期刊文献+
共找到86,014篇文章
< 1 2 250 >
每页显示 20 50 100
Geostatistical seismic inversion and 3D modelling of metric flow units,porosity and permeability in Brazilian presalt reservoir 被引量:1
1
作者 Rodrigo Penna Wagner Moreira Lupinacci 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1699-1718,共20页
Flow units(FU)rock typing is a common technique for characterizing reservoir flow behavior,producing reliable porosity and permeability estimation even in complex geological settings.However,the lateral extrapolation ... Flow units(FU)rock typing is a common technique for characterizing reservoir flow behavior,producing reliable porosity and permeability estimation even in complex geological settings.However,the lateral extrapolation of FU away from the well into the whole reservoir grid is commonly a difficult task and using the seismic data as constraints is rarely a subject of study.This paper proposes a workflow to generate numerous possible 3D volumes of flow units,porosity and permeability below the seismic resolution limit,respecting the available seismic data at larger scales.The methodology is used in the Mero Field,a Brazilian presalt carbonate reservoir located in the Santos Basin,who presents a complex and heterogenic geological setting with different sedimentological processes and diagenetic history.We generated metric flow units using the conventional core analysis and transposed to the well log data.Then,given a Markov chain Monte Carlo algorithm,the seismic data and the well log statistics,we simulated acoustic impedance,decametric flow units(DFU),metric flow units(MFU),porosity and permeability volumes in the metric scale.The aim is to estimate a minimum amount of MFU able to calculate realistic scenarios porosity and permeability scenarios,without losing the seismic lateral control.In other words,every porosity and permeability volume simulated produces a synthetic seismic that match the real seismic of the area,even in the metric scale.The achieved 3D results represent a high-resolution fluid flow reservoir modelling considering the lateral control of the seismic during the process and can be directly incorporated in the dynamic characterization workflow. 展开更多
关键词 Flowunits Geostatistical inversion Presalt reservoir 3D reservoir modelling Petrophysical modelling
下载PDF
A review of reservoir damage during hydraulic fracturing of deep and ultra-deep reservoirs 被引量:1
2
作者 Kun Zhang Xiong-Fei Liu +6 位作者 Dao-Bing Wang Bo Zheng Tun-Hao Chen Qing Wang Hao Bai Er-Dong Yao Fu-Jian Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期384-409,共26页
Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present u... Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present unique challenges due to their deep burial depth(4500-8882 m),low matrix permeability,complex crustal stress conditions,high temperature and pressure(HTHP,150-200℃,105-155 MPa),coupled with high salinity of formation water.Consequently,the costs associated with their exploitation and development are exceptionally high.In deep and ultra-deep reservoirs,hydraulic fracturing is commonly used to achieve high and stable production.During hydraulic fracturing,a substantial volume of fluid is injected into the reservoir.However,statistical analysis reveals that the flowback rate is typically less than 30%,leaving the majority of the fluid trapped within the reservoir.Therefore,hydraulic fracturing in deep reservoirs not only enhances the reservoir permeability by creating artificial fractures but also damages reservoirs due to the fracturing fluids involved.The challenging“three-high”environment of a deep reservoir,characterized by high temperature,high pressure,and high salinity,exacerbates conventional forms of damage,including water sensitivity,retention of fracturing fluids,rock creep,and proppant breakage.In addition,specific damage mechanisms come into play,such as fracturing fluid decomposition at elevated temperatures and proppant diagenetic reactions at HTHP conditions.Presently,the foremost concern in deep oil and gas development lies in effectively assessing the damage inflicted on these reservoirs by hydraulic fracturing,comprehending the underlying mechanisms,and selecting appropriate solutions.It's noteworthy that the majority of existing studies on reservoir damage primarily focus on conventional reservoirs,with limited attention given to deep reservoirs and a lack of systematic summaries.In light of this,our approach entails initially summarizing the current knowledge pertaining to the types of fracturing fluids employed in deep and ultra-deep reservoirs.Subsequently,we delve into a systematic examination of the damage processes and mechanisms caused by fracturing fluids within the context of hydraulic fracturing in deep reservoirs,taking into account the unique reservoir characteristics of high temperature,high pressure,and high in-situ stress.In addition,we provide an overview of research progress related to high-temperature deep reservoir fracturing fluid and the damage of aqueous fracturing fluids to rock matrix,both artificial and natural fractures,and sand-packed fractures.We conclude by offering a summary of current research advancements and future directions,which hold significant potential for facilitating the efficient development of deep oil and gas reservoirs while effectively mitigating reservoir damage. 展开更多
关键词 Artificial fracture Deep and ultra-deep reservoir Fracture conductivity Fracturing fluid Hydraulic fracturing reservoir damage
下载PDF
Reservoir heterogeneity analysis using multi-directional textural attributes from deep learning-based enhanced acoustic impedance inversion:A study from Poseidon,NW shelf Australia 被引量:1
3
