Maize(Zea mays L.) is an economically vital grain crop that is cultivated worldwide. In 2011, a maize foliar disease was detected in Lingtai and Lintao counties in Gansu Province, China. The characteristic signs and s...Maize(Zea mays L.) is an economically vital grain crop that is cultivated worldwide. In 2011, a maize foliar disease was detected in Lingtai and Lintao counties in Gansu Province, China. The characteristic signs and symptoms of this disease include irregular chlorotic lesions on the tips and edges of infected leaves and black punctate fruiting bodies in dead leaf tissues. Given favourable environmental conditions, this disease spread to areas surrounding Gansu. In this study, infected leaves were collected from Gansu and Ningxia Hui Autonomous Region between 2018and 2020 to identify the disease-causing pathogen. Based on morphological features, pathogenicity tests, and multilocus phylogenetic analysis involving internal transcribed spacer(ITS), 18S small subunit rDNA(SSU), 28S large subunit rDNA(LSU), translation elongation factor 1-alpha(TEF), and β-tubulin(TUB) sequences, Eutiarosporella dactylidis was identified as the causative pathogen of this newly discovered leaf blight. Furthermore, an in vitro bioassay was conducted on representative strains using six fungicides, and both fludioxonil and carbendazim were found to significantly inhibit the mycelial growth of E. dactylidis. The results of this study provide a reference for the detection and management of Eutiarosporella leaf blight.展开更多
Let(X,T)be a linear dynamical system,where X is a Banach space and T:X→X is a bounded linear operator.This paper obtains that(X,T)is sensitive(Li-Yorke sensitive,mean sensitive,syndetically mean sensitive,respectivel...Let(X,T)be a linear dynamical system,where X is a Banach space and T:X→X is a bounded linear operator.This paper obtains that(X,T)is sensitive(Li-Yorke sensitive,mean sensitive,syndetically mean sensitive,respectively)if and only if(X,T)is Banach mean sensitive(Banach mean Li-Yorke sensitive,thickly multi-mean sensitive,thickly syndetically mean sensitive,respectively).Several examples are provided to distinguish between different notions of mean sensitivity,syndetic mean sensitivi`ty and mean Li-Yorke sensitivity.展开更多
Fluopyram is an succinate dehydrogenase inhibitors(SDHI)fungicide that has been registered in China to control gummy stem blight(GSB)in watermelons for many years.However,whether the field pathogens of GSB are still s...Fluopyram is an succinate dehydrogenase inhibitors(SDHI)fungicide that has been registered in China to control gummy stem blight(GSB)in watermelons for many years.However,whether the field pathogens of GSB are still sensitive to fluopyram or not is unknown.Therefore,we collected 69 Didymella bryoniae isolates from the fields that usually use fluopyram to control GSB to determine the sensitivity change.The EC_(50)(50%inhibition effect)values of fluopyram against D.bryoniae ranged from 0.0691 to 0.3503μg mL^(–1) and the variation factor was 5.07.The mean EC_(50) value was(0.1579±0.0669)μg mL^(–1) and the curve of sensitivity was unimodal.No resistant strains were found in the isolates,which means that the pathogens were still sensitive to fluopyram.The minimal inhibition concentration(MIC)of fluopyram against D.bryoniae was 3μg mL^(–1).Four low-resistant mutants and two medium-resistant mutants were obtained using fungicide taming and the resistance of mutants could be inherited stably.The growth rate of mutants decreased significantly compared with that of wild-type strains while the biomass of most mutants was similar to that of wild-type strains.The sensitivity of most resistant mutants to various stresses was increased compared with that of wild-type strains.The virulence of mutants receded except for low-resistant mutant XN51FR-1,which had the same lesion area as XN51 on the watermelon leaves.The results indicated that the fitness of resistant mutants was decreased compared with that of wild-type strains.The cross-resistance assay indicated that fluopyram-resistant mutants were positive cross-resistant to all six SDHI fungicides in this test but were still sensitive to fluazinam and tebuconazole.So the resistance risk of D.bryoniae to fluopyram was moderate.In addition,we found that the SdhB gene of low-resistant mutant XN30FR-1 had three new point mutations at positions K258N,A259P,and H277N.Medium-resistant mutant XN52FR-1 showed a mutation at position H277N and other mutants did not have any point mutation.展开更多
