期刊文献+
共找到53,749篇文章
< 1 2 250 >
每页显示 20 50 100
Kinetics analysis of decomposition of vanadium slag by KOH sub-molten salt method 被引量:16
1
作者 刘挥彬 杜浩 +3 位作者 王大卫 王少娜 郑诗礼 张懿 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第5期1489-1500,共12页
A novel process was developed for the decomposition of vanadium slag using KOH sub-molten salt under ambient pressure, and the effects of reaction temperature, alkali-to-ore mass ratios, particle size, and stirring sp... A novel process was developed for the decomposition of vanadium slag using KOH sub-molten salt under ambient pressure, and the effects of reaction temperature, alkali-to-ore mass ratios, particle size, and stirring speed on vanadium and chromium extraction were studied. The results suggest that the reaction temperature and KOH-to-ore mass ratio are more influential factors for the extraction of vanadium and chromium. Under the optimal reaction conditions (temperature 180 °C, initial KOH-to-ore mass ratio 4:1, stirring speed 700 r/min, gas flow 1 L/min, and reaction time 300 min), vanadium and chromium extraction rates can reach up to 95% and 90%, respectively. Kinetics analysis results show that the decomposing process of vanadium slag in KOH sub-molten salt can be well interpreted by the shrinking core model under internal diffusion control. The apparent activation energies for vanadium and chromium are 40.54 and 50.27 kJ/mol, respectively. 展开更多
关键词 vanadium slag SPINEL sub-molten salt method kinetics analysis DECOMPOSITION activation energy
下载PDF
Decomposition kinetics of zircon sand in NaOH sub-molten salt solution 被引量:2
2
作者 Hong-qian SUN Jing SONG +3 位作者 Shuai SUN Jing-kui QU Wei LU Tao QI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第9期1948-1955,共8页
Sub-molten salt was applied to the decomposition of zircon sand(ZrSiO4).The kinetics of the decomposition of zircon sand and the effects of reaction temperature,reaction time,NaOH content,agitation speed,and the NaOH/... Sub-molten salt was applied to the decomposition of zircon sand(ZrSiO4).The kinetics of the decomposition of zircon sand and the effects of reaction temperature,reaction time,NaOH content,agitation speed,and the NaOH/ore mass ratio on the decomposition rate of zircon sand in NaOH sub-molten salt were investigated.The results indicate that the decomposition rate of zircon sand increases with the increase in the reaction temperature,reaction time,and NaOH content.The shrinking-core model with surface chemical reaction-controlled process is the most applicable for the decomposition of zircon sand,with the apparent activation energy of 77.98 kJ/mol.The decomposition product is sodium zirconium silicate(Na2ZrSiO5),and the decomposition rate is higher than 99%under the optimal conditions. 展开更多
关键词 zircon sand DECOMPOSITION KINETICS sub-molten salt sodium zirconium silicate
下载PDF
Ionization Engineering of Hydrogels Enables Highly Efficient Salt‑Impeded Solar Evaporation and Night‑Time Electricity Harvesting 被引量:4
3
作者 Nan He Haonan Wang +3 位作者 Haotian Zhang Bo Jiang Dawei Tang Lin Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期131-146,共16页
Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic ... Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic scale,have been considered the most promising candidate for solar evaporation.However,the simultaneous achievement of high evaporation efficiency and satisfactory tolerance to salt ions in brine remains a challenging scientific bottleneck,restricting the widespread application.Herein,we report ionization engineering,which endows polymer chains of hydrogels with electronegativity for impeding salt ions and activating water molecules,fundamentally overcoming the hydrogel salt-impeded challenge and dramatically expediting water evaporating in brine.The sodium dodecyl benzene sulfonate-modified carbon black is chosen as the solar absorbers.The hydrogel reaches a ground-breaking evaporation rate of 2.9 kg m−2 h−1 in 20 wt%brine with 95.6%efficiency under one sun irradiation,surpassing most of the reported literature.More notably,such a hydrogel-based evaporator enables extracting clean water from oversaturated salt solutions and maintains durability under different high-strength deformation or a 15-day continuous operation.Meantime,on the basis of the cation selectivity induced by the electronegativity,we first propose an all-day system that evaporates during the day and generates salinity-gradient electricity using waste-evaporated brine at night,anticipating pioneer a new opportunity for all-day resource-generating systems in fields of freshwater and electricity. 展开更多
关键词 Solar evaporation Hydrogel evaporators salt impeding Ionization engineering Cyclic vapor-electricity generation
下载PDF
Biomass-enhanced Janus sponge-like hydrogel with salt resistance and highstrength for efficient solar desalination 被引量:2
4
作者 Aqiang Chu Meng Yang +4 位作者 Juanli Chen Jinmin Zhao Jing Fang Zhensheng Yang Hao Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第11期1698-1710,共13页
