The evolution of networks in rural industrial clusters,in particular in the context of China has been paid more attention to in the world.Applying the theory and techniques of social network analysis (SNA),this study ...The evolution of networks in rural industrial clusters,in particular in the context of China has been paid more attention to in the world.Applying the theory and techniques of social network analysis (SNA),this study is with particular regard to the business network relationships and their evolutionary dynamics of steel measuring tape manufacturing clustered in Nanzhuang Village,Yucheng County of Henan Province,China,which is important for better understanding the industrial and regional development in less developed rural areas.From data collected by comprehensive questionnaire survey in 2002 and mass interviews with 60 enterprises and assembling families and several government authorities in 2002,2003,2004,2005 and 2008,four types of networks are identified: spin-off,consulting,communication and cooperative.The characteristic of these networks is outlined in detail.Compared with the high-tech clusters of typical developed areas,the networks that have evolved in traditional manufacturing clusters are more affected by emotive linkages.The cluster networks are shown to exhibit a polycentric hierarchical structure.The family relationships are the dominate spin-off channels of enterprises,while the supply and demand relationships and the mobility of the skilled workers are also important paths of network learning,and the cooperation relationships are comparatively stable.Besides the root enterprises,the middle-sized enterprises are comparatively more active than small-sized enterprises,and the intermediary agencies and the service institutions act as bridges of the inter-enterprises cooperation.By analysis of the structure of networks and the interactions between the networks,the four stages of network evolution are also identified.The four stages are dominated by the family networks,the internal division production networks,the local innovation networks and the global supply networks respectively,and they play different roles in cluster development.展开更多
As a new mode and means of smart manufacturing,smart cloud manufacturing(SCM)faces great challenges in massive supply and demand,dynamic resource collaboration and intelligent adaptation.To address the problem,this pa...As a new mode and means of smart manufacturing,smart cloud manufacturing(SCM)faces great challenges in massive supply and demand,dynamic resource collaboration and intelligent adaptation.To address the problem,this paper proposes an SCM-oriented dynamic supply-demand(SD)intelligent adaptation model for massive manufacturing services.In this model,a collaborative network model is established based on the properties of both the supply-demand and their relationships;in addition,an algorithm based on deep graph clustering(DGC)and aligned sampling(AS)is used to divide and conquer the large adaptation domain to solve the problem of the slow computational speed caused by the high complexity of spatiotemporal search in the collaborative network model.At the same time,an intelligent supply-demand adaptation method driven by the quality of service(QoS)is established,in which the experiences of adaptation are shared among adaptation subdomains through deep reinforcement learning(DRL)powered by a transfer mechanism to improve the poor adaptation results caused by dynamic uncertainty.The results show that the model and the solution proposed in this paper can performcollaborative and intelligent supply-demand adaptation for themassive and dynamic resources in SCM through autonomous learning and can effectively performglobal supply-demand matching and optimal resource allocation.展开更多
Accompanying the unceasing progress of integrated circuit manufacturing technology, the mainstream production mode of current semiconductor wafer fabrication is featured with multi-variety, small batch, and individual...Accompanying the unceasing progress of integrated circuit manufacturing technology, the mainstream production mode of current semiconductor wafer fabrication is featured with multi-variety, small batch, and individual customization, which poses a huge challenge to the scheduling of cluster tools with single-wafer-type fabrication. Concurrent processing multiple wafer types in cluster tools, as a novel production pattern, has drawn increasing attention from industry to academia, whereas the corresponding research remains insufficient. This paper investigates the scheduling problems of dual-arm cluster tools with multiple wafer types and residency time constraints. To pursue an easy-to-implement cyclic operation under diverse flow patterns,we develop a novel robot activity strategy called multiplex swap sequence. In the light of the virtual module technology, the workloads that stem from bottleneck process steps and asymmetrical process configuration are balanced satisfactorily. Moreover, several sufficient and necessary conditions with closed-form expressions are obtained for checking the system's schedulability. Finally, efficient algorithms with polynomial complexity are developed to find the periodic scheduling, and its practicability and availability are demonstrated by the offered illustrative examples.展开更多