Assessment of land sensitivity to desertification is an important step to support desertification monitoring and control.Based on the Mediterranean Desertification and Land Use(MEDALUS)model,we defined four quality in...Assessment of land sensitivity to desertification is an important step to support desertification monitoring and control.Based on the Mediterranean Desertification and Land Use(MEDALUS)model,we defined four quality indicators(soil,climate,vegetation and management)to evaluate the sensitivity of land in northern China to desertification.We improved MEDALUS via excluding cities from the areas at risk of desertification by means of defining a threshold value for population density.The framework,validated in northern China,further optimizes the model to link priority areas and land restoration programmed to support desertification control.We found that the four indicators influenced and restricted each other,which jointly affected the distribution of desertification sensitivity in northern China.The spatial distribution of sensitivity in northern China showed large regional differences,with clear boundaries and concentrated distributions of regions with high and low sensitivity;the overall sensitivity decreased,with some areas rated as having moderate,severe,and extremely severe sensitivity changing to slight sensitivity;and the influence weight was much higher for the management quality index than for the climate,vegetation,and soil indexes.This suggests that management was the main factor that affected desertification sensitivity in northern China,and that climate factors exacerbated sensitivity,but the factors that are driving the spatial heterogeneity of the influencing factors need further study。展开更多
The impact sensitivity assessment of spacecraft is to obtain the probability of spacecraft encountering the OD/M(orbital debris or meteoroid),which is a prerequisite for survivability assessment of on-orbit spacecraft...The impact sensitivity assessment of spacecraft is to obtain the probability of spacecraft encountering the OD/M(orbital debris or meteoroid),which is a prerequisite for survivability assessment of on-orbit spacecraft.An impact sensitivity assessment method of spacecraft based on virtual exterior wall was proposed to improve the computational efficiency.This method eliminates determination of the outermost surface elements of the spacecraft before generating the debris rays,which are assumed to originate from a non-concave virtual wall that completely wraps the spacecraft.The Dist Mesh method was adopted for the generating of the virtual wall to ensure its mesh quality.The influences of the sizes,mesh densities,shapes of the virtual wall on the efficiency and accuracy were considered to obtain the best combination of the size and mesh density of the wall and spacecraft.The results of this method were compared with those of S3DE(Survivability of Spacecraft in Space Debris Environment),BUMPER,MDPANTO,ESABASE2/Debris to verify the feasibility of the method.The PCHIP(Piecewise Cubic Hermite Interpolating Polynomial)was used to fit the size vs.flux relationship of the space debris to acquire the impact probability of OD/M with arbitrary size on the spacecraft.展开更多
We focus on the Mach–Zehnder interferometer(MZI) with the input of a coherent beam and one of the bright entangled twin beams with an external power reference beam employed for measurement. The results show that the ...We focus on the Mach–Zehnder interferometer(MZI) with the input of a coherent beam and one of the bright entangled twin beams with an external power reference beam employed for measurement. The results show that the phase sensitivity can reach sub-Heisenberg limit and approach quantum Cramer–Rao bound by changing the squeezing parameters and the photon number of the coherent beam, under the phase-matching condition. The absence of the external power reference beam will degrade the performance of the phase sensitivity. Meanwhile, this scheme shows good robustness against the losses of the photon detectors. We present a detailed discussion about the phase sensitivities when the inputs are two coherent beams, or a coherent beam plus a single-mode squeezed vacuum beam based on the MZI. This scenario can be applied in the field of phase precision measurements and other optical sensors.展开更多
Within this work,we perform a sensitivity analysis to determine the influence of the material input parameters on the pressure in an isotropic porous solid cylinder.We provide a step-by-step guide to obtain the analyt...Within this work,we perform a sensitivity analysis to determine the influence of the material input parameters on the pressure in an isotropic porous solid cylinder.We provide a step-by-step guide to obtain the analytical solution for a porous isotropic elastic cylinder in terms of the pressure,stresses,and elastic displacement.We obtain the solution by performing a Laplace transform on the governing equations,which are those of Biot's poroelasticity in cylindrical polar coordinates.We enforce radial boundary conditions and obtain the solution in the Laplace transformed domain before reverting back to the time domain.The sensitivity analysis is then carried out,considering only the derived pressure solution.This analysis finds that the time t,Biot's modulus M,and Poisson's ratio ν have the highest influence on the pressure whereas the initial value of pressure P_(0) plays a very little role.展开更多