作者 Anjali Dixit Animesh Mandal Shib Sankar Ganguli 《Energy Geoscience》 EI 2024年第2期202-213,共12页
Reservoir heterogeneities play a crucial role in governing reservoir performance and management.Traditionally,detailed and inter-well heterogeneity analyses are commonly performed by mapping seismic facies change in t... Reservoir heterogeneities play a crucial role in governing reservoir performance and management.Traditionally,detailed and inter-well heterogeneity analyses are commonly performed by mapping seismic facies change in the seismic data,which is a time-intensive task.Many researchers have utilized a robust Grey-level co-occurrence matrix(GLCM)-based texture attributes to map reservoir heterogeneity.However,these attributes take seismic data as input and might not be sensitive to lateral lithology variation.To incorporate the lithology information,we have developed an innovative impedance-based texture approach using GLCM workflow by integrating 3D acoustic impedance volume(a rock propertybased attribute)obtained from a deep convolution network-based impedance inversion.Our proposed workflow is anticipated to be more sensitive toward mapping lateral changes than the conventional amplitude-based texture approach,wherein seismic data is used as input.To evaluate the improvement,we applied the proposed workflow to the full-stack 3D seismic data from the Poseidon field,NW-shelf,Australia.This study demonstrates that a better demarcation of reservoir gas sands with improved lateral continuity is achievable with the presented approach compared to the conventional approach.In addition,we assess the implication of multi-stage faulting on facies distribution for effective reservoir characterization.This study also suggests a well-bounded potential reservoir facies distribution along the parallel fault lines.Thus,the proposed approach provides an efficient strategy by integrating the impedance information with texture attributes to improve the inference on reservoir heterogeneity,which can serve as a promising tool for identifying potential reservoir zones for both production benefits and fluid storage. 展开更多
关键词 Seismic texture attributes Seismic acoustic impedance Multi-directional texture attributes reservoir heterogeneity reservoir characterization Poseidon field
下载PDF
Projecting Spring Consecutive Rainfall Events in the Three Gorges Reservoir Based on Triple-Nested Dynamical Downscaling 被引量:1
4
作者 Yanxin ZHENG Shuanglin LI +2 位作者 Noel KEENLYSIDE Shengping HE Lingling SUO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第8期1539-1558,共20页
Spring consecutive rainfall events(CREs) are key triggers of geological hazards in the Three Gorges Reservoir area(TGR), China. However, previous projections of CREs based on the direct outputs of global climate model... Spring consecutive rainfall events(CREs) are key triggers of geological hazards in the Three Gorges Reservoir area(TGR), China. However, previous projections of CREs based on the direct outputs of global climate models(GCMs) are subject to considerable uncertainties, largely caused by their coarse resolution. This study applies a triple-nested WRF(Weather Research and Forecasting) model dynamical downscaling, driven by a GCM, MIROC6(Model for Interdisciplinary Research on Climate, version 6), to improve the historical simulation and reduce the uncertainties in the future projection of CREs in the TGR. Results indicate that WRF has better performances in reproducing the observed rainfall in terms of the daily probability distribution, monthly evolution and duration of rainfall events, demonstrating the ability of WRF in simulating CREs. Thus, the triple-nested WRF is applied to project the future changes of CREs under the middle-of-the-road and fossil-fueled development scenarios. It is indicated that light and moderate rainfall and the duration of continuous rainfall spells will decrease in the TGR, leading to a decrease in the frequency of CREs. Meanwhile, the duration, rainfall amount, and intensity of CREs is projected to regional increase in the central-west TGR. These results are inconsistent with the raw projection of MIROC6. Observational diagnosis implies that CREs are mainly contributed by the vertical moisture advection. Such a synoptic contribution is captured well by WRF, which is not the case in MIROC6,indicating larger uncertainties in the CREs projected by MIROC6. 展开更多
关键词 triple-nested downscaling Three Gorges reservoir area consecutive rainfall events geological hazards PROJECTION
下载PDF
Thermo-hydro-poro-mechanical responses of a reservoir-induced landslide tracked by high-resolution fiber optic sensing nerves 被引量:2
5
作者 Xiao Ye Hong-Hu Zhu +4 位作者 Gang Cheng Hua-Fu Pei Bin Shi Luca Schenato Alessandro Pasuto 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期1018-1032,共15页
Thermo-poro-mechanical responses along sliding zone/surface have been extensively studied.However,it has not been recognized that the potential contribution of other crucial engineering geological interfaces beyond th... Thermo-poro-mechanical responses along sliding zone/surface have been extensively studied.However,it has not been recognized that the potential contribution of other crucial engineering geological interfaces beyond the slip surface to progressive failure.Here,we aim to investigate the subsurface multiphysics of reservoir landslides under two extreme hydrologic conditions(i.e.wet and dry),particularly within sliding masses.Based on ultra-weak fiber Bragg grating(UWFBG)technology,we employ specialpurpose fiber optic sensing cables that can be implanted into boreholes as“nerves of the Earth”to collect data on soil temperature,water content,pore water pressure,and strain.The Xinpu landslide in the middle reach of the