Rock bolts are widely used in rock engineering projects to improve the shear capacity of the jointed rock mass.The bolt inclination angle with respect to the shear plane has a remarkable influence on the bolting perfo...Rock bolts are widely used in rock engineering projects to improve the shear capacity of the jointed rock mass.The bolt inclination angle with respect to the shear plane has a remarkable influence on the bolting performance.In this study,a new artificial molding method based on 3D scanning and printing technology was first proposed to prepare bolted joints with an inclined bolt.Then,the effects of the bolt inclination angle and boundary conditions on the shear behavior and failure characteristic of bolted joints were addressed by conducting direct shear tests under both CNL and CNS conditions.Results indicated that rock bolt could significantly improve the shear behavior of rock joints,especially in the post-yield deformation region.With the increase of bolt inclination angle,both the maximum shear stress and the maximum friction coefficient increased first and then decreased,while the maximum normal displacement decreased monotonously.Compared with CNL conditions,the maximum shear stress was larger,whereas the maximum normal displacement and friction coefficient were smaller under the CNS conditions.Furthermore,more asperity damage was observed under the CNS conditions due to the increased normal stress on the shear plane.展开更多
Traditional pre-stack depth migration can only provide subsurface structural information. However, simple structure information is insufficient for petroleum exploration which also needs amplitude information proporti...Traditional pre-stack depth migration can only provide subsurface structural information. However, simple structure information is insufficient for petroleum exploration which also needs amplitude information proportional to reflection coefficients. In recent years, pre-stack depth migration algorithms which preserve amplitudes and based on the one- way wave equation have been developed. Using the method in the shot domain requires a deconvolution imaging condition which produces some instability in areas with complicated structure and dramatic lateral variation in velocity. Depth migration with preserved amplitude based on the angle domain can overcome the instability of the one-way wave migration imaging condition with preserved amplitude. It can also offer provide velocity analysis in the angle domain of common imaging point gathers. In this paper, based on the foundation of the one-way wave continuation operator with preserved amplitude, we realized the preserved amplitude prestack depth migration in the angle domain. Models and real data validate the accuracy of the method.展开更多
Proper meshing of Hy-Vo silent chain and sprocket is important for realizing the transmission of the silent chain with more efficiency and less noise. Based on the study of the meshing theory of the Hy-Vo silent chain...Proper meshing of Hy-Vo silent chain and sprocket is important for realizing the transmission of the silent chain with more efficiency and less noise. Based on the study of the meshing theory of the Hy-Vo silent chain with the sprocket and the roll cutting machining principle of the sprocket with the hob, the proper conditions of the meshing for the Hy-Vo silent chain and the sprocket are put forward with the variable pitch characteristic of the Hy-Vo silent chain taken into consideration, and the proper meshing design method on the condition that the value of the link tooth pressure angle is unequal to the value of the sprocket tooth pressure angle is studied. Experiments show that this new design method is feasible. In addition, the design of the pitch, the sprocket tooth pressure angle and the fillet radius of the sprocket addendum circle are studied. It is crucial for guiding the design of the hob which cuts the Hy-Vo silent chain sprocket.展开更多
In this study,a dynamic model for the bearing rotor system of a high-speed train under variable speed conditions is established.In contrast to previous studies,the contact stress is simplifed in the proposed model and...In this study,a dynamic model for the bearing rotor system of a high-speed train under variable speed conditions is established.In contrast to previous studies,the contact stress is simplifed in the proposed model and the compensation balance excitation caused by the rotor mass eccentricity considered.The angle iteration method is used to overcome the challenge posed by the inability to determine the roller space position during bearing rotation.The simulation results show that the model accurately describes the dynamics of bearings under varying speed profles that contain acceleration,deceleration,and speed oscillation stages.The order ratio spectrum of the bearing vibration signal indicates that both the single and multiple frequencies in the simulation results are consistent with the theoretical results.Experiments on bearings with outer and inner ring faults under various operating conditions are performed to verify the developed model.展开更多