Interfacial solar-driven evaporation technology shows great potential in the field of industrial seawater desalination, and the development ofefficient and low-cost evaporation materials is key to achieving large-scale ... Interfacial solar-driven evaporation technology shows great potential in the field of industrial seawater desalination, and the development ofefficient and low-cost evaporation materials is key to achieving large-scale applications. Hydrogels are considered to be promising candidates;however, conventional hydrogel-based interfacial solar evaporators have difficulty in simultaneously meeting multiple requirements, including ahigh evaporation rate, salt resistance, and good mechanical properties. In this study, a Janus sponge-like hydrogel solar evaporator (CPAS) withexcellent comprehensive performance was successfully constructed. The introduction of biomass agar (AG) into the polyvinyl alcohol (PVA)hydrogel backbone reduced the enthalpy of water evaporation, optimized the pore structure, and improved the mechanical properties. Meanwhile, by introducing hydrophobic fumed nano-silica aerogel (SA) and a synergistic foaming-crosslinking process, the hydrogel spontaneouslyformed a Janus structure with a hydrophobic surface and hydrophilic bottom properties. Based on the reduction of the evaporation enthalpy andthe modulation of the pore structure, the CPAS evaporation rate reached 3.56 kg m^(-2) h^(-1) under one sun illumination. Most importantly, owingto the hydrophobic top surface and 3D-interconnected porous channels, the evaporator could work stably in high concentrations of salt-water(25 wt% NaCl), showing strong salt resistance. Efficient water evaporation, excellent salt resistance, scalable preparation processes, and low-costraw materials make CPAS extremely promising for practical applications. 展开更多
关键词 Solar interfacial evaporation HYDROGEL Biomass DESALINATION salt resistance
下载PDF
Dynamic simulation analysis of molten salt reactor-coupled air-steam combined cycle power generation system 被引量:2
5
作者 Jing-Lei Huang Guo-Bin Jia +3 位作者 Li-Feng Han Wen-Qian Liu Li Huang Zheng-Han Yang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期222-233,共12页
A nonlinear dynamic simulation model based on coordinated control of speed and flow rate for the molten salt reactor and combined cycle systems is proposed here to ensure the coordination and stability between the mol... A nonlinear dynamic simulation model based on coordinated control of speed and flow rate for the molten salt reactor and combined cycle systems is proposed here to ensure the coordination and stability between the molten salt reactor and power system.This model considers the impact of thermal properties of fluid variation on accuracy and has been validated with Simulink.This study reveals the capability of the control system to compensate for anomalous situations and maintain shaft stability in the event of perturbations occurring in high-temperature molten salt tank outlet parameters.Meanwhile,the control system’s impact on the system’s dynamic characteristics under molten salt disturbance is also analyzed.The results reveal that after the disturbance occurs,the controlled system benefits from the action of the control,and the overshoot and disturbance amplitude are positively correlated,while the system power and frequency eventually return to the initial values.This simulation model provides a basis for utilizing molten salt reactors for power generation and maintaining grid stability. 展开更多
关键词 Molten salt reactor Combined cycle Dynamic characteristic CONTROL
下载PDF
Failure transition of shear-to-dilation band of rock salt under triaxial stresses 被引量:3
6
作者 Jianfeng Liu Xiaosong Qiu +3 位作者 Jianxiong Yang Chao Liang Jingjing Dai Yu Bian 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期56-64,共9页
Great potential of underground gas/energy storage in salt caverns seems to be a promising solution to support renewable energy.In the underground storage method,the operating cycle unfortunately may reach up to daily ... Great potential of underground gas/energy storage in salt caverns seems to be a promising solution to support renewable energy.In the underground storage method,the operating cycle unfortunately may reach up to daily or even hourly,which generates complicated pressures on the salt cavern.Furthermore,the mechanical behavior of rock salt may change and present distinct failure characteristics under different stress states,which affects the performance of salt cavern during the time period of full service.To reproduce a similar loading condition on the cavern surrounding rock mass,the cyclic triaxial loading/unloading tests are performed on the rock salt to explore the mechanical transition behavior and failure characteristics under different confinement.Experimental results show that the rock salt samples pre-sent a diffused shear failure band with significant bulges at certain locations in low confining pressure conditions(e.g.5 MPa,10 MPa and 15 MPa),which is closely related to crystal misorientation and grain boundary sliding.Under the elevated confinement(e.g.20 MPa,30 MPa and 40 MPa),the dilation band dominates the failure mechanism,where the large-size halite crystals are crushed to be smaller size and new pores are developing.The failure transition mechanism revealed in the paper provides additional insight into the mechanical performance of salt caverns influenced by complicated stress states. 展开更多