Three Gorges Reservoir Area in China was selected as a case study to establish a paradigm for in situ thermo-hydro-poro-mechanical monitoring.These UWFBG-based sensing cables were vertically buried in a 31 m-deep borehole at the foot of the landslide,with a resolution of 1 m except for the pressure sensor.We reported field measurements covering the period 2021 and 2022 and produced the spatiotemporal profiles throughout the borehole.Results show that wet years are more likely to motivate landslide motions than dry years.The annual thermally active layer of the landslide has a critical depth of roughly 9 m and might move downward in warmer years.The dynamic groundwater table is located at depths of 9e15 m,where the peaked strain undergoes a periodical response of leap and withdrawal to annual hydrometeorological cycles.These interface behaviors may support the interpretation of the contribution of reservoir regulation to slope stability,allowing us to correlate them to local damage events and potential global destabilization.This paper also offers a natural framework for interpreting thermo-hydro-poro-mechanical signatures from creeping reservoir bank slopes,which may form the basis for a landslide monitoring and early warning system. 展开更多
关键词 reservoir landslide Thermo-hydro-poro-mechanical response Ultra-weak fiber bragg grating(UWFBG) subsurface evolution Engineering geological interface Geotechnical monitoring
下载PDF
Reservoir quality evaluation of the Narimba Formation in Bass Basin,Australia:Implications from petrophysical analysis,sedimentological features,capillary pressure and wetting fluid saturation 被引量:1
6
作者 Wafa Abdul Qader Al-Ojaili Mohamed Ragab Shalaby Wilfried Bauer 《Energy Geoscience》 EI 2024年第1期37-53,共17页
The evaluation of reservoir quality was accomplished on the Late Paleocene to Early Eocene Narimba Formation in Bass Basin,Australia.This study involved combination methods such as petrophysical analysis,petrography a... The evaluation of reservoir quality was accomplished on the Late Paleocene to Early Eocene Narimba Formation in Bass Basin,Australia.This study involved combination methods such as petrophysical analysis,petrography and sedimentological studies,reservoir quality and fluid flow units from derivative parameters,and capillary pressure and wetting fluid saturation relationship.Textural and diagenetic features are affecting the reservoir quality.Cementation,compaction,and presence of clay minerals such as kaolinite are found to reduce the quality while dissolution and secondary porosity are noticed to improve it.It is believed that the Narimba Formation is a potential reservoir with a wide range of porosity and permeability.Porosity ranges from 3.1%to 25.4%with a mean of 15.84%,while permeability ranges between 0.01 mD and 510 mD,with a mean of 31.05 mD.Based on the heterogenous lithology,the formation has been categorized into five groups based on permeability variations.Group I showed an excellent to good quality reservoir with coarse grains.The impacts of both textural and diagenetic features improve the reservoir and producing higher reservoir quality index(RQI)and flow zone indicators(FZI)as well as mostly mega pores.The non-wetting fluid migration has the higher possibility to flow in the formation while displacement pressure recorded as zero.Group II showed a fair quality reservoir with lower petrophysical properties in macro pores.The irreducible water saturation is increasing while the textural and digenetic properties are still enhancing the reservoir quality.Group III reflects lower quality reservoir with mostly macro pores and higher displacement pressure.It may indicate smaller grain size and increasing amount of cement and clay minerals.Group IV,and V are interpreted as a poor-quality reservoir that has lower RQI and FZI.The textural and digenetic features are negatively affecting the reservoir and are leading to smaller pore size and pore throat radii(r35)values to be within the range of macro,meso-,micro-,and nano pores.The capillary displacement pressure curves of the three groups show increases reaching the maximum value of 400 psia in group V.Agreement with the classification of permeability,r35 values,and pore type can be used in identifying the quality of reservoir. 展开更多
关键词 Narimba formation PETROPHYSICS reservoir quality Capillary pressure Wetting fluid saturation
下载PDF
Development and technology status of energy storage in depleted gas reservoirs 被引量:1
7
作者 Jifang Wan Yangqing Sun +4 位作者 Yuxian He Wendong Ji Jingcui Li Liangliang Jiang Maria Jose Jurado 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第2期198-221,共24页
Utilizing energy storage in depleted oil and gas reservoirs can improve productivity while reducing power costs and is one of the best ways to achieve synergistic development of"Carbon Peak–Carbon Neutral"a... Utilizing energy storage in depleted oil and gas reservoirs can improve productivity while reducing power costs and is one of the best ways to achieve synergistic development of"Carbon Peak–Carbon Neutral"and"Underground Resource Utiliza-tion".Starting from the development of Compressed Air Energy Storage(CAES)technology,the site selection of CAES in depleted gas and oil reservoirs,the evolution mechanism of reservoir dynamic sealing,and the high-flow CAES and injection technology are summarized.It focuses on analyzing the characteristics,key equipment,reservoir construction,application scenarios and cost analysis of CAES projects,and sorting out the technical key points and existing difficulties.The devel-opment trend of CAES technology is proposed,and the future development path is scrutinized to provide reference for the research of CAES projects in depleted oil and gas reservoirs. 展开更多