We present an effective denoising strategy for two-way wave equation migration. Three dominant artifact types are analyzed and eliminated by an optimized imaging condition. We discuss a previously unsolved beam-like a...We present an effective denoising strategy for two-way wave equation migration. Three dominant artifact types are analyzed and eliminated by an optimized imaging condition. We discuss a previously unsolved beam-like artifact, which is probably caused by the cross-correlation of downward transmitting and upward scattering waves from both the source and receiver side of a single seismic shot. This artifact has relatively strong cross- correlation but carries no useful information from reflectors. The beam-like artifact widely exists in pre-stack imaging and has approximately the same amplitude as useful seismic signals. In most cases, coherent artifacts in the image are caused by directionally propagating energy. Based on propagation angles obtained by wavefield gradients, we identify the artifact energy and subtract its contribution in the imaging condition. By this process most artifacts can be accurately eliminated, including direct wave artifacts, scattering artifacts, and beam- like artifacts. This method is independent of the wavefield propagator and is easy to adapt to almost all current wave equation migration methods if needed. As this method deals with the physical artifact origins, little damage is caused to the seismic signal. Extra k-domain filtering can additionally enhance the stacking result image quality. This method succeeds in the super-wide-angle one-way migration and we can expect its success in other two-way wave equation migrations and especially in reverse time migration.展开更多
With the rapid development of high-speed-railway,environment around high voltage device on train roof becomes very complicated. Most train accidents happened due to occurrence of flashover on roof insulator,but the in...With the rapid development of high-speed-railway,environment around high voltage device on train roof becomes very complicated. Most train accidents happened due to occurrence of flashover on roof insulator,but the insulation condition estimation of insulator in such environment is much difficult. To ensure the insulation property of electric equipment,and guarantee the operation safety of high-speed-train,here established an instrument with high reliability which can on-line monitor insulation condition of roof insulator and give out advanced alarm before the incipient insulator flashover. The instrument consists of three parts,Data Acquisition & Sensor,Data Processing and Back Processing. Anti-interference and protection methods are processed to Rogowski coil sensor for better leakage current signal. To avoid the fluctuation from railway power supply,four modules are set to filter the power supply waveform. Through laboratory measurement,it is shown that the leakage current and the impedance angle can be detected by the instrument accurately. From the comparison of leakage current and impedance angle results under different moisture condition and the alarm operation when leakage current value reached threshold,this instrument can give out enough information for staff to understand the insulation condition of insulator.展开更多
We investigate the continuous variable entanglement in a four-level atom according to the criterion proposed by Duan et al.[Phys.Rev.Lett.84(2000)2722].The atomic coherence is introduced using two external classical d...We investigate the continuous variable entanglement in a four-level atom according to the criterion proposed by Duan et al.[Phys.Rev.Lett.84(2000)2722].The atomic coherence is introduced using two external classical driving fields.We study the steady-state entanglement of the system in the presence of losses,concluding that the creation of entangled states can be achievable under certain conditions.展开更多
Fracture processes in ship-building structures are in many cases of a 3-D character. A finite element (FE) model of an all fracture mode (AFM) specimen was built for the study of 3-D mixed mode crack fracture beha...Fracture processes in ship-building structures are in many cases of a 3-D character. A finite element (FE) model of an all fracture mode (AFM) specimen was built for the study of 3-D mixed mode crack fracture behavior including modes Ⅰ,Ⅱ, and Ⅲ. The stress intensity factors (SIFs) were calculated by the modified virtual crack closure integral (MVCCI) method, and the crack initiation angle assessment was based on a recently developed 3-D fracture criterion--the Richard criterion. It was shown that the FE model of the AFM-specimen is applicable for investigations under general mixed mode loading conditions, and the computational results of crack initiation angles are in agreement with some available experimental findings. Thus, the applicability of the FE model of the AFM-specimen for mixed mode loading conditions and the validity of the Richard criterion can be demonstrated.展开更多
The commonly used reflectivity models of radar sea clutter are summarized. Among these models, the adjusted Barton model and the adjusted Morchin model are compared. From the analysis result, the γ-p reflectivity mod...The commonly used reflectivity models of radar sea clutter are summarized. Among these models, the adjusted Barton model and the adjusted Morchin model are compared. From the analysis result, the γ-p reflectivity model is presented for low grazing angle radar sea clutter by the adjustment of the original Barton reflectivity model. The model takes into account radar frequency, grazing angle, sea condition, and polarization property. The influences of these factors on the proposed model are analyzed. The model absorbs the merits from commonly used reflectivity models for sea clutter. It introduces several researchers' opinions, and extends them. And it accounts for the reflectivity at arbitrary radar frequency from VHF to X-band, arbitrary low grazing angle, arbitrary sea condition and different polarization property. One of the main results is the proposed γ-p reflectivity model can reflect the influence of polarization on sea clutter reflectivity to some extent. The proposed γ-p reflectivity model of low-angle radar-sea clutter is validated by comparing the simulated and statistically experimental data.展开更多
