WEN Huaijun LU Zhenquan JIA Zhiyao LI Yonghong LI Qinghai LIU Changling WANG Pingkang GUO Xingwang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2010年第1期1-10,共10页
Qilian Mountain permafrost, with area about 10×10^4 km2, locates in the north of Qinghai- Tibet plateau. It equips with perfect conditions and has great prospecting potential for gas hydrate. The Scientific Drill... Qilian Mountain permafrost, with area about 10×10^4 km2, locates in the north of Qinghai- Tibet plateau. It equips with perfect conditions and has great prospecting potential for gas hydrate. The Scientific Drilling Project of Gas Hydrate in Qilian Mountain permafrost, which locates in Juhugeng of Muri Coalfield, Tianjun County, Qinghai Province, has been implemented by China Geological Survey in 2008-2009. Four scientific drilling wells have been completed with a total footage of 2059.13 m. Samples of gas hydrate are collected separately from holes DK-1, DK-2 and DK-3. Gas hydrate is hosted under permafrost zone in the 133-396 m interval. The sample is white crystal and easily burning. Anomaly low temperature has been identified by the infrared camera. The gas hydratebearing cores strongly bubble in the water. Gas-bubble and water-drop are emitted from the hydratebearing cores and then characteristic of honeycombed structure is left. The typical spectrum curve of gas hydrate is detected using Raman spectrometry. Furthermore, the logging profile also indicates high electrical resistivity and sonic velocity. Gas hydrate in Qilian Mountain is characterized by a thinner permafrost zone, shallower buried depth, more complex gas component and coal-bed methane origin etc. 展开更多
关键词 gas hydrate permafrost Qilian Mountain
下载PDF
Spatiotemporal variability of permafrost degradation on the Qinghai-Tibet Plateau 被引量:19
17
作者 HuiJun Jin DongLiang Luo ShaoLing Wang LanZhi Lv JiChun Wu 《Research in Cold and Arid Regions》 2011年第4期281-305,共25页
Based on data from six meteorological stations in the permafrost regions, 60 boreholes for long-term monitoring of permafrost temperatures, and 710 hand-dug pits and shallow boreholes on the Qinghai-Tibet Plateau (QT... Based on data from six meteorological stations in the permafrost regions, 60 boreholes for long-term monitoring of permafrost temperatures, and 710 hand-dug pits and shallow boreholes on the Qinghai-Tibet Plateau (QTP), the spatiotemporal variability of permafrost degradation was closely examined in relation to the rates of changes in air, surface, and ground temperatures. The de- cadal averages and increases in the mean annual air temperatures (MAATs) from 1961-2010 were the largest and most persistent during the last century. MAATs rose by 1.3 ℃, with an average increase rate of 0.03 ℃/yr. The average of mean annual ground surface temperatures (MAGSTs) increased by 1.3 ℃ at an average rate of 0.03 ℃/yr. The rates of changes in ground temperatures were -0.01 to 0.07 ℃/yr. The rates of changes in the depths of the permafrost table were -1 to +10 cm/yr. The areal extent of permafrost on the QTP shrank from about 1.50× 10^6 km^2 in 1975 to about 1.26× 10^6 km^2 in 2006. About 60% of the shrinkage in area of permafrost occurred during the period from 1996 to 2006. Due to increasing air temperature since the late 1980s, warm (〉-1 ℃) permafrost has started to degrade, and the degradation has gradually expanded to the zones of transitory (-1 to -2 ℃) and cold (〈-2 ℃) permafrost. Permafrost on the southern and southeastem plateau degrades more markedly. It is projected that the degradation of permafrost is likely to accelerate, and substantial changes in the distributive features and thermal regimes of permafrost should be anticipated. However, regarding the relationships between degrading permafrost and the degradation of rangelands, it is still too early to draw reliable conclusions due to inadequate scientific criteria and evidence. 展开更多
关键词 QTP permafrost degradation ground temperatures change rates
下载PDF
Permafrost warming along the Mo'he-Jiagedaqi section of the China-Russia crude oil pipeline 被引量:8
18
作者 WANG Fei LI Guo-yu +4 位作者 MA Wei MAO Yun-cheng MU Yan-hu SERBAN Mihaela CAI Yong-jun 《Journal of Mountain Science》 SCIE CSCD 2019年第2期285-295,共11页
The permafrost along the China-Russia Crude Oil Pipeline(CRCOP) is degrading since the pipeline operation in 2011. Heat dissipated from the pipeline, climate warming and anthropogenic activities leads to permafrost wa... The permafrost along the China-Russia Crude Oil Pipeline(CRCOP) is degrading since the pipeline operation in 2011. Heat dissipated from the pipeline, climate warming and anthropogenic activities leads to permafrost warming. The processes of permafrost warming along the CRCOP were studied based on the monitoring of air and soil temperatures, and electrical resistivity tomography(ERT) surveys. Results show that:(1) the mean annual air temperature(MAAT) in permafrost regions along the CRCOP increased with a rate of 0.21°C/10a–0.40°C/10 a during the past five decades;(2) the mean annual ground temperature(MAGT, at-15 m