The method of moving target detection based on subimage cancellation for single-antenna airborne SAR is presented. First the subimage is obtained through frequency processing is pointed out. The imaging difference of ...The method of moving target detection based on subimage cancellation for single-antenna airborne SAR is presented. First the subimage is obtained through frequency processing is pointed out. The imaging difference of a stationary objects and moving object in the subimage based on the frequency division is analyzed from the fundamental principle. Then the developed method combines the shear averaging algorithm to focus on the moving target in the subimage, after the clutter suppression and the focusing position in each subimage is obtained. Next the observation model and the relative movement of the moving targets between the subimages estimate the moving targets. The theoretical analysis and simulation results demonstrate that the method is effective and can not only detect the moving targets, but also estimate their motion parameters precisely.展开更多
Image forgery detection remains a challenging problem.For the most common copy-move forgery detection,the robustness and accuracy of existing methods can still be further improved.To the best of our knowledge,we are t...Image forgery detection remains a challenging problem.For the most common copy-move forgery detection,the robustness and accuracy of existing methods can still be further improved.To the best of our knowledge,we are the first to propose an image copy-move forgery passive detection method by combining the improved pulse coupled neural network(PCNN)and the self-selected sub-images.Our method has the following steps:First,contour detection is performed on the input color image,and bounding boxes are drawn to frame the contours to form suspected forgery sub-images.Second,by improving PCNN to perform feature extraction of sub-images,the feature invariance of rotation,scaling,noise adding,and so on can be achieved.Finally,the dual feature matching is used to match the features and locate the forgery regions.What’s more,the self-selected sub-images can quickly obtain suspected forgery sub-images and lessen the workload of feature extraction,and the improved PCNN can extract image features with high robustness.Through experiments on the standard image forgery datasets CoMoFoD and CASIA,it is effectively verified that the robustness score and accuracy of proposed method are much higher than the current best method,which is a more efficient image copy-move forgery passive detection method.展开更多
文摘The method of moving target detection based on subimage cancellation for single-antenna airborne SAR is presented. First the subimage is obtained through frequency processing is pointed out. The imaging difference of a stationary objects and moving object in the subimage based on the frequency division is analyzed from the fundamental principle. Then the developed method combines the shear averaging algorithm to focus on the moving target in the subimage, after the clutter suppression and the focusing position in each subimage is obtained. Next the observation model and the relative movement of the moving targets between the subimages estimate the moving targets. The theoretical analysis and simulation results demonstrate that the method is effective and can not only detect the moving targets, but also estimate their motion parameters precisely.
基金supported by National Natural Science Foundation of China(Grants Nos 61772327,61532021)Project of Electric Power Research Institute of State Grid Gansu Electric Power Company(H2019-275).
文摘Image forgery detection remains a challenging problem.For the most common copy-move forgery detection,the robustness and accuracy of existing methods can still be further improved.To the best of our knowledge,we are the first to propose an image copy-move forgery passive detection method by combining the improved pulse coupled neural network(PCNN)and the self-selected sub-images.Our method has the following steps:First,contour detection is performed on the input color image,and bounding boxes are drawn to frame the contours to form suspected forgery sub-images.Second,by improving PCNN to perform feature extraction of sub-images,the feature invariance of rotation,scaling,noise adding,and so on can be achieved.Finally,the dual feature matching is used to match the features and locate the forgery regions.What’s more,the self-selected sub-images can quickly obtain suspected forgery sub-images and lessen the workload of feature extraction,and the improved PCNN can extract image features with high robustness.Through experiments on the standard image forgery datasets CoMoFoD and CASIA,it is effectively verified that the robustness score and accuracy of proposed method are much higher than the current best method,which is a more efficient image copy-move forgery passive detection method.