关键词 Depleted gas reservoirs Technology and development Siting analysis Safety evaluation Compressed air energy storage
下载PDF
Synergistic anionic/zwitterionic mixed surfactant system with high emulsification efficiency for enhanced oil recovery in low permeability reservoirs 被引量:1
8
作者 Hai-Rong Wu Rong Tan +6 位作者 Shi-Ping Hong Qiong Zhou Bang-Yu Liu Jia-Wei Chang Tian-Fang Luan Ning Kang Ji-Rui Hou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期936-950,共15页
Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant... Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant sodium alkyl glucosyl hydroxypropyl sulfonate(APGSHS) and zwitterionic surfactant octadecyl betaine(BS-18) is proposed. The performance of APGSHS/BS-18 mixed surfactant system was evaluated in terms of interfacial tension, emulsification capability, emulsion size and distribution, wettability alteration, temperature-resistance and salt-resistance. The emulsification speed was used to evaluate the emulsification ability of surfactant systems, and the results show that mixed surfactant systems can completely emulsify the crude oil into emulsions droplets even under low energy conditions. Meanwhile,the system exhibits good temperature and salt resistance. Finally, the best oil recovery of 25.45% is achieved for low permeability core by the mixed surfactant system with a total concentration of 0.3 wt%while the molar ratio of APGSHS:BS-18 is 4:6. The current study indicates that the anionic/zwitterionic mixed surfactant system can improve the oil flooding efficiency and is potential candidate for application in low permeability reservoirs. 展开更多
关键词 Anionic/zwitterionic mixed surfactant system EMULSIFICATION Synergistic effect Low permeability reservoir Enhanced oil recovery
下载PDF
Reservoir characteristics and formation model of Upper Carboniferous bauxite series in eastern Ordos Basin,NW China 被引量:1
9
作者 LI Yong WANG Zhuangsen +2 位作者 SHAO Longyi GONG Jiaxun WU Peng 《Petroleum Exploration and Development》 SCIE 2024年第1期44-53,共10页
Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore charact... Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore characteristics of the Upper Carboniferous bauxite series in eastern Ordos Basin were analyzed to reveal the formation and evolution process of the bauxite reservoirs.A petrological nomenclature and classification scheme for bauxitic rocks based on three units(aluminum hydroxides,iron minerals and clay minerals)is proposed.It is found that bauxitic mudstone is in the form of dense massive and clastic structures,while the(clayey)bauxite is of dense massive,pisolite,oolite,porous soil and clastic structures.Both bauxitic mudstone and bauxite reservoirs develop dissolution pores,intercrystalline pores,and microfractures as the dominant gas storage space,with the porosity less than 10% and mesopores in dominance.The bauxite series in the North China Craton can be divided into five sections,i.e.,ferrilite(Shanxi-style iron ore,section A),bauxitic mudstone(section B),bauxite(section C),bauxite mudstone(debris-containing,section D)and dark mudstone-coal section(section E).The burrow/funnel filling,lenticular,layered/massive bauxite deposits occur separately in the karst platforms,gentle slopes and low-lying areas.The karst platforms and gentle slopes are conducive to surface water leaching,with strong karstification,well-developed pores,large reservoir thickness and good physical properties,but poor strata continuity.The low-lying areas have poor physical properties but relatively continuous and stable reservoirs.The gas enrichment in bauxites is jointly controlled by source rock,reservoir rock and fractures.This recognition provides geological basis for the exploration and development of natural gas in the Upper Carboniferous in the study area and similar bauxite systems. 展开更多
关键词 North China Craton eastern Ordos Basin Upper Carboniferous bauxite series reservoir characteristics formation model gas accumulation
下载PDF
Hydrocarbon accumulation characteristics in basement reservoirs and exploration targets of deep basement reservoirs in onshore China
10
作者 WANG Zecheng JIANG Qingchun +10 位作者 WANG Jufeng LONG Guohui CHENG Honggang SHI Yizuo SUN Qisen JIANG Hua ABULIMITI Yiming CAO Zhenglin XU Yang LU Jiamin HUANG Linjun 《Petroleum Exploration and Development》 SCIE 2024年第1期31-43,共13页
Based on the global basement reservoir database and the dissection of basement reservoirs in China,the characteristics of hydrocarbon accumulation in basement reservoirs are analyzed,and the favorable conditions for h... Based on the global basement reservoir database and the dissection of basement reservoirs in China,the characteristics of hydrocarbon accumulation in basement reservoirs are analyzed,and the favorable conditions for hydrocarbon accumulation in deep basement reservoirs are investigated to highlight the exploration targets.The discovered basement reservoirs worldwide are mainly buried in the Archean and Precambrian granitic and metamorphic formations with depths less than 4500 m,and the relatively large reservoirs have been found in rift,back-arc and foreland basins in tectonic active zones of the Meso-Cenozoic plates.The hydrocarbon accumulation in basement reservoirs exhibits the characteristics in three aspects.First,the porous-fractured reservoirs with low porosity and ultra-low permeability are dominant,where extensive hydrocarbon accumulation occurred during the weathering denudation and later tectonic reworking of the basin basement.High resistance to compaction allows the physical properties of these highly heterogeneous reservoirs to be independent of the buried depth.Second,the hydrocarbons were sourced from