depth) of undisturbed permafrost increased by 0.2°C and the natural permafrost table remained unchanged due to the zero-curtain effect;(3) permafrost surrounding the uninsulated pipeline right-of-way warmed significantly compared with that in a natural site. During 2012–2017, the MAGT and the artificial permafrost table, 2 m away from the pipeline centerline, increased at rates of 0.063°C/a and 1.0 m/a. The thaw bulb developed around the pipe and exhibits a faster lateral expansion;(4) 80-mm-thick insulation could reduce the heat exchange between the pipeline and underlying permafrost and then keep the permafrost and pipe stable. The MAGT and the artificial permafrost table, 4.8 m away from the center line of the pipeline, increased by 0.3°C/a and 0.43 m/a, respectively. Due to the heat disturbance caused by warm oil, the degradation of wetland, controlled burn each autumn and climate warming, the permafrost extent reduced and warmed significantly along the CRCOP route. Field observations provide basic data to clarify the interactions between CRCOP and permafrost degradation and environmental effects in the context of climate change. 展开更多
关键词 permafrost WARMING China-Russia CRUDE Oil Pipeline Air TEMPERATURE Soil TEMPERATURE Climate WARMING
下载PDF
Role of permafrost in resilience of social-ecological system and its spatio-temporal dynamics in the source regions of Yangtze and Yellow Rivers 被引量:2
19
作者 FANG Yi-ping ZHU Fu-biao +2 位作者 YI Shu-hua QIU Xiao-ping DING Yong-jian 《Journal of Mountain Science》 SCIE CSCD 2019年第1期179-194,共16页
Permafrost is one of the key components of terrestrial ecosystem in cold regions. In the context of climate change, few studies have investigated resilience of social ecological system(SER) from the perspective of per... Permafrost is one of the key components of terrestrial ecosystem in cold regions. In the context of climate change, few studies have investigated resilience of social ecological system(SER) from the perspective of permafrost that restricts the hydrothermal condition of alpine grassland ecosystem. In this paper, based on the structural dynamics, we developed the numerical model for the SER in the permafrost regions of the source of Yangtze and Yellow Rivers, analyzed the spatial-temporal characteristics and sensitivity of the SER, and estimated the effect of permafrost change on the SER. The results indicate that: 1) the SER has an increasing trend, especially after 1997, which is the joint effect of precipitation, temperature, NPP and ecological conservation projects; 2) the SER shows the spatial feature of high in southeast and low in northwest,which is consistent with the variation trends of high southeast and low northwest for the precipitation, temperature and NPP, and low southeast and high northwest for the altitude; 3) the high sensitive regions of SER to the permafrost change have gradually transited from the island distribution to zonal and planar distribution since 1980, moreover, the sensitive degree has gradually reduced; relatively, the sensitivity has high value in the north and south, and low value in the south and east; 4) the thickness of permafrost active layer shows a highly negative correlation with the SER. The contribution rate of permafrost change to the SER is-4.3%, that is, once the thickness of permafrost active layer increases 1 unit, the SER would decrease 0.04 units. 展开更多
关键词 RESILIENCE of social ECOLOGICAL system permafrost permafrost active layer thickness Structural dynamic equation Source regions of YANGTZE and YELLOW RIVERS
下载PDF
Predictive modeling of the permafrost thermal regime in Russian railroad subgrade support systems 被引量:3
20
作者 Sergei Kudriavtcev Tatiana Valtseva +2 位作者 Alexei Kazharskyi Elena Goncharova Iurii Berestianyi 《Research in Cold and Arid Regions》 CSCD 2013年第4期404-407,共4页
The goal of a predictive thermotechnical calculation is to model the behavior of the top permafrost boundary under current operational conditions as well as increasing average annual air temperatures that results in d... The goal of a predictive thermotechnical calculation is to model the behavior of the top permafrost boundary under current operational conditions as well as increasing average annual air temperatures that results in degradation of the permafrost layer. Numerical modeling was used to assess the efficient application of construction measures to create sustainable operation of the railroad. The numerical modeling was carried out in the programming complex FEM-models developed by geotechnical engineers of St. Petersburg, Russia under Prof. V. M. Ulitsky's guidance. The Termoground Program as a part of the FEM-models enables the research of freezing, heaving and thawing in different design solutions. Research was carried out in space resolution for a year cycle. The performed model has shown that the designing measures accepted for permafrost protection from retreat in the subrade support were generally effective. 展开更多
关键词 REINFORCEMENT modeling deformations permafrost soil EMBANKMENT
下载PDF
上一页 1 2 143 下一页 到第
使用帮助 返回顶部