关键词 Rock salt Cyclic mechanical loading Shear band Dilation band Underground gas storage(UGS)
下载PDF
The transcription factor ZmNAC84 increases maize salt tolerance by regulating ZmCAT1 expression 被引量:1
7
作者 Yitian Pan Tong Han +2 位作者 Yang Xiang Caifen Wang Aying Zhang 《The Crop Journal》 SCIE CSCD 2024年第5期1344-1356,共13页
Salt stress severely affects plant growth and yield.The transcription factor NAC plays a variety of important roles in plant abiotic stress,but we know relatively little about the specific molecular mechanisms of NAC ... Salt stress severely affects plant growth and yield.The transcription factor NAC plays a variety of important roles in plant abiotic stress,but we know relatively little about the specific molecular mechanisms of NAC in antioxidant defense.Here,our genetic studies reveal the positive regulation of salt tolerance in maize by the transcription factor ZmNAC84.Under salt stress,overexpression of ZmNAC84 in maize increased the expression of ZmCAT1,enhanced CAT activity,and consequently reduced H_(2)O_(2) accumulation,thereby improving salt stress tolerance in maize.Whereas RNA interference-mediated knockdown of ZmNAC84 produced the opposite effect.Subsequently,we found that ZmNAC84 directly binds to and regulates the expression of the ZmCAT1 promoter,and the hybridized material also demonstrated that ZmCAT1 is a downstream target gene of ZmNAC84.In addition,phenotypic and biochemical analyses indicated that ZmCAT1 positively regulated salt tolerance by regulating H_(2)O_(2) accumulation under salt stress.Taken together,these results reveal the function of ZmNAC84 in regulating ZmCAT1-mediated antioxidant defense in response to salt stress in plants. 展开更多
关键词 MAIZE ZmNAC84 ZmCAT1 salt stress
下载PDF
AcWRKY28 mediated activation of AcCPK genes confers salt tolerance in pineapple(Ananas comosus) 被引量:1
8
作者 Qiao Zhou Samaranayaka Vidana Gamage Nirosha Priyadarshani +11 位作者 Rongjuan Qin Han Cheng Tiantian Luo Myat Hnin Wai Mohammad Aqa Mohammadi Yanhui Liu Chang Liu Hanyang Cai Xiaomei Wang Yeqiang Liu Yuan Qin Lulu Wang 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期398-412,共15页
Unfavorable environmental cues severely affect crop productivity resulting in significant economic losses to farmers. In plants, multiple regulatory genes, such as the WRKY transcription factor (TF) family, modulate t... Unfavorable environmental cues severely affect crop productivity resulting in significant economic losses to farmers. In plants, multiple regulatory genes, such as the WRKY transcription factor (TF) family, modulate the expression of defense genes. However, the role of the pineapple WRKY genes is poorly understood. Here, we studied the pineapple WRKY gene, AcWRKY28, by generating AcWRKY28 over-expressing transgenic pineapple plants. Overexpression of AcWRKY28 enhanced the salt stress resistance in transgenic pineapple lines. Comparative transcriptome analysis of transgenic and wild-type pineapple plants showed that “plant-pathogen interaction” pathway genes, including 9calcium-dependent protein kinases (CPKs), were up-regulated in AcWRKY28 over-expressing plants. Furthermore, chromatin immunoprecipitation and yeast one-hybrid assays revealed AcCPK12, AcCPK3, AcCPK8, AcCPK1, and AcCPK15 as direct targets of AcWRKY28. Consistently, the study of AcCPK12 over-expressing Arabidopsis lines showed that AcCPK12 enhances salt, drought, and disease resistance. This study shows that AcWRKY28 plays a crucial role in promoting salt stress resistance by activating the expression of AcCPK genes. 展开更多
关键词 PINEAPPLE AcWRKY AcCPK Transcription factor salt stress CHIP
下载PDF
Synergistic effects of carbon cycle metabolism and photosynthesis in Chinese cabbage under salt stress 被引量:1
9
作者 Hao Liang Qiling Shi +8 位作者 Xing Li Peipei Gao Daling Feng Xiaomeng Zhang Yin Lu Jingsen Yan Shuxing Shen Jianjun Zhao Wei Ma 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期461-472,共12页
Chinese cabbage(Brassica rapa ssp. pekinensis) has a long cultivation history and is one of the vegetable crops with the largest cultivation area in China. However, salt stress severely damages photosynthesis and horm... Chinese cabbage(Brassica rapa ssp. pekinensis) has a long cultivation history and is one of the vegetable crops with the largest cultivation area in China. However, salt stress severely damages photosynthesis and hormone metabolism, nutritional balances, and results in ion toxicity in plants. To better understand the mechanisms of salt-induced growth inhibition in Chinese cabbage, RNA-seq and physiological index determination were conducted to explore the impacts of salt stress on carbon cycle metabolism and photosynthesis in Chinese cabbage. Here, we found that the number of thylakoids and grana lamellae and the content of starch granules and chlorophyll in the leaves of Chinese cabbage under salt stress showed a time-dependent response, first increasing and then decreasing. Chinese cabbage increased the transcript levels of genes related to the photosynthetic apparatus and carbon metabolism under salt stress, probably in an attempt to alleviate damage to the photosynthetic system and enhance CO_(2) fixation and energy metabolism. The transcription of genes related to starch and sucrose synthesis and degradation were also enhanced;this might have been an attempt to maintain intracellular osmotic pressure by increasing soluble sugar concentrations. Soluble sugars could also be used as potential reactive oxygen species(ROS) scavengers, in concert with peroxidase(POD)enzymes, to eliminate ROS that accumulate during metabolic processes. Our study characterizes the synergistic response network of carbon metabolism and photosynthesis under salt stress. 展开更多