Synchrotron radiation based experimental techniques known as Anomalous Small-Angle X-ray Scattering (ASAXS) provide deep insight into the nanostructure of uncountable material systems in condensed matter research i.e....Synchrotron radiation based experimental techniques known as Anomalous Small-Angle X-ray Scattering (ASAXS) provide deep insight into the nanostructure of uncountable material systems in condensed matter research i.e. solid state physics, chemistry, engineering and life sciences thereby rendering the origin of the macroscopic functionalization of the various materials via correlation to its structural architecture on a nanometer length scale. The techniques constitute a system of linear equations, which can be treated by matrix theory. The study aims to analyze the significance of the solutions of the stated matrix equations by use of the so-called condition numbers first introduced by A. Turing, J. von Neumann and H. Goldstine. Special attention was given for the comparison with direct methods i.e. the Gaussian elimination method. The mathematical roots of ill-posed ASAXS equations preventing matrix inversion have been identified. In the framework of the theory of von Neumann and Goldstine the inversion of certain matrices constituted by ASAXS gradually becomes impossible caused by non-definiteness. In Turing’s theory which starts from more general prerequisites, the principal minors of the same matrices approach singularity thereby imposing large errors on inversion. In conclusion both theories recommend for extremely ill-posed ASAXS problems avoiding inversion and the use of direct methods for instance Gaussian elimination.展开更多
随着大型风电基地建设,上游风机在运行时会使下游风场风速下降,湍流度增大,造成下游风机发电功率降低,加剧风机的疲劳破坏并缩短其服役周期。因此,亟需开展风机尾流研究,明确其特性及演化规律。为了揭示不同入流及偏航角下的单风机尾流...随着大型风电基地建设,上游风机在运行时会使下游风场风速下降,湍流度增大,造成下游风机发电功率降低,加剧风机的疲劳破坏并缩短其服役周期。因此,亟需开展风机尾流研究,明确其特性及演化规律。为了揭示不同入流及偏航角下的单风机尾流特性,基于单风机尾流风洞试验,验证基于大涡模拟(Large Eddy Simulation,LES)结合致动线模型(Actuator Line Model,ALM)数值模拟方法的准确性;基于LES-ALM模拟方法研究入流风场(包括风速及湍流度)及偏航角对风机尾流特性的影响,阐明正负偏航角下单风机尾流的对称性。结果表明:随着背景湍流度的增大,风机尾流恢复速度加快;当入流条件相同时,风机设置正负对称偏航角,其尾流风速也表现出一定的对称性;风机偏航角越大,风机尾流膨胀宽度会逐渐减小,并降低尾流风速的亏损程度。展开更多
基金Project(U1865203)supported by the Key Projects of the Yalong River Joint Fund of the National Natural Science Foundation of ChinaProject(51279201)supported by the National Natural Science Foundation of ChinaProjects(2019YFC0605103,2019YFC0605100)supported by the National Key R&D Program of China。
文摘Rock bolts are widely used in rock engineering projects to improve the shear capacity of the jointed rock mass.The bolt inclination angle with respect to the shear plane has a remarkable influence on the bolting performance.In this study,a new artificial molding method based on 3D scanning and printing technology was first proposed to prepare bolted joints with an inclined bolt.Then,the effects of the bolt inclination angle and boundary conditions on the shear behavior and failure characteristic of bolted joints were addressed by conducting direct shear tests under both CNL and CNS conditions.Results indicated that rock bolt could significantly improve the shear behavior of rock joints,especially in the post-yield deformation region.With the increase of bolt inclination angle,both the maximum shear stress and the maximum friction coefficient increased first and then decreased,while the maximum normal displacement decreased monotonously.Compared with CNL conditions,the maximum shear stress was larger,whereas the maximum normal displacement and friction coefficient were smaller under the CNS conditions.Furthermore,more asperity damage was observed under the CNS conditions due to the increased normal stress on the shear plane.
基金supported by the National 863 Program(Grant No.2006AA06Z206)the National 973 Program(Grant No.2007CB209605)CNPC geophysical laboratories and Ph.D innovative funding in China University of Petroleum(East China)
文摘Traditional pre-stack depth migration can only provide subsurface structural information. However, simple structure information is insufficient for petroleum exploration which also needs amplitude information proportional to reflection coefficients. In recent years, pre-stack depth migration algorithms which preserve amplitudes and based on the one- way wave equation have been developed. Using the method in the shot domain requires a deconvolution imaging condition which produces some instability in areas with complicated structure and dramatic lateral variation in velocity. Depth migration with preserved amplitude based on the angle domain can overcome the instability of the one-way wave migration imaging condition with preserved amplitude. It can also offer provide velocity analysis in the angle domain of common imaging point gathers. In this paper, based on the foundation of the one-way wave continuation operator with preserved amplitude, we realized the preserved amplitude prestack depth migration in the angle domain. Models and real data validate the accuracy of the method.