the formations outside the basement.The source-reservoir assemblages are divided into contacted source rock-basement and separated source rock-basement patterns.Third,the abnormal high pressure in the source rock and the normal–low pressure in the basement reservoirs cause a large pressure difference between the source rock and the reservoirs,which is conducive to the pumping effect of hydrocarbons in the deep basement.The deep basement prospects are mainly evaluated by the factors such as tectonic activity of basement,source-reservoir combination,development of large deep faults(especially strike-slip faults),and regional seals.The Precambrian crystalline basements at the margin of the intracontinental rifts in cratonic basins,as well as the Paleozoic folded basements and the Meso-Cenozoic fault-block basements adjacent to the hydrocarbon generation depressions,have favorable conditions for hydrocarbon accumulation,and thus they are considered as the main targets for future exploration of deep basement reservoirs. 展开更多
关键词 basement reservoir granite reservoir source-reservoir assemblage pumping effect strike-slip fault deep basement reservoir
下载PDF
Micromechanism and mathematical model of stress sensitivity in tight reservoirs of binary granular medium
11
作者 Jian-Bang Wu Sheng-Lai Yang +4 位作者 Qiang Li Kun Yang Can Huang Dao-Ping Lv Wei Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1780-1795,共16页
Research on reservoir rock stress sensitivity has traditionally focused on unary granular structures,neglecting the binary nature of real reservoirs,especially tight reservoirs.Understanding the stresssensitive behavi... Research on reservoir rock stress sensitivity has traditionally focused on unary granular structures,neglecting the binary nature of real reservoirs,especially tight reservoirs.Understanding the stresssensitive behavior and mathematical characterization of binary granular media remains a challenging task.In this study,we conducted online-NMR experiments to investigate the permeability and porosity evolution as well as stress-sensitive control mechanisms in tight sandy conglomerate samples.The results revealed stress sensitivity coefficients between 0.042 and 0.098 and permeability damage rates ranging from 65.6%to 90.9%,with an average pore compression coefficient of 0.0168—0.0208 MPa 1.Pore-scale compression occurred in three stages:filling,compression,and compaction,with matrix pores playing a dominant role in pore compression.The stress sensitivity of binary granular media was found to be influenced by the support structure and particle properties.High stress sensitivity was associated with small fine particle size,high fines content,high uniformity coefficient of particle size,high plastic deformation,and low Young's modulus.Matrix-supported samples exhibited a high irreversible permeability damage rate(average=74.2%)and stress sensitivity coefficients(average=0.089),with pore spaces more slit-like.In contrast,grain-supported samples showed low stress sensitivity coefficients(average=0.021)at high stress stages.Based on the experiments,we developed a mathematical model for stress sensitivity in binary granular media,considering binary granular properties and nested interactions using Hertz contact deformation and Poiseuille theory.By describing the change in activity content of fines under stress,we characterized the non-stationary state of compressive deformation in the binary granular structure and classified the reservoir into three categories.The model was applied for production prediction using actual data from the Mahu reservoir in China,showing that the energy retention rates of support-dominated,fill-dominated,and matrix-controlled reservoirs should be higher than 70.1%,88%,and 90.2%,respectively. 展开更多
关键词 Stress sensitivity Binary granular medium Tight reservoir Online-NMR reservoir energy retention rate
下载PDF
Formation of large-and medium-sized Cretaceous volcanic reservoirs in the offshore Bohai Bay Basin,East China
12
作者 XU Changgui ZHANG Gongcheng +3 位作者 HUANG Shengbing SHAN Xuanlong LIU Tingyu LI Jiahui 《Petroleum Exploration and Development》 SCIE 2024年第3期535-547,共13页
Based on the geological and geophysical data of Mesozoic oil-gas exploration in the sea area of Bohai Bay Basin and the discovered high-yield volcanic oil and gas wells since 2019,this paper methodically summarizes th... Based on the geological and geophysical data of Mesozoic oil-gas exploration in the sea area of Bohai Bay Basin and the discovered high-yield volcanic oil and gas wells since 2019,this paper methodically summarizes the formation conditions of large-and medium-sized Cretaceous volcanic oil and gas reservoirs in the Bohai Sea.Research shows that the Mesozoic large intermediate-felsic lava and intermediate-felsic composite volcanic edifices in the Bohai Sea are the material basis for the formation of large-scale volcanic reservoirs.The upper subfacies of effusive facies and cryptoexplosive breccia subfacies of volcanic conduit facies of volcanic vent-proximal facies belts are favorable for large-scale volcanic reservoir formation.Two types of efficient reservoirs,characterized by high porosity and medium to low permeability,as well as medium porosity and medium to low permeability,are the core of the formation of large-and medium-sized volcanic reservoirs.The reservoir with high porosity and medium to low permeability is formed by intermediate-felsic vesicular lava or the cryptoexplosive breccia superimposed by intensive dissolution.The reservoir with medium porosity and medium to low permeability is formed by intense tectonism superimposed by fluid dissolution.Weathering and tectonic transformation are main formation mechanisms for large and medium-sized volcanic reservoirs in the study area.The low-source“source-reservoir draping type”is the optimum source-reservoir configuration relationship for large-and medium-sized volcanic reservoirs.There exists favorable volcanic facies,efficient reservoirs and source-reservoir draping configuration relationship on the periphery of Bozhong Sag,and the large intermediate-felsic lava and intermediate-felsic composite volcanic edifices close to strike-slip faults and their branch faults are the main directions of future exploration. 展开更多