关键词 Chinese cabbage salt stress Carbon metabolism PHOTOSYNTHESIS CHLOROPLAST
下载PDF
Nanopriming with selenium doped carbon dots improved rapeseed germination and seedling salt tolerance 被引量:1
10
作者 Mohammad Nauman Khan Chengcheng Fu +7 位作者 Xiaohui Liu Yanhui Li Jiasen Yan Lin Yue Jiaqi Li Zaid Khan Lixiao Nie Honghong Wu 《The Crop Journal》 SCIE CSCD 2024年第5期1333-1343,共11页
Soil salinity is a big environmental issue affecting crop production.Although seed nanopriming has been widely used to improve seed germination and seedling growth under salinity,our knowledge about the underlying mec... Soil salinity is a big environmental issue affecting crop production.Although seed nanopriming has been widely used to improve seed germination and seedling growth under salinity,our knowledge about the underlying mechanisms is still insufficient.Herein,we newly synthesized selenium-doped carbon dots nanoparticles coated with poly acrylic acid(poly acrylic acid coated selenium doped carbon dots,PAA@Se-CDs)and used it to prime seeds of rapeseeds.The TEM(transmission electron microscope)size and zeta potential of PAA@Se-CDs are 3.8±0.2 nm and-30 mV,respectively.After 8 h priming,the PAA@Se-CDs nanoparticles were detected in the seed compartments(seed coat,cotyledon,and radicle),while no such signals were detected in the NNP(no nanoparticle control)group(SeO_2 was used as the NNP).Nanopriming with PAA@Se-CDs nanoparticles increased rapeseeds germination(20%)and seedling fresh weight(161%)under saline conditions compared to NNP control.PAA@Se-CDs nanopriming significantly enhanced endo-β-mannanase activities(255%increase,21.55μmol h^(-1)g^(-1)vs.6.06μmol h^(-1)g^(-1),at DAS 1(DAS,days after sowing)),total soluble sugar(33.63 mg g^(-1)FW(fresh weight)vs.20.23 mg g^(-1)FW)and protein contents(1.96μg g^(-1)FW vs.1.0μg g^(-1)FW)to support the growth of germinating seedlings of rapeseeds under salt stress,in comparison with NNP co ntrol.The respiration rate and ATP content were increased by 76%and 607%,respectively.The oxidative damage of salinity due to the overaccumulation of reactive oxygen species(ROS)was alleviated by PAA@Se-CDs nanopriming by increasing the antioxidant enzyme activities(SOD(superoxide dismutase),POD(peroxidase),and CAT(catalase)).Another mechanism behind PAA@Se-CDs nanopriming improving rapeseeds salt tolerance at seedling stage was reducing sodium(Na^(+))accumulation and improving potassium(K^(+))retention,hence increasing the K^(+)/Na^(+)ratio under saline conditions.Overall,our results not only showed that seed nanopriming with PAA@Se-CDs could be a good approach to improve salt tolerance,but also add more knowledge to the mechanism behind nanopriming-improved plant salt tolerance at germination and early seedling growth stage. 展开更多
关键词 PAA@Se-CDs Nanopriming salt stress Antioxidant system K^(+)/Na^(+) balance ATP production
下载PDF
Genome-Wide Exploration of the Grape GLR Gene Family and Differential Responses of VvGLR3.1 and VvGLR3.2 to Low Temperature and Salt Stress 被引量:1
11
作者 Honghui Sun Ruichao Liu +6 位作者 Yueting Qi Hongsheng Gao Xueting Wang Ning Jiang Xiaotong Guo Hongxia Zhang Chunyan Yu 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第3期533-549,共17页
Grapes,one of the oldest tree species globally,are rich in vitamins.However,environmental conditions such as low temperature and soil salinization significantly affect grape yield and quality.The glutamate receptor(GLR... Grapes,one of the oldest tree species globally,are rich in vitamins.However,environmental conditions such as low temperature and soil salinization significantly affect grape yield and quality.The glutamate receptor(GLR)family,comprising highly conserved ligand-gated ion channels,regulates plant growth and development in response to stress.In this study,11 members of the VvGLR gene family in grapes were identified using whole-genome sequence analysis.Bioinformatic methods were employed to analyze the basic physical and chemical properties,phylogenetic trees,conserved domains,motifs,expression patterns,and evolutionary relationships.Phylogenetic and collinear analyses revealed that the VvGLRs were divided into three subgroups,showing the high conservation of the grape GLR family.These members exhibited 2 glutamate receptor binding regions(GABAb and GluR)and 3-4 transmembrane regions(M1,M2,M3,and M4).Real-time quantitative PCR analysis demonstrated the sensitivity of all VvGLRs to low temperature and salt stress.Subsequent localization studies in Nicotiana tabacum verified that VvGLR3.1 and VvGLR3.2 proteins were located on the cell membrane and cell nucleus.Additionally,yeast transformation experiments confirmed the functionality of VvGLR3.1 and VvGLR3.2 in response to low temperature and salt stress.Thesefindings highlight the significant role of the GLR family,a highly conserved group of ion channels,in enhancing grape stress resistance.This study offers new insights into the grape GLR gene family,providing fundamental knowledge for further functional analysis and breeding of stress-resistant grapevines. 展开更多