基金This project is supported by National Natural Science Foundation of China(No.50575089).
文摘Proper meshing of Hy-Vo silent chain and sprocket is important for realizing the transmission of the silent chain with more efficiency and less noise. Based on the study of the meshing theory of the Hy-Vo silent chain with the sprocket and the roll cutting machining principle of the sprocket with the hob, the proper conditions of the meshing for the Hy-Vo silent chain and the sprocket are put forward with the variable pitch characteristic of the Hy-Vo silent chain taken into consideration, and the proper meshing design method on the condition that the value of the link tooth pressure angle is unequal to the value of the sprocket tooth pressure angle is studied. Experiments show that this new design method is feasible. In addition, the design of the pitch, the sprocket tooth pressure angle and the fillet radius of the sprocket addendum circle are studied. It is crucial for guiding the design of the hob which cuts the Hy-Vo silent chain sprocket.
基金Supported by National Natural Science Foundation of China(Grant Nos.11790282,12032017,11802184,11902205,12002221,11872256)S&T Program of Hebei(Grant No.20310803D)+2 种基金Natural Science Foundation of Hebei Province(Grant No.A2020210028)Postgraduates Innovation Foundation of Hebei Province(Grant No.CXZZBS2019154)State Foundation for Studying Abroad.
文摘In this study,a dynamic model for the bearing rotor system of a high-speed train under variable speed conditions is established.In contrast to previous studies,the contact stress is simplifed in the proposed model and the compensation balance excitation caused by the rotor mass eccentricity considered.The angle iteration method is used to overcome the challenge posed by the inability to determine the roller space position during bearing rotation.The simulation results show that the model accurately describes the dynamics of bearings under varying speed profles that contain acceleration,deceleration,and speed oscillation stages.The order ratio spectrum of the bearing vibration signal indicates that both the single and multiple frequencies in the simulation results are consistent with the theoretical results.Experiments on bearings with outer and inner ring faults under various operating conditions are performed to verify the developed model.
基金supported by the National Natural Science Foundation of China (41004045)Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-EW-QN503)
文摘We present an effective denoising strategy for two-way wave equation migration. Three dominant artifact types are analyzed and eliminated by an optimized imaging condition. We discuss a previously unsolved beam-like artifact, which is probably caused by the cross-correlation of downward transmitting and upward scattering waves from both the source and receiver side of a single seismic shot. This artifact has relatively strong cross- correlation but carries no useful information from reflectors. The beam-like artifact widely exists in pre-stack imaging and has approximately the same amplitude as useful seismic signals. In most cases, coherent artifacts in the image are caused by directionally propagating energy. Based on propagation angles obtained by wavefield gradients, we identify the artifact energy and subtract its contribution in the imaging condition. By this process most artifacts can be accurately eliminated, including direct wave artifacts, scattering artifacts, and beam- like artifacts. This method is independent of the wavefield propagator and is easy to adapt to almost all current wave equation migration methods if needed. As this method deals with the physical artifact origins, little damage is caused to the seismic signal. Extra k-domain filtering can additionally enhance the stacking result image quality. This method succeeds in the super-wide-angle one-way migration and we can expect its success in other two-way wave equation migrations and especially in reverse time migration.
基金supporting program of the National Science Foundation for Distinguished Young Scholars of China(Project No.51325704)the National Basic Research Program of China(973 Program,Project No.2011CB711105-4)。
文摘With the rapid development of high-speed-railway,environment around high voltage device on train roof becomes very complicated. Most train accidents happened due to occurrence of flashover on roof insulator,but the insulation condition estimation of insulator in such environment is much difficult. To ensure the insulation property of electric equipment,and guarantee the operation safety of high-speed-train,here established an instrument with high reliability which can on-line monitor insulation condition of roof insulator and give out advanced alarm before the incipient insulator flashover. The instrument consists of three parts,Data Acquisition & Sensor,Data Processing and Back Processing. Anti-interference and protection methods are processed to Rogowski coil sensor for better leakage current signal. To avoid the fluctuation from railway power supply,four modules are set to filter the power supply waveform. Through laboratory measurement,it is shown that the leakage current and the impedance angle can be detected by the instrument accurately. From the comparison of leakage current and impedance angle results under different moisture condition and the alarm operation when leakage current value reached threshold,this instrument can give out enough information for staff to understand the insulation condition of insulator.