关键词 Bohai Sea CRETACEOUS large-and medium-sized volcanic reservoirs effective reservoir source-reservoir configuration exploration direction
下载PDF
A Well Productivity Model for Multi-Layered Marine and Continental Transitional Reservoirs with Complex Fracture Networks
13
作者 Huiyan Zhao Xuezhong Chen +3 位作者 Zhijian Hu Man Chen Bo Xiong Jianying Yang 《Fluid Dynamics & Materials Processing》 EI 2024年第6期1313-1330,共18页
Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis,a model is developed to predict the related well production rate.This model relies on the fractal theory... Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis,a model is developed to predict the related well production rate.This model relies on the fractal theory of tortuous capillary bundles and can take into account multiple gas flow mechanisms at the micrometer and nanometer scales,as well as the flow characteristics in different types of thin layers(tight sandstone gas,shale gas,and coalbed gas).Moreover,a source-sink function concept and a pressure drop superposition principle are utilized to introduce a coupled flow model in the reservoir.A semi-analytical solution for the production rate is obtained using a matrix iteration method.A specific well is selected for fitting dynamic production data,and the calculation results show that the tight sandstone has the highest gas production per unit thickness compared with the other types of reservoirs.Moreover,desorption and diffusion of coalbed gas and shale gas can significantly contribute to gas production,and the daily production of these two gases decreases rapidly with decreasing reservoir pressure.Interestingly,the gas production from fractures exhibits an approximately U-shaped distribution,indicating the need to optimize the spacing between clusters during hydraulic fracturing to reduce the area of overlapping fracture control.The coal matrix water saturation significantly affects the coalbed gas production,with higher water saturation leading to lower production. 展开更多
关键词 Marine-continental transitional reservoir multi-layered reservoir seepage mechanisms apparent permeability hydraulic horizontal well productivity model
下载PDF
Experimental Investigation on Condensate Revaporization During Gas Injection Development in Fractured Gas Condensate Reservoirs
14
作者 Lei Zhang Yingxu He +3 位作者 Jintao Wu Haojun Wu Lei Huang Linna Sun 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第3期575-582,共8页
The gas field in the Bohai Bay Basin is a fractured metamorphic buried-hill reservoir with dual-media characteristics. The retrograde vaporization mechanism observed in this type of gas condensate reservoir differs si... The gas field in the Bohai Bay Basin is a fractured metamorphic buried-hill reservoir with dual-media characteristics. The retrograde vaporization mechanism observed in this type of gas condensate reservoir differs significantly from that observed in sand gas condensate reservoirs. However, studies on improving the recovery of fractured gas condensate reservoirs are limited;thus, the impact of retrograde vaporization on condensate within fractured metamorphic buried-hill reservoirs remains unclear. To address this gap, a series of gas injection experiments are conducted in pressure-volume-temperature(PVT) cells and long-cores to investigate the retrograde vaporization effect of condensate using different gas injection media in fractured gas condensate reservoirs. We analyze the variation in condensate volume, gas-to-oil ratio, and condensate recovery during gas injection and examine the influence of various gas injection media(CO_(2), N_(2), and dry gas) under different reservoir properties and varying gas injection times. The results demonstrate that the exchange of components between injected gas and condensate significantly influences condensate retrograde vaporization in the formation. Compared with dry gas injection and N_(2) injection,CO_(2) injection exhibits a superior retrograde vaporization effect. At a CO_(2) injection volume of 1 PV, the percentage shrinkage volume of condensate is 13.82%. Additionally, at the maximum retrograde condensation pressure, CO_(2) injection can increase the recovery of condensate by 22.4%. However, the condensate recovery is notably lower in fractured gas condensate reservoirs than in homogeneous reservoirs, owing to the creation of dominant gas channeling by fractures, which leads to decreased condensate recovery. Regarding gas injection timing, the effect of gas injection at reservoir pressure on improving condensate recovery is superior to that of gas injection at the maximum retrograde condensation pressure. This research provides valuable guidance for designing gas injection development plans and dynamic tracking adjustments for fractured gas condensate reservoirs. 展开更多
关键词 Buried-hill fractured reservoir Gas condensate reservoir Retrograde condensation CO_(2)injection Retrograde vaporization
下载PDF
Fine quantitative characterization of high-H2S gas reservoirs under the influence of liquid sulfur deposition and adsorption
15
作者 LI Tong MA Yongsheng +3 位作者 ZENG Daqian LI Qian ZHAO Guang SUN Ning 《Petroleum Exploration and Development》 SCIE 2024年第2期416-429,共14页