关键词 Genome-wide identification glutamate receptor(GLR)family low temperature stress salt stress GRAPE
下载PDF
Implications of Salt Tectonics on Hydrocarbon Ascent in the Eastern Persian Gulf:Insights into the Formation Mechanism of Salt Diapirs,Gas Chimneys,and Their Sedimentary Interactions
12
作者 XUE Yang LUAN Xiwu +4 位作者 RAVEENDRASINGHE Thanuja D WEI Xinyuan JIN Long YIN Jian QIAO Jianghao 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第6期1515-1533,共19页
Gas chimneys,salt domes,and faults are vital to the movement of hydrocarbons within geological systems.Accurate identification of these geological features is crucial to modeling hydrocarbon resources.This study explo... Gas chimneys,salt domes,and faults are vital to the movement of hydrocarbons within geological systems.Accurate identification of these geological features is crucial to modeling hydrocarbon resources.This study explores the processes that have shaped the eastern Persian Gulf,focusing on salt diapir characteristics,origin,and fluid migration.Plate collisions between the Indian,Eurasian,and Arabian Plates have considerably impacted salt tectonics,developing key features such as the Hormuz salt,Qatar-South Fars Arch,and Zagros and Oman orogenic structures.Salt-related features were discerned through two-dimensional seismic data and drilling records,salt movement sequences were reconstructed,and fluid expulsion patterns were delineated using attribute preferences.The results of this study revealed that fractured substrates influenced by regional tectonic forces contribute to the creation of salt diapirs,which serve as conduits for guided fluid transport.Moreover,these results showed that gravity-driven downbuilding mainly controls salt flow,while the circular arrangement of salt structures results from regional stress and interactions between different salt sources.Distinct stress-induced basement incisions compounded by the hindrance of initial salt movement by the Qatar Arch further contribute to the complex salt structure geometry.Crucially,the uplift of the Qatar Arch and stresses from the Oman and Zagros orogenies profoundly affect the salt structure geometry and depositional patterns across diverse regions,resulting in circular salt structures and gas chimneys.This study offers valuable perspectives for oil and gas exploration and provides a comprehensive understanding of the regional dynamics governing salt tectonics and hydrocarbon ascent in the eastern Persian Gulf. 展开更多
关键词 Persian Gulf salt tectonics salt diapirs gas chimneys salt-sediment interaction fluid ascent
下载PDF
Nitrogen application regulates antioxidant capacity and flavonoid metabolism,especially quercetin,in grape seedlings under salt stress
13
作者 Congcong Zhang Han Wang +13 位作者 Guojie Nai Lei Ma Xu Lu Haokai Yan Meishuang Gong YuanyuanLi Ying Lai Zhihui Pu Li Wei Guiping Chen Ping Sun Baihong Chen Shaoying Ma Sheng Li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第12期4074-4092,共19页
Salt stress is a typical abiotic stress in plants that causes slow growth,stunting,and reduced yield and fruit quality.Fertilization is necessary to ensure proper crop growth.However,the effect of fertilization on sal... Salt stress is a typical abiotic stress in plants that causes slow growth,stunting,and reduced yield and fruit quality.Fertilization is necessary to ensure proper crop growth.However,the effect of fertilization on salt tolerance in grapevine is unclear.In this study,we investigated the effect of nitrogen fertilizer(0.01 and 0.1 mol L^(-1)NH_(4)NO_(3))application on the salt(200 mmol L^(-1)NaCl)tolerance of grapevine based on physiological indices,and transcriptomic and metabolomic analyses.The results revealed that 0.01 mol L^(-1)NH_(4)NO_(3) supplementation significantly reduced the accumulation of superoxide anion(O_(2)^(-)·),enhanced the activities of superoxide dismutase(SOD)and peroxidase(POD),and improved the levels of ascorbic acid(AsA)and glutathione(GSH)in grape leaves compared to salt treatment alone.Specifically,joint transcriptome and metabolome analyses showed that the differentially expressed genes(DEGs)and differentially accumulated metabolites(DAMs)were significantly enriched in the flavonoid biosynthesis pathway(ko00941)and the flavone and flavonol biosynthesis pathway(ko00944).In particular,the relative content of quercetin(C00389)was markedly regulated by salt and nitrogen.Further analysis revealed that exogenous foliar application of quercetin improved the SOD and POD activities,increased the AsA and GSH contents,and reduced the H_(2)O_(2) and O_(2)^(-)·contents.Meanwhile,10 hub DEGs,which had high Pearson correlations(R^(2)>0.9)with quercetin,were repressed by nitrogen.In conclusion,all the results indicated that moderate nitrogen and quercetin application under salt stress enhanced the antioxidant system defense response,thus providing a new perspective for improving salt tolerance in grapes. 展开更多