A treelike hybrid multi-cluster tool is composed of both single-arm and dual-arm cluster tools with a treelike topology. Scheduling such a tool is challenging. For a hybrid treelike multi-cluster tool whose bottleneck...A treelike hybrid multi-cluster tool is composed of both single-arm and dual-arm cluster tools with a treelike topology. Scheduling such a tool is challenging. For a hybrid treelike multi-cluster tool whose bottleneck individual tool is process-bound, this work aims at finding its optimal one-wafer cyclic schedule. It is modeled with Petri nets such that a onewafer cyclic schedule is parameterized as its robots' waiting time.Based on the model, this work proves the existence of its onewafer cyclic schedule that features with the ease of industrial implementation. Then, computationally efficient algorithms are proposed to find the minimal cycle time and optimal onewafer cyclic schedule. Multi-cluster tool examples are given to illustrate the proposed approach. The use of the found schedules enables industrial multi-cluster tools to operate with their highest productivity.展开更多
Some wafer fabrication processes performed by cluster tools require revisiting. With wafer revisiting, a cluster tool is very difficult to be scheduled due to a large number of possible schedules for the revisiting pr...Some wafer fabrication processes performed by cluster tools require revisiting. With wafer revisiting, a cluster tool is very difficult to be scheduled due to a large number of possible schedules for the revisiting process. Atomic layer deposition (ALD) is a typical process with wafer revisiting that should be performed by cluster tools. This paper discusses the scheduling problem of single-arm cluster tools for the ALD process. In scheduling such a system, the most difficult part is to schedule the revisiting process such that the cycle time is minimized. Thus, this paper studies the revisiting process of ALD with revisiting times k = 3, 4, and 5, and analytical expressions are obtained to calculate the cycle time for the k possible schedules. Then, the schedule with the minimal cycle time is the optimal one. In this way, the scheduling problem of such a revisiting process becomes very simple and this is a significant improvement in scheduling cluster tools with wafer revisiting. Illustrative example is presented to show the application of the proposed method.展开更多
随着互联网和广告平台的飞速发展,面对海量的广告信息,为了提升用户点击率,提出一种改进的基于组合结构的逻辑回归点击预测算法LRCS(Logical Regression of Combination Structure)。该算法基于不同类别特征广告受众可能不同的特点,首先...随着互联网和广告平台的飞速发展,面对海量的广告信息,为了提升用户点击率,提出一种改进的基于组合结构的逻辑回归点击预测算法LRCS(Logical Regression of Combination Structure)。该算法基于不同类别特征广告受众可能不同的特点,首先,采用FM进行特征组合,产生两类组合特征;其次,将一类特征组合作为聚类算法的输入进行聚类;最后,将另一类特征组合输入由聚类产生的分段GBDT+逻辑回归组合的模型中进行预测。在两个公开数据集中进行了多角度验证,结果表明与其他几类常用的点击预测算法相比,LRCS在点击预测上有一定的性能提升。展开更多
基金Under the auspices of National Natural Science Foundation of China (No.41071080,41071082)Key Bidding Project for Soft Science in Henan Province in 2010 (No.102400410002)Key Project of the Humanities and Social Sciences Research Base in Ministry of Education (No.YRCSD08A10)
文摘The evolution of networks in rural industrial clusters,in particular in the context of China has been paid more attention to in the world.Applying the theory and techniques of social network analysis (SNA),this study is with particular regard to the business network relationships and their evolutionary dynamics of steel measuring tape manufacturing clustered in Nanzhuang Village,Yucheng County of Henan Province,China,which is important for better understanding the industrial and regional development in less developed rural areas.From data collected by comprehensive questionnaire survey in 2002 and mass interviews with 60 enterprises and assembling families and several government authorities in 2002,2003,2004,2005 and 2008,four types of networks are identified: spin-off,consulting,communication and cooperative.The characteristic of these networks is outlined in detail.Compared with the high-tech clusters of typical developed areas,the networks that have evolved in traditional manufacturing clusters are more affected by emotive linkages.The cluster networks are shown to exhibit a polycentric hierarchical structure.The family relationships are the dominate spin-off channels of enterprises,while the supply and demand relationships and the mobility of the skilled workers are also important paths of network learning,and the cooperation relationships are comparatively stable.Besides the root enterprises,the middle-sized enterprises are comparatively more active than small-sized enterprises,and the intermediary agencies and the service institutions act as bridges of the inter-enterprises cooperation.By analysis of the structure of networks and the interactions between the networks,the four stages of network evolution are also identified.The four stages are dominated by the family networks,the internal division production networks,the local innovation networks and the global supply networks respectively,and they play different roles in cluster development.
基金This paper was supported in part by the National Natural Science Foundation of China under Grant 62172235in part by Natural Science Foundation of Jiangsu Province of China under Grant BK20191381in part by Primary Research&Development Plan of Jiangsu Province Grant BE2019742.
文摘As a new mode and means of smart manufacturing,smart cloud manufacturing(SCM)faces great challenges in massive supply and demand,dynamic resource collaboration and intelligent adaptation.To address the problem,this paper proposes an SCM-oriented dynamic supply-demand(SD)intelligent adaptation model for massive manufacturing services.In this model,a collaborative network model is established based on the properties of both the supply-demand and their relationships;in addition,an algorithm based on deep graph clustering(DGC)and aligned sampling(AS)is used to divide and conquer the large adaptation domain to solve the problem of the slow computational speed caused by the high complexity of spatiotemporal search in the collaborative network model.At the same time,an intelligent supply-demand adaptation method driven by the quality of service(QoS)is established,in which the experiences of adaptation are shared among adaptation subdomains through deep reinforcement learning(DRL)powered by a transfer mechanism to improve the poor adaptation results caused by dynamic uncertainty.The results show that the model and the solution proposed in this paper can performcollaborative and intelligent supply-demand adaptation for themassive and dynamic resources in SCM through autonomous learning and can effectively performglobal supply-demand matching and optimal resource allocation.
基金supported in part by the National Natural Science Foundation of China(71361014,61973242,61573265,51665018)the Major Fundamental Research Program of the Natural Science Foundation of Shaanxi Province(2017ZDJC-34)。
文摘Accompanying the unceasing progress of integrated circuit manufacturing technology, the mainstream production mode of current semiconductor wafer fabrication is featured with multi-variety, small batch, and individual customization, which poses a huge challenge to the scheduling of cluster tools with single-wafer-type fabrication. Concurrent processing multiple wafer types in cluster tools, as a novel production pattern, has drawn increasing attention from industry to academia, whereas the corresponding research remains insufficient. This paper investigates the scheduling problems of dual-arm cluster tools with multiple wafer types and residency time constraints. To pursue an easy-to-implement cyclic operation under diverse flow patterns,we develop a novel robot activity strategy called multiplex swap sequence. In the light of the virtual module technology, the workloads that stem from bottleneck process steps and asymmetrical process configuration are balanced satisfactorily. Moreover, several sufficient and necessary conditions with closed-form expressions are obtained for checking the system's schedulability. Finally, efficient algorithms with polynomial complexity are developed to find the periodic scheduling, and its practicability and availability are demonstrated by the offered illustrative examples.
基金supported in part by Science and Technology Development Fund(FDCT)of Macao(106/2016/A3)the National Natural Science Foundation of China(U1401240)the Delta Electronics Inc and the National Research Foundation(NRF)Singapore under the Corp Lab@University Scheme
文摘A treelike hybrid multi-cluster tool is composed of both single-arm and dual-arm cluster tools with a treelike topology. Scheduling such a tool is challenging. For a hybrid treelike multi-cluster tool whose bottleneck individual tool is process-bound, this work aims at finding its optimal one-wafer cyclic schedule. It is modeled with Petri nets such that a onewafer cyclic schedule is parameterized as its robots' waiting time.Based on the model, this work proves the existence of its onewafer cyclic schedule that features with the ease of industrial implementation. Then, computationally efficient algorithms are proposed to find the minimal cycle time and optimal onewafer cyclic schedule. Multi-cluster tool examples are given to illustrate the proposed approach. The use of the found schedules enables industrial multi-cluster tools to operate with their highest productivity.
基金supported by National Natural Science Foundation of China (No. 60974098)Research Foundation for the Doctoral Program of Higher Education (No. 20094420110002)
文摘Some wafer fabrication processes performed by cluster tools require revisiting. With wafer revisiting, a cluster tool is very difficult to be scheduled due to a large number of possible schedules for the revisiting process. Atomic layer deposition (ALD) is a typical process with wafer revisiting that should be performed by cluster tools. This paper discusses the scheduling problem of single-arm cluster tools for the ALD process. In scheduling such a system, the most difficult part is to schedule the revisiting process such that the cycle time is minimized. Thus, this paper studies the revisiting process of ALD with revisiting times k = 3, 4, and 5, and analytical expressions are obtained to calculate the cycle time for the k possible schedules. Then, the schedule with the minimal cycle time is the optimal one. In this way, the scheduling problem of such a revisiting process becomes very simple and this is a significant improvement in scheduling cluster tools with wafer revisiting. Illustrative example is presented to show the application of the proposed method.
文摘随着互联网和广告平台的飞速发展,面对海量的广告信息,为了提升用户点击率,提出一种改进的基于组合结构的逻辑回归点击预测算法LRCS(Logical Regression of Combination Structure)。该算法基于不同类别特征广告受众可能不同的特点,首先,采用FM进行特征组合,产生两类组合特征;其次,将一类特征组合作为聚类算法的输入进行聚类;最后,将另一类特征组合输入由聚类产生的分段GBDT+逻辑回归组合的模型中进行预测。在两个公开数据集中进行了多角度验证,结果表明与其他几类常用的点击预测算法相比,LRCS在点击预测上有一定的性能提升。