基金the National Natural Science Foundation of China under Grant No 11247311the Innovation Program of Shanghai Municipal Education Commission under Grant No 11YZ216+1 种基金the Excellent Young Scientist of Shanghai Municipal Education Commission under Grant No shgc js018the Natural Science Foundation of Shanghai under Grant No 11ZR1414500.
文摘We investigate the continuous variable entanglement in a four-level atom according to the criterion proposed by Duan et al.[Phys.Rev.Lett.84(2000)2722].The atomic coherence is introduced using two external classical driving fields.We study the steady-state entanglement of the system in the presence of losses,concluding that the creation of entangled states can be achievable under certain conditions.
文摘Fracture processes in ship-building structures are in many cases of a 3-D character. A finite element (FE) model of an all fracture mode (AFM) specimen was built for the study of 3-D mixed mode crack fracture behavior including modes Ⅰ,Ⅱ, and Ⅲ. The stress intensity factors (SIFs) were calculated by the modified virtual crack closure integral (MVCCI) method, and the crack initiation angle assessment was based on a recently developed 3-D fracture criterion--the Richard criterion. It was shown that the FE model of the AFM-specimen is applicable for investigations under general mixed mode loading conditions, and the computational results of crack initiation angles are in agreement with some available experimental findings. Thus, the applicability of the FE model of the AFM-specimen for mixed mode loading conditions and the validity of the Richard criterion can be demonstrated.
文摘The commonly used reflectivity models of radar sea clutter are summarized. Among these models, the adjusted Barton model and the adjusted Morchin model are compared. From the analysis result, the γ-p reflectivity model is presented for low grazing angle radar sea clutter by the adjustment of the original Barton reflectivity model. The model takes into account radar frequency, grazing angle, sea condition, and polarization property. The influences of these factors on the proposed model are analyzed. The model absorbs the merits from commonly used reflectivity models for sea clutter. It introduces several researchers' opinions, and extends them. And it accounts for the reflectivity at arbitrary radar frequency from VHF to X-band, arbitrary low grazing angle, arbitrary sea condition and different polarization property. One of the main results is the proposed γ-p reflectivity model can reflect the influence of polarization on sea clutter reflectivity to some extent. The proposed γ-p reflectivity model of low-angle radar-sea clutter is validated by comparing the simulated and statistically experimental data.
文摘Synchrotron radiation based experimental techniques known as Anomalous Small-Angle X-ray Scattering (ASAXS) provide deep insight into the nanostructure of uncountable material systems in condensed matter research i.e. solid state physics, chemistry, engineering and life sciences thereby rendering the origin of the macroscopic functionalization of the various materials via correlation to its structural architecture on a nanometer length scale. The techniques constitute a system of linear equations, which can be treated by matrix theory. The study aims to analyze the significance of the solutions of the stated matrix equations by use of the so-called condition numbers first introduced by A. Turing, J. von Neumann and H. Goldstine. Special attention was given for the comparison with direct methods i.e. the Gaussian elimination method. The mathematical roots of ill-posed ASAXS equations preventing matrix inversion have been identified. In the framework of the theory of von Neumann and Goldstine the inversion of certain matrices constituted by ASAXS gradually becomes impossible caused by non-definiteness. In Turing’s theory which starts from more general prerequisites, the principal minors of the same matrices approach singularity thereby imposing large errors on inversion. In conclusion both theories recommend for extremely ill-posed ASAXS problems avoiding inversion and the use of direct methods for instance Gaussian elimination.
文摘随着大型风电基地建设,上游风机在运行时会使下游风场风速下降,湍流度增大,造成下游风机发电功率降低,加剧风机的疲劳破坏并缩短其服役周期。因此,亟需开展风机尾流研究,明确其特性及演化规律。为了揭示不同入流及偏航角下的单风机尾流特性,基于单风机尾流风洞试验,验证基于大涡模拟(Large Eddy Simulation,LES)结合致动线模型(Actuator Line Model,ALM)数值模拟方法的准确性;基于LES-ALM模拟方法研究入流风场(包括风速及湍流度)及偏航角对风机尾流特性的影响,阐明正负偏航角下单风机尾流的对称性。结果表明:随着背景湍流度的增大,风机尾流恢复速度加快;当入流条件相同时,风机设置正负对称偏航角,其尾流风速也表现出一定的对称性;风机偏航角越大,风机尾流膨胀宽度会逐渐减小,并降低尾流风速的亏损程度。