关键词 GRAPEVINE salt stress nitrogen multi-omics QUERCETIN antioxidant
下载PDF
The source of lithium in Lakkor Co Salt Lake on Qinghai-Tibet Plateau,China:evidence from hydrochemical characteristics and boron isotope
14
作者 Zheng Yan Li Bin Kai Li +2 位作者 Mao-Yong He Xue Qin Wen Jiang Di Zhou 《Acta Geochimica》 EI CAS CSCD 2024年第5期933-946,共14页
The availability of lithium resources is of great significance for the development of modern technologies,as well as for civil and military industries.The Qinghai-Tibet Plateau is a region known for its abundance of l... The availability of lithium resources is of great significance for the development of modern technologies,as well as for civil and military industries.The Qinghai-Tibet Plateau is a region known for its abundance of lithium-rich salt lakes.However,the specific origin of lithium in these lakes is still unknown,which hinders the advancement of the lithium resource business in this region.To research this issue,this study involved the collection of 20 samples from Lakkor Co Salt Lake on Qinghai-Tibet Plateau,encompassing samples of surface brine,cold springs,fresh lakes,and recharge rivers.The composition of anions and cations in these samples was determined.Furthermore,the analysis extensivelyutilizedthePiperthree-linediagram,Gibbs model,and ion proportion coefficient.The findings of this study indicate that as the moves from the recharge water system to salt lake,there is a transition in water type from strong carbonate to moderate carbonate and weak carbonate,as well as Na sulfate.This research based on a similar source of both lithium and boron,utilized ion correlation analysis and boron isotope study in the Lakkor Co area,and analyzed the source and transporting process of lithium.The main origin of lithium in Lakkor Co is the dissolution of lithiumrich rocks,recharge water systems,and deep hydrothermal fluids.These findings are highly significant in enhancing the foundational data of lithium-rich brine resources in the Qinghai-Tibet Plateau and are beneficial for assessing the future development of such deposits. 展开更多
关键词 LITHIUM Hydrochemical Li-rich salt lake Boron isotope
下载PDF
Growth kinetics of titanium carbide coating by molten salt synthesis process on graphite sheet surface
15
作者 Xiaoyu Shi Chongxiao Guo +4 位作者 Jiamiao Ni Songsong Yao Liqiang Wang Yue Liu Tongxiang Fan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第8期1858-1864,共7页
The synthesis of carbide coatings on graphite substrates using molten salt synthesis(MSS),has garnered significant interest due to its cost-effective nature.This study investigates the reaction process and growth kine... The synthesis of carbide coatings on graphite substrates using molten salt synthesis(MSS),has garnered significant interest due to its cost-effective nature.This study investigates the reaction process and growth kinetics involved in MSS,shedding light on key aspects of the process.The involvement of Ti powder through liquid-phase mass transfer is revealed,where the diffusion distance and quantity of Ti powder play a crucial role in determining the reaction rate by influencing the C content gradient on both sides of the carbide.Furthermore,the growth kinetics of the carbide coating are predominantly governed by the diffusion behavior of C within the carbide layer,rather than the chemical reaction rate.To analyze the kinetics,the thickness of the carbide layer is measured with respect to heat treatment time and temperature,unveiling a parabolic relationship within the temperature range of 700-1300℃.The estimated activation energy for the reaction is determined to be 179283 J·mol^(-1).These findings offer valuable insights into the synthesis of carbide coatings via MSS,facilitating their optimization and enhancing our understanding of their growth mechanisms and properties for various applications. 展开更多
关键词 titanium carbide GRAPHITE molten salt kinetic analysis
下载PDF
Wild soybean(Glycine soja)transcription factor GsWRKY40 plays positive roles in plant salt tolerance
16
作者 Minglong Li Man Xue +7 位作者 Huiying Ma Peng Feng Tong Chen Xiaohuan Sun Qiang Li Xiaodong Ding Shuzhen Zhang Jialei Xiao 《The Crop Journal》 SCIE CSCD 2024年第3期766-775,共10页
Wild soybean(Glycine soja),a relative of cultivated soybean,shows high adaptability to adverse environmental conditions.We identified and characterized a wild soybean transcription factor gene,GsWRKY40,that promotes p... Wild soybean(Glycine soja),a relative of cultivated soybean,shows high adaptability to adverse environmental conditions.We identified and characterized a wild soybean transcription factor gene,GsWRKY40,that promotes plant salt stress.GsWRKY40 was highly expressed in wild soybean roots and was up-regulated by salt treatment.GsWRKY40 was localized in nucleus and demonstrated DNA-binding activities but without transcriptional activation.Mutation and overexpression of GsWRKY40 altered salt tolerance of Arabidopsis plants.To understand the molecular mechanism of GsWRKY40 in regulating plant salt resistance,we screened a cDNA library and identified a GsWRKY40 interacting protein GsbHLH92 by using yeast two-hybrid approach.The physical interaction of GsWRKY40 and GsbHLH92 was confirmed by co-immunoprecipitation(co-IP),GST pull-down,and bimolecular fluorescence complementation(BiFC)techniques.Intriguingly,co-overexpression of GsWRKY40 and GsbHLH92 resulted in higher salt tolerance and lower ROS levels than overexpression of GsWRKY40 or GsbHLH92 in composite soybean plants,suggesting that GsWRKY40 and GsbHLH92 may synergistically regulate plant salt resistance through inhibiting ROS production.qRT-PCR data indicated that the expression level of GmSPOD1 gene encoding peroxidase was cooperatively regulated by GsWRKY40 and GsbHLH92,which was confirmed by using a dual luciferase report system and yeast one-hybrid experiment.Our study reveals a pathway that GsWRKY40 and GsbHLH92 collaboratively up-regulate plant salt resistance through impeding GmSPOD1 expression and reducing ROS levels,providing a novel perspective on the regulatory mechanisms underlying plant tolerance to abiotic stresses. 展开更多
关键词 Wild soybean Transcription factor salt stress ROS
下载PDF
Different Approaches to Reduce Salinity in Salt-Affected Soils and Enhancing Salt Stress Tolerance in Plants
17
作者 Amra Bratovcic 《Agricultural Sciences》 2024年第8期830-847,共18页
Salt stress is one of the most harmful environmental stresses in recent times and represents a significant threat to food security. Soil salinization is caused by spontaneous natural processes of mineral dissolution a... Salt stress is one of the most harmful environmental stresses in recent times and represents a significant threat to food security. Soil salinization is caused by spontaneous natural processes of mineral dissolution and human activities such as inappropriate irrigation practices. Natural geological progressions like weathering of rocks, arid climate, and higher evaporation, as well as anthropogenic activities, including the use of brackish water for irrigation, and poor tillage operations, are the foremost causes of soil salinization. Typical characteristics of saline soils are salt stress, high pH, and lack of organic carbon, as well as low availability of nutrients. Disruption of precipitation patterns as well as high average annual temperatures due to climate change additionally negatively affects the process of soil salinization. Productivity and ability to support crop growth are reduced on saline soil. Salinity-induced stress reduces plant growth by modulating the antioxidative system and nutrient orchestration. The aim of this work is to show that the mentioned problems can be alleviated in several ways such as the addition of biochar, exogenous application of several elicitors, seed priming, etc. Research has shown that the addition of biochar can significantly improve the recovery of saline soil. The addition of biochar has no significant effect on soil pH, while the cation exchange capacity of the soil increased by 17%, and the electrical conductivity of the saturated paste extract decreased by 13.2% (depends on the initial salinity and the type of biochar raw material). Moreover, biochar enriched with silicon increases the resistance of bananas to salt stress. In addition, exogenous application of several elicitors helps plants to alleviate stress by inducing stress-related physicochemical and molecular changes (selenium, sulfur, silicon, salicylic acid). Finally, seed priming showed positive effects on metabolomics, proteomics and growth of plants subjected to abiotic stress. Priming usually involves immersing the seed in a solution for a period of time to induce physiological and metabolic progression prior to germination. 展开更多
关键词 salt-Affected Soils salt Stress BIOCHAR ELICITORS Seed Priming
下载PDF
Biomineralization of soil with crude soybean urease using different calcium salts
18
作者 Yajie Weng Junjie Zheng +2 位作者 Hanjiang Lai Mingjuan Cui Xingzhi Ding 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1788-1798,共11页
Calcium salt is an important contributing factor for calcium-based biomineralization.To study the effect of calcium salt on soil biomineralization using crude soybean urease,the calcium salts,including the calcium chl... Calcium salt is an important contributing factor for calcium-based biomineralization.To study the effect of calcium salt on soil biomineralization using crude soybean urease,the calcium salts,including the calcium chloride (CaCl_(2)),calcium acetate ((CH_(3)COO)_(2)Ca) and calcium nitrate (Ca(NO_(3))_(2)),were used to prepare the biotreatment solution to carry out the biomineralization tests in this paper.Two series of biomineralization tests in solution and sand column,respectively,were conducted.Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were performed to determine the microscopic characteristics of the precipitated calcium carbonate (CaCO_(3)) crystals.The experimental results indicate that the biomineralization effect is the best for the CaCl2 case,followed by (CH_(3)COO)_(2)Ca,and worst for Ca(NO_(3))_(2) under the test conditions of this study (i.e.1 mol/L of calcium salt-urea).The mechanism for the effect of the calcium salt on the biomineralization of crude soybean urease mainly involves: (1) inhibition of urease activity,and (2) influence on the crystal size and morphology of CaCO_(3).Besides Ca^(2+) ,the anions in solution can inhibit the activity of crude soybean urease,and NO_(3)− has a stronger inhibitory effect on the urease activity compared with both CH_(3)COO^(−) and Cl^(−) .The co-inhibition of Ca^(2+) and NO_(3)− on the activity of urease is the key reason for the worst biomineralization of the Ca(NO_(3))_(2) case in this study.The difference in biomineralization between the CaCl_(2) and (CH_(3)COO)_(2) Ca cases is strongly correlated with the crystal morphology of the precipitated CaCO_(3). 展开更多
关键词 BIOMINERALIZATION Crude soybean urease Calcium salt Influence mechanism
下载PDF
Soaking Rice Seeds in High Concentration Salt Solution Improved Salt Tolerance at the Seedling Stage
19
作者 Jing LIN Weiwei CAO +1 位作者 Fan WANG Xianwen FANG 《Agricultural Biotechnology》 2024年第5期16-18,共3页
[Objectives]This study was conducted to enhance the salt tolerance of current rice varieties at the seedling stage and fulfill the urgent requirement for salt-tolerant rice varieties in coastal tidal flats.[Methods]Fo... [Objectives]This study was conducted to enhance the salt tolerance of current rice varieties at the seedling stage and fulfill the urgent requirement for salt-tolerant rice varieties in coastal tidal flats.[Methods]Four high-generation stable rice lines with diverse salt tolerance were employed as test materials,and four NaCl concentration gradients were established for seed soaking treatment.[Results]The seedling survival rate of line 151465 underwent significant alterations after soaking with four different salt concentrations,and the survival rate was the highest after treatment with 1.8%NaCl for 1 d,reaching 65.2%.The average survival rate of other three lines with different salt tolerance reached 62%after soaking with 1.8%NaCl for 1 d,which was significantly higher than those of the 2.2%NaCl and 0%NaCl treatments.[Conclusions]This study provides a basis for reducing the effect of abiotic stress on rice growth and development and improving the utilization rate of saline-alkali land. 展开更多
关键词 RICE salt water Seed soaking salt tolerance Seedling stag
下载PDF
Genetic analysis and candidate gene identification of salt tolerancerelated traits in maize
20
作者 Hui Fang Xiuyi Fu +9 位作者 Hanqiu Ge Mengxue Jia Jie Ji Yizhou Zhao Zijian Qu Ziqian Cui Aixia Zhang Yuandong Wang Ping Li Baohua Wang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第7期2196-2210,共15页
Soil salinization poses a threat to maize production worldwide,but the genetic mechanism of salt tolerance in maize is not well understood.Therefore,identifying the genetic components underlying salt tolerance in maiz... Soil salinization poses a threat to maize production worldwide,but the genetic mechanism of salt tolerance in maize is not well understood.Therefore,identifying the genetic components underlying salt tolerance in maize is of great importance.In the current study,a teosinte-maize BC2F7 population was used to investigate the genetic basis of 21 salt tolerance-related traits.In total,125 QTLs were detected using a high-density genetic bin map,with one to five QTLs explaining 6.05–32.02%of the phenotypic variation for each trait.The total phenotypic variation explained(PVE)by all detected QTLs ranged from 6.84 to 63.88%for each trait.Of all 125 QTLs,only three were major QTLs distributed in two genomic regions on chromosome 6,which were involved in three salt tolerance-related traits.In addition,10 pairs of epistatic QTLs with additive effects were detected for eight traits,explaining 0.9 to 4.44%of the phenotypic variation.Furthermore,18 QTL hotspots affecting 3–7 traits were identified.In one hotspot(L5),a gene cluster consisting of four genes(ZmNSA1,SAG6,ZmCLCg,and ZmHKT1;2)was found,suggesting the involvement of multiple pleiotropic genes.Finally,two important candidate genes,Zm00001d002090 and Zm00001d002391,were found to be associated with salt tolerance-related traits by a combination of linkage and marker-trait association analyses.Zm00001d002090 encodes a calcium-dependent lipid-binding(CaLB domain)family protein,which may function as a Ca^(2+)sensor for transmitting the salt stress signal downstream,while Zm00001d002391 encodes a ubiquitin-specific protease belonging to the C19-related subfamily.Our findings provide valuable insights into the genetic basis of salt tolerance-related traits in maize and a theoretical foundation for breeders to develop enhanced salt-tolerant maize varieties. 展开更多
关键词 MAIZE salt tolerance-related traits QTL mapping region-based association analysis
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部