AIM:To investigate the types of bacteria in patients with eye infections in Suzhou and their drug resistance to commonly used antibacterial drugs.METHODS:The clinical data of 155 patients were retrospectively collecte...AIM:To investigate the types of bacteria in patients with eye infections in Suzhou and their drug resistance to commonly used antibacterial drugs.METHODS:The clinical data of 155 patients were retrospectively collected in this study,and the pathogenic bacteria species and drug resistance of each pathogenic bacteria were analyzed.RESULTS:Among the 155 patients(age from 12 to 87 years old,with an average age of 57,99 males and 56 females)with eye infections(160 eyes:74 in the left eye,76 in the right eye and 5 in both eyes,all of which were exogenous),71(45.81%)strains were gram-positive bacteria,23(14.84%)strains were gram-negative bacteria and 61(39.35%)strains were fungi.Gram-positive bacteria were highly resistant to penicillin and erythromycin(78.87%and 46.48%respectively),but least resistant to vancomycin at 0.Gram-negative bacteria were highly resistant to cefoxitin and compound sulfamethoxazole(100%and 95.65%respectively),but least resistant to meropenem at 0.Comparison of the resistance of gram-positive and gram-negative bacteria to some drugs revealed statistically significant differences(P<0.05)in the resistance of both to cefoxitin,cotrimoxazole,levofloxacin,cefuroxime,ceftriaxone and ceftazidime,and both had higher rates of resistance to gram-negative bacteria than to gram-positive bacteria.The distribution of bacterial infection strains showed that Staphylococcus epidermidis was the most common strain in the conjunctiva,cornea,aqueous humor or vitreous body and other eye parts.Besides,Fusarium and Pseudomonas aeruginosa were also among the most common strains of conjunctival and corneal infections.CONCLUSION:Gram-positive bacteria are the dominant bacteria in eye infections,followed by gram-negative bacteria and fungi.Considering the resistance of gramnegative bacteria to multiple drugs,monitoring of bacteria should be strengthened in eye bacterial infections for effective prevention and control to reduce complications caused by eye infections.展开更多
Research on reservoir rock stress sensitivity has traditionally focused on unary granular structures,neglecting the binary nature of real reservoirs,especially tight reservoirs.Understanding the stresssensitive behavi...Research on reservoir rock stress sensitivity has traditionally focused on unary granular structures,neglecting the binary nature of real reservoirs,especially tight reservoirs.Understanding the stresssensitive behavior and mathematical characterization of binary granular media remains a challenging task.In this study,we conducted online-NMR experiments to investigate the permeability and porosity evolution as well as stress-sensitive control mechanisms in tight sandy conglomerate samples.The results revealed stress sensitivity coefficients between 0.042 and 0.098 and permeability damage rates ranging from 65.6%to 90.9%,with an average pore compression coefficient of 0.0168—0.0208 MPa 1.Pore-scale compression occurred in three stages:filling,compression,and compaction,with matrix pores playing a dominant role in pore compression.The stress sensitivity of binary granular media was found to be influenced by the support structure and particle properties.High stress sensitivity was associated with small fine particle size,high fines content,high uniformity coefficient of particle size,high plastic deformation,and low Young's modulus.Matrix-supported samples exhibited a high irreversible permeability damage rate(average=74.2%)and stress sensitivity coefficients(average=0.089),with pore spaces more slit-like.In contrast,grain-supported samples showed low stress sensitivity coefficients(average=0.021)at high stress stages.Based on the experiments,we developed a mathematical model for stress sensitivity in binary granular media,considering binary granular properties and nested interactions using Hertz contact deformation and Poiseuille theory.By describing the change in activity content of fines under stress,we characterized the non-stationary state of compressive deformation in the binary granular structure and classified the reservoir into three categories.The model was applied for production prediction using actual data from the Mahu reservoir in China,showing that the energy retention rates of support-dominated,fill-dominated,and matrix-controlled reservoirs should be higher than 70.1%,88%,and 90.2%,respectively.展开更多