In order to clarify the influence of liquid sulfur deposition and adsorption to high-H2S gas reservoirs,three types of natural cores with typical carbonate pore structures were selected for high-temperature and high-p... In order to clarify the influence of liquid sulfur deposition and adsorption to high-H2S gas reservoirs,three types of natural cores with typical carbonate pore structures were selected for high-temperature and high-pressure core displacement experiments.Fine quantitative characterization of the cores in three steady states(original,after sulfur injection,and after gas flooding)was carried out using the nuclear magnetic resonance(NMR)transverse relaxation time spectrum and imaging,X-ray computer tomography(CT)of full-diameter cores,basic physical property testing,and field emission scanning electron microscopy imaging.The loss of pore volume caused by sulfur deposition and adsorption mainly comes from the medium and large pores with sizes bigger than 1000μm.Liquid sulfur has a stronger adsorption and deposition ability in smaller pore spaces,and causes greater damage to reservoirs with poor original pore structures.The pore structure of the three types of carbonate reservoirs shows multiple fractal characteristics.The worse the pore structure,the greater the change of internal pore distribution caused by liquid sulfur deposition and adsorption,and the stronger the heterogeneity.Liquid sulfur deposition and adsorption change the pore size distribution,pore connectivity,and heterogeneity of the rock,which further changes the physical properties of the reservoir.After sulfur injection and gas flooding,the permeability of TypeⅠreservoirs with good physical properties decreased by 16%,and that of TypesⅡandⅢreservoirs with poor physical properties decreased by 90%or more,suggesting an extremely high damage.This indicates that the worse the initial physical properties,the greater the damage of liquid sulfur deposition and adsorption.Liquid sulfur is adsorbed and deposited in different types of pore space in the forms of flocculence,cobweb,or retinitis,causing different changes in the pore structure and physical property of the reservoir. 展开更多
关键词 high-H2S gas reservoir liquid sulfur adsorption and deposition pore structure physical property reservoir characterization
下载PDF
Recent advances in reservoir characterization:Introduction
16
作者 Shib Sankar Ganguli A.Vasanthi Sumit Verma 《Energy Geoscience》 EI 2024年第2期180-182,共3页
Reservoir characterization refers to the process of creating a comprehensive model that characterizes the reservoir based on its ability to store and produce hydrocarbons.This includes analyzing reservoir fluid behavi... Reservoir characterization refers to the process of creating a comprehensive model that characterizes the reservoir based on its ability to store and produce hydrocarbons.This includes analyzing reservoir fluid behavior under various conditions and identifying optimal production techniques to maximize hydrocarbon recovery.For this,a holistic understanding is required that integrates data from geophysics,geostatistics,petrophysics,geology,and reservoir engineering. 展开更多
关键词 reservoir GEOLOGY GEOPHYSICS
下载PDF
Reservoir Quality Controlling Factor of the Asmari Reservoir in an Oil Field in Dezful Embayment, SW Iran
17
作者 Katayoon Rezaeeparto Leila Fazli Somayeh Parham 《Open Journal of Geology》 CAS 2024年第2期259-278,共20页
The Asmari Formation Oligo-Miocene in age is one of the most important reservoir rocks in SW Iran and Zagros basin and composed of carbonate rocks and locally sandstones and evaporates. In this research, reservoir qua... The Asmari Formation Oligo-Miocene in age is one of the most important reservoir rocks in SW Iran and Zagros basin and composed of carbonate rocks and locally sandstones and evaporates. In this research, reservoir quality controlling factors have been investigated in a well in one of the oil fields in Dezful Embayment, SW Iran. Based on this research, depositional environment, diagenesis and fracturing have been affected on reservoir quality. 3 distinct depositional settings can be recognized in the studied interval including tidal flat, lagoon, and shoal. Among these depositional setting, shoal environment with ooid grainstone microfacies along with interparticle porosity shows good reservoir characteristics. Diagenetic processes also play an important role on reservoir quality;dolomitization and dissolution have positive effects on porosity and enhances reservoir quality, while cementation, anhydritization and compaction have negative effect on it. Fracturing is another important factor affected on the carbonate reservoirs especially in the Asmari Formation. 展开更多
关键词 Asmari Formation Dezful Embayment reservoir Quality DIAGENESIS Depositional Environment
下载PDF
Microplastics in sediment of the Three Gorges Reservoir:abundance and characteristics under different environmental conditions
18
作者 Wang LI Bo ZU +2 位作者 Yiwei LIU Juncheng GUO Jiawen LI 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第1期101-112,共12页
Freshwater microplastic pollution is an urgent issue of global concern,and research on the distribution in reservoirs is lacking.We investigated the microplastic pollution levels in wet sediments collected from the Th... Freshwater microplastic pollution is an urgent issue of global concern,and research on the distribution in reservoirs is lacking.We investigated the microplastic pollution levels in wet sediments collected from the Three Gorges Reservoir,the largest reservoir of China.Results show that microplastics were ubiquitous in the sediments of the Three Gorges Reservoir,and their abundance ranged from 59 to 276 pp/kg(plastic particles per kg,dry weight).Economic development and total population were important factors affecting the spatial heterogeneity of microplastic abundance,and the contribution of large cities along the reservoir to microplastic pollution should be paid with more attention.Fibrous microplastics were the most abundant type of microplastic particles in reservoir sediments,whereas polystyrene,polypropylene,and polyamide were the main types of polymers.The apparent spatial heterogeneity in morphology and color of microplastics is attributed to different anthropogenic or landbased pollution sources.Moreover,the accumulation of microplastics near the inlet of tributaries reflects the role of potential contributors of tributaries.More importantly,multiple bisphenols(BPs)and heavy metals detected at the microplastic surfaces indicate that microplastics can act as carriers of these pollutants in the environment in the same way as sediments did,which may alter the environmental fate and toxicity of these pollutants.Therefore,we conclude that the Three Gorges Reservoir had been contaminated with microplastics,which posed a stress risk for organisms who ingest them along with their associated pollutants(BPs,heavy metals). 展开更多
关键词 microplastics Three Gorges reservoir SEDIMENT BISPHENOL heavy metal
下载PDF
Experimental study of the influencing factors and mechanisms of the pressure-reduction and augmented injection effect by nanoparticles in ultra-low permeability reservoirs
19
作者 Pan Wang Yu-Hang Hu +8 位作者 Liao-Yuan Zhang Yong Meng Zhen-Fu Ma Tian-Ru Wang Zi-Lin Zhang Ji-Chao Fang Xiao-Qiang Liu Qing You Yan Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1915-1927,共13页
Nanoparticles(NPs)have gained significant attention as a functional material due to their ability to effectively enhance pressure reduction in injection processes in ultra-low permeability reservoirs.NPs are typically... Nanoparticles(NPs)have gained significant attention as a functional material due to their ability to effectively enhance pressure reduction in injection processes in ultra-low permeability reservoirs.NPs are typically studied in controlled laboratory conditions,and their behavior in real-world,complex environments such as ultra-low permeability reservoirs,is not well understood due to the limited scope of their applications.This study investigates the efficacy and underlying mechanisms of NPs in decreasing injection pressure under various injection conditions(25—85℃,10—25 MPa).The results reveal that under optimal injection conditions,NPs effectively reduce injection pressure by a maximum of 22.77%in core experiment.The pressure reduction rate is found to be positively correlated with oil saturation and permeability,and negatively correlated with temperature and salinity.Furthermore,particle image velocimetry(PIV)experiments(25℃,atmospheric pressure)indicate that the pressure reduction is achieved by NPs through the reduction of wall shear resistance and wettability change.This work has important implications for the design of water injection strategies in ultra-low permeability reservoirs. 展开更多
关键词 NANOPARTICLE Pressure reduction Augmented injection Ultra-low permeability reservoir
下载PDF
Diagenetic evolution and reservoir quality of the Oligocene sandstones in the Baiyun Sag, Pearl River Mouth Basin, South China Sea
20
作者 Bing Tian Shanshan Zuo +3 位作者 Youwei Zheng Jie Zhang Jiayu Du Jun Tang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第2期67-82,共16页
The Oligocene Zhuhai sandstones are significant reservoirs for hydrocarbons in the Baiyun Sag, South China Sea.For effective appraisal, exploration and exploitation of such a deep-water hydrocarbon sandstone, samples ... The Oligocene Zhuhai sandstones are significant reservoirs for hydrocarbons in the Baiyun Sag, South China Sea.For effective appraisal, exploration and exploitation of such a deep-water hydrocarbon sandstone, samples of five wells from depths of 850 m to 3 000 m were studied. A series of comprehensive petrographic and geochemical analyses were performed to unravel the diagenetic features and their impact on the reservoir quality.Petrographically, the sandstones are dominated by feldspathic litharenites and lithic arenites with fine to medium grain sizes and moderate to good sorting. The reservoir quality varies greatly with a range of porosity from 0.2% to 36.1% and permeability from 0.016 ×10~(–3) μm~2 to 4 301 ×10~(–3) μm~2, which is attributed to complex diagenetic evolution related to sedimentary facies;these include compaction, cementation of calcite, dolomite, siderite and framboidal pyrite in eogenetic stage;further compaction, feldspar dissolution, precipitation of ferrocalcite and ankerite, quartz cements, formation of kaolinite and its illitization, precipitation of albite and nodular pyrite, as well as hydrocarbon charge in mesogenetic stage. The dissolution of feldspar and illitization of kaolinite provide internal sources for the precipitation of quartz cement, while carbonate cements are derived from external sources related to interbedded mudstones and deep fluid. Compaction is the predominant factor in reducing the total porosity, followed by carbonate cementation that leads to strong heterogeneity. Feldspar dissolution and concomitant quartz and clay cementation barely changes the porosity but significantly reduces the permeability.The high-quality reservoirs can be concluded as medium-grained sandstones lying in the central parts of thick underwater distributary channel sandbodies(>2 m) with a high content of detrital quartz but low cement. 展开更多
关键词 Baiyun Sag OLIGOCENE Zhuhai Formation DIAGENESIS reservoir quality
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部