Battery production is crucial for determining the quality of electrode,which in turn affects the manufactured battery performance.As battery production is complicated with strongly coupled intermediate and control par...Battery production is crucial for determining the quality of electrode,which in turn affects the manufactured battery performance.As battery production is complicated with strongly coupled intermediate and control parameters,an efficient solution that can perform a reliable sensitivity analysis of the production terms of interest and forecast key battery properties in the early production phase is urgently required.This paper performs detailed sensitivity analysis of key production terms on determining the properties of manufactured battery electrode via advanced data-driven modelling.To be specific,an explainable neural network named generalized additive model with structured interaction(GAM-SI)is designed to predict two key battery properties,including electrode mass loading and porosity,while the effects of four early production terms on manufactured batteries are explained and analysed.The experimental results reveal that the proposed method is able to accurately predict battery electrode properties in the mixing and coating stages.In addition,the importance ratio ranking,global interpretation and local interpretation of both the main effects and pairwise interactions can be effectively visualized by the designed neural network.Due to the merits of interpretability,the proposed GAM-SI can help engineers gain important insights for understanding complicated production behavior,further benefitting smart battery production.展开更多
BACKGROUND Skeletal muscle handles about 80% of insulin-stimulated glucose uptake and become the major organ occurring insulin resistance(IR).Many studies have confirmed the interactions between macrophages and skelet...BACKGROUND Skeletal muscle handles about 80% of insulin-stimulated glucose uptake and become the major organ occurring insulin resistance(IR).Many studies have confirmed the interactions between macrophages and skeletal muscle regulated the inflammation and regeneration of skeletal muscle.However,despite of the decades of research,whether macrophages infiltration and polarization in skeletal muscle under high glucose(HG)milieus results in the development of IR is yet to be elucidated.C2C12 myoblasts are well-established and excellent model to study myogenic regulation and its responses to stimulation.Further exploration of macrophages'role in myoblasts IR and the dynamics of their infiltration and polarization is warranted.AIM To evaluate interactions between myoblasts and macrophages under HG,and its effects on inflammation and IR in skeletal muscle.METHODS We detected the polarization status of macrophages infiltrated to skeletal muscles of IR mice by hematoxylin and eosin and immunohistochemical staining.Then,we developed an in vitro co-culture system to study the interactions between myoblasts and macrophages under HG milieus.The effects of myoblasts on macrophages were explored through morphological observation,CCK-8 assay,Flow Cytometry,and enzyme-linked immunosorbent assay.The mediation of macrophages to myogenesis and insulin sensitivity were detected by morphological observation,CCK-8 assay,Immunofluorescence,and 2-NBDG assay.RESULTS The F4/80 and co-localization of F4/80 and CD86 increased,and the myofiber size decreased in IR group(P<0.01,g=6.26).Compared to Mc group,F4/80+CD86+CD206-cells,tumor necrosis factor-α(TNFα),inerleukin-1β(IL-1β)and IL-6 decreased,and IL-10 increased in McM group(P<0.01,g>0.8).In McM+HG group,F4/80+CD86+CD206-cells,monocyte chemoattractant protein 1,TNFα,IL-1βand IL-6 were increased,and F4/80+CD206+CD86-cells and IL-10 were decreased compared with Mc+HG group and McM group(P<0.01,g>0.8).Compered to M group,myotube area,myotube number and E-MHC were increased in MMc group(P<0.01,g>0.8).In MMc+HG group,myotube area,myotube number,E-MHC,GLUT4 and glucose uptake were decreased compared with M+HG group and MMc group(P<0.01,g>0.8).CONCLUSION Interactions between myoblasts and macrophages under HG milieus results in inflammation and IR,which support that the macrophage may serve as a promising therapeutic target for skeletal muscle atrophy and IR.展开更多
This compendium review focuses on the spatial distribution of sensitivity to localized absorption changes in optically diffuse media,particularly for measurements relevant to near-infrared spectroscopy.The three tempo...This compendium review focuses on the spatial distribution of sensitivity to localized absorption changes in optically diffuse media,particularly for measurements relevant to near-infrared spectroscopy.The three temporal domains,continuous wave,frequency domain,and time domain,each obtain different optical data types whose changes may be related to effective homogeneous changes in the absorption coefficient.Sensitivity is the relationship between a localized perturbation and the recovered effective homogeneous absorption change.Therefore,spatial sensitivity maps representing the perturbation location can be generated for the numerous optical data types in the three temporal domains.The review first presents a history of the past 30 years of work investigating this sensitivity in optically diffuse media.These works are experimental and theoretical,presenting one-,two-,and three-dimensional sensitivity maps for different Near-Infrared Spectroscopy methods,domains,and data types.Following this history,we present a compendium of sensitivity maps organized by temporal domain and then data type.This compendium provides a valuable tool to compare the spatial sensitivity of various measurement methods and parameters in one document.Methods for one to generate these maps are provided in Appendix A,including the code.This historical review and comprehensive sensitivity map compendium provides a single source researchers may use to visualize,investigate,compare,and generate sensitivity to localized absorption change maps.展开更多
This work presents the “n<sup>th</sup>-Order Feature Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (abbreviated as “n<sup>th</sup>-FASAM-N”), which will be shown to be the...This work presents the “n<sup>th</sup>-Order Feature Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (abbreviated as “n<sup>th</sup>-FASAM-N”), which will be shown to be the most efficient methodology for computing exact expressions of sensitivities, of any order, of model responses with respect to features of model parameters and, subsequently, with respect to the model’s uncertain parameters, boundaries, and internal interfaces. The unparalleled efficiency and accuracy of the n<sup>th</sup>-FASAM-N methodology stems from the maximal reduction of the number of adjoint computations (which are considered to be “large-scale” computations) for computing high-order sensitivities. When applying the n<sup>th</sup>-FASAM-N methodology to compute the second- and higher-order sensitivities, the number of large-scale computations is proportional to the number of “model features” as opposed to being proportional to the number of model parameters (which are considerably more than the number of features).When a model has no “feature” functions of parameters, but only comprises primary parameters, the n<sup>th</sup>-FASAM-N methodology becomes identical to the extant n<sup>th</sup> CASAM-N (“n<sup>th</sup>-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems”) methodology. Both the n<sup>th</sup>-FASAM-N and the n<sup>th</sup>-CASAM-N methodologies are formulated in linearly increasing higher-dimensional Hilbert spaces as opposed to exponentially increasing parameter-dimensional spaces thus overcoming the curse of dimensionality in sensitivity analysis of nonlinear systems. Both the n<sup>th</sup>-FASAM-N and the n<sup>th</sup>-CASAM-N are incomparably more efficient and more accurate than any other methods (statistical, finite differences, etc.) for computing exact expressions of response sensitivities of any order with respect to the model’s features and/or primary uncertain parameters, boundaries, and internal interfaces.展开更多
The phenomenology involved in severe accidents in nuclear reactors is highly complex.Currently,integrated analysis programs used for severe accident analysis heavily rely on custom empirical parameters,which introduce...The phenomenology involved in severe accidents in nuclear reactors is highly complex.Currently,integrated analysis programs used for severe accident analysis heavily rely on custom empirical parameters,which introduce considerable uncertainty.Therefore,in recent years,the field of severe accidents has shifted its focus toward applying uncertainty analysis methods to quantify uncertainty in safety assessment programs,known as“best estimate plus uncertainty(BEPU).”This approach aids in enhancing our comprehension of these programs and their further development and improvement.This study concentrates on a third-generation pressurized water reactor equipped with advanced active and passive mitigation strategies.Through an Integrated Severe Accident Analysis Program(ISAA),numerical modeling and uncertainty analysis were conducted on severe accidents resulting from large break loss of coolant accidents.Seventeen uncertainty parameters of the ISAA program were meticulously screened.Using Wilks'formula,the developed uncertainty program code,SAUP,was employed to carry out Latin hypercube sampling,while ISAA was employed to execute batch calculations.Statistical analysis was then conducted on two figures of merit,namely hydrogen generation and the release of fission products within the pressure vessel.Uncertainty calculations revealed that hydrogen production and the fraction of fission product released exhibited a normal distribution,ranging from 182.784 to 330.664 kg and from 15.6 to 84.3%,respectively.The ratio of hydrogen production to reactor thermal power fell within the range of 0.0578–0.105.A sensitivity analysis was performed for uncertain input parameters,revealing significant correlations between the failure temperature of the cladding oxide layer,maximum melt flow rate,size of the particulate debris,and porosity of the debris with both hydrogen generation and the release of fission products.展开更多
[Objectives]To fully understand the quality of commercial enzyme inhibition-colorimetric pesticide residue rapid detection kits,so that they can play a greater role in the detection and supervision of agricultural pro...[Objectives]To fully understand the quality of commercial enzyme inhibition-colorimetric pesticide residue rapid detection kits,so that they can play a greater role in the detection and supervision of agricultural products.[Methods]The sensitivity of 28 kinds of pesticides was determined by using the commercially available enzyme inhibition colorimetric rapid detection kit with Hendu brand.[Results]There was a significant difference in the sensitivity of the kit to each pesticide,and the kit was more sensitive to dichlorvos among the 28 pesticides tested.The sensitivity to methyl isosalifos,dimethoate,isocarbophos,fenthion and phorate was poor,and the sensitivity to quinalphos was different between 3.0 and 2.5 mL.[Conclusions]The large difference of the sensitivity of the enzyme inhibition-colorimetric rapid detection kit for pesticide residues to different kits is a reason for the false positive and false negative test results of the kit,which needs to be considered by relevant personnel.展开更多
Traditional global sensitivity analysis(GSA)neglects the epistemic uncertainties associated with the probabilistic characteristics(i.e.type of distribution type and its parameters)of input rock properties emanating du...Traditional global sensitivity analysis(GSA)neglects the epistemic uncertainties associated with the probabilistic characteristics(i.e.type of distribution type and its parameters)of input rock properties emanating due to the small size of datasets while mapping the relative importance of properties to the model response.This paper proposes an augmented Bayesian multi-model inference(BMMI)coupled with GSA methodology(BMMI-GSA)to address this issue by estimating the imprecision in the momentindependent sensitivity indices of rock structures arising from the small size of input data.The methodology employs BMMI to quantify the epistemic uncertainties associated with model type and parameters of input properties.The estimated uncertainties are propagated in estimating imprecision in moment-independent Borgonovo’s indices by employing a reweighting approach on candidate probabilistic models.The proposed methodology is showcased for a rock slope prone to stress-controlled failure in the Himalayan region of India.The proposed methodology was superior to the conventional GSA(neglects all epistemic uncertainties)and Bayesian coupled GSA(B-GSA)(neglects model uncertainty)due to its capability to incorporate the uncertainties in both model type and parameters of properties.Imprecise Borgonovo’s indices estimated via proposed methodology provide the confidence intervals of the sensitivity indices instead of their fixed-point estimates,which makes the user more informed in the data collection efforts.Analyses performed with the varying sample sizes suggested that the uncertainties in sensitivity indices reduce significantly with the increasing sample sizes.The accurate importance ranking of properties was only possible via samples of large sizes.Further,the impact of the prior knowledge in terms of prior ranges and distributions was significant;hence,any related assumption should be made carefully.展开更多
Investigate the self-assessment of the skin sensitivity degree of Chinese cosmetic consumers,and explore the differences in lifestyle and skin conditions among consumers with different degrees of skin sensitivity.The ...Investigate the self-assessment of the skin sensitivity degree of Chinese cosmetic consumers,and explore the differences in lifestyle and skin conditions among consumers with different degrees of skin sensitivity.The study selected 716 female participants from different cities,and collected relevant data through questionnaire surveys,instrument tests,and other methods.The results found that the participants who self-assessed as having sensitive skin had a lower average age,frequency of skin care,frequency of makeup,and years of makeup.The proportion of choosing medical cosmetology and staying up late was higher,the skin was more elastic,the skin tone was more biased towards red,there were more red areas,and the skin texture was better(p<0.05).The research results can be used to guide the development of cosmetics to meet the needs of consumers with different degrees of skin sensitivity.展开更多
This work highlights the unparalleled efficiency of the “n<sup>th</sup>-Order Function/ Feature Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (n<sup>th</sup>-FASAM-N) by con...This work highlights the unparalleled efficiency of the “n<sup>th</sup>-Order Function/ Feature Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (n<sup>th</sup>-FASAM-N) by considering the well-known Nordheim-Fuchs reactor dynamics/safety model. This model describes a short-time self-limiting power excursion in a nuclear reactor system having a negative temperature coefficient in which a large amount of reactivity is suddenly inserted, either intentionally or by accident. This nonlinear paradigm model is sufficiently complex to model realistically self-limiting power excursions for short times yet admits closed-form exact expressions for the time-dependent neutron flux, temperature distribution and energy released during the transient power burst. The n<sup>th</sup>-FASAM-N methodology is compared to the extant “n<sup>th</sup>-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (n<sup>th</sup>-CASAM-N) showing that: (i) the 1<sup>st</sup>-FASAM-N and the 1<sup>st</sup>-CASAM-N methodologies are equally efficient for computing the first-order sensitivities;each methodology requires a single large-scale computation for solving the “First-Level Adjoint Sensitivity System” (1<sup>st</sup>-LASS);(ii) the 2<sup>nd</sup>-FASAM-N methodology is considerably more efficient than the 2<sup>nd</sup>-CASAM-N methodology for computing the second-order sensitivities since the number of feature-functions is much smaller than the number of primary parameters;specifically for the Nordheim-Fuchs model, the 2<sup>nd</sup>-FASAM-N methodology requires 2 large-scale computations to obtain all of the exact expressions of the 28 distinct second-order response sensitivities with respect to the model parameters while the 2<sup>nd</sup>-CASAM-N methodology requires 7 large-scale computations for obtaining these 28 second-order sensitivities;(iii) the 3<sup>rd</sup>-FASAM-N methodology is even more efficient than the 3<sup>rd</sup>-CASAM-N methodology: only 2 large-scale computations are needed to obtain the exact expressions of the 84 distinct third-order response sensitivities with respect to the Nordheim-Fuchs model’s parameters when applying the 3<sup>rd</sup>-FASAM-N methodology, while the application of the 3<sup>rd</sup>-CASAM-N methodology requires at least 22 large-scale computations for computing the same 84 distinct third-order sensitivities. Together, the n<sup>th</sup>-FASAM-N and the n<sup>th</sup>-CASAM-N methodologies are the most practical methodologies for computing response sensitivities of any order comprehensively and accurately, overcoming the curse of dimensionality in sensitivity analysis.展开更多
This paper presents an engineering system approach using a 2D model of conservation of mass to study the dynamics of ozone and concerned chemical species in the stratosphere.By considering all fourteen photolysis,ozon...This paper presents an engineering system approach using a 2D model of conservation of mass to study the dynamics of ozone and concerned chemical species in the stratosphere.By considering all fourteen photolysis,ozone-generating,and-depleting chemical reactions,the model calculated the transient,spatial changes of ozone under different physical-chemical-radiative conditions.Validation against the measured data demonstrated good accuracy,close match of our model with the observed ozone concentrations at both 20°S and 90°N locations.The deviation in the average concentration was less than 1% and in ozone profiles less than 17%.The impacts of various chlorine-(Cl),nitrogen oxides-(NO_(x)),and bromine-(Br)depleting cycles on ozone concentrations and distribution were investigated.The chlorine catalytic depleting cycle was found to exhibit the most significant impact on ozone dynamics,confirming the key role of chlorine in the problem of ozone depletion.Sensitivity analysis was conducted with levels of 25%,50%,100%,200%,and 400% of the baseline value.The combined cycles(Cl+NO_(x)+Br)showed the most significant influence on ozone behavior.The total ozone abundance above the South Pole could decrease by a small 3%,from 281 DU(Dubson Units)to 273 DU for the 25% level,or by a huge thinning of 60%to 114 DU for the 400% concentration level.When the level of chlorine gases increased beyond 200%,it would cause ozone depletion to a level of ozone hole(below 220 DU).The 2D Ozone Model presented in this paper demonstrates robustness,convenience,efficiency,and executability for analyzing complex ozone phenomena in the stratosphere.展开更多
基金supported by the Doctor Foundation of Gansu Academy of Agricultural Sciences,China(2020GAAS33)the Young Science and Technology Lifting Engineering Talents in Gansu Province,China(2020-18)the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2017-ICS)。
文摘Maize(Zea mays L.) is an economically vital grain crop that is cultivated worldwide. In 2011, a maize foliar disease was detected in Lingtai and Lintao counties in Gansu Province, China. The characteristic signs and symptoms of this disease include irregular chlorotic lesions on the tips and edges of infected leaves and black punctate fruiting bodies in dead leaf tissues. Given favourable environmental conditions, this disease spread to areas surrounding Gansu. In this study, infected leaves were collected from Gansu and Ningxia Hui Autonomous Region between 2018and 2020 to identify the disease-causing pathogen. Based on morphological features, pathogenicity tests, and multilocus phylogenetic analysis involving internal transcribed spacer(ITS), 18S small subunit rDNA(SSU), 28S large subunit rDNA(LSU), translation elongation factor 1-alpha(TEF), and β-tubulin(TUB) sequences, Eutiarosporella dactylidis was identified as the causative pathogen of this newly discovered leaf blight. Furthermore, an in vitro bioassay was conducted on representative strains using six fungicides, and both fludioxonil and carbendazim were found to significantly inhibit the mycelial growth of E. dactylidis. The results of this study provide a reference for the detection and management of Eutiarosporella leaf blight.
文摘Let(X,T)be a linear dynamical system,where X is a Banach space and T:X→X is a bounded linear operator.This paper obtains that(X,T)is sensitive(Li-Yorke sensitive,mean sensitive,syndetically mean sensitive,respectively)if and only if(X,T)is Banach mean sensitive(Banach mean Li-Yorke sensitive,thickly multi-mean sensitive,thickly syndetically mean sensitive,respectively).Several examples are provided to distinguish between different notions of mean sensitivity,syndetic mean sensitivi`ty and mean Li-Yorke sensitivity.
基金sponsored by the National Key R&D Program of China(2022YFD1400900)the National Natural Science Foundation of China(32272585)the Fundamental Research Funds for the Central Universities,China(KYCXJC2023003)。
文摘Fluopyram is an succinate dehydrogenase inhibitors(SDHI)fungicide that has been registered in China to control gummy stem blight(GSB)in watermelons for many years.However,whether the field pathogens of GSB are still sensitive to fluopyram or not is unknown.Therefore,we collected 69 Didymella bryoniae isolates from the fields that usually use fluopyram to control GSB to determine the sensitivity change.The EC_(50)(50%inhibition effect)values of fluopyram against D.bryoniae ranged from 0.0691 to 0.3503μg mL^(–1) and the variation factor was 5.07.The mean EC_(50) value was(0.1579±0.0669)μg mL^(–1) and the curve of sensitivity was unimodal.No resistant strains were found in the isolates,which means that the pathogens were still sensitive to fluopyram.The minimal inhibition concentration(MIC)of fluopyram against D.bryoniae was 3μg mL^(–1).Four low-resistant mutants and two medium-resistant mutants were obtained using fungicide taming and the resistance of mutants could be inherited stably.The growth rate of mutants decreased significantly compared with that of wild-type strains while the biomass of most mutants was similar to that of wild-type strains.The sensitivity of most resistant mutants to various stresses was increased compared with that of wild-type strains.The virulence of mutants receded except for low-resistant mutant XN51FR-1,which had the same lesion area as XN51 on the watermelon leaves.The results indicated that the fitness of resistant mutants was decreased compared with that of wild-type strains.The cross-resistance assay indicated that fluopyram-resistant mutants were positive cross-resistant to all six SDHI fungicides in this test but were still sensitive to fluazinam and tebuconazole.So the resistance risk of D.bryoniae to fluopyram was moderate.In addition,we found that the SdhB gene of low-resistant mutant XN30FR-1 had three new point mutations at positions K258N,A259P,and H277N.Medium-resistant mutant XN52FR-1 showed a mutation at position H277N and other mutants did not have any point mutation.
基金the National Key Research and Development Program of China(2020YFA0608404)the National Nature Science Foundation of China(41101006).
文摘Assessment of land sensitivity to desertification is an important step to support desertification monitoring and control.Based on the Mediterranean Desertification and Land Use(MEDALUS)model,we defined four quality indicators(soil,climate,vegetation and management)to evaluate the sensitivity of land in northern China to desertification.We improved MEDALUS via excluding cities from the areas at risk of desertification by means of defining a threshold value for population density.The framework,validated in northern China,further optimizes the model to link priority areas and land restoration programmed to support desertification control.We found that the four indicators influenced and restricted each other,which jointly affected the distribution of desertification sensitivity in northern China.The spatial distribution of sensitivity in northern China showed large regional differences,with clear boundaries and concentrated distributions of regions with high and low sensitivity;the overall sensitivity decreased,with some areas rated as having moderate,severe,and extremely severe sensitivity changing to slight sensitivity;and the influence weight was much higher for the management quality index than for the climate,vegetation,and soil indexes.This suggests that management was the main factor that affected desertification sensitivity in northern China,and that climate factors exacerbated sensitivity,but the factors that are driving the spatial heterogeneity of the influencing factors need further study。
文摘The impact sensitivity assessment of spacecraft is to obtain the probability of spacecraft encountering the OD/M(orbital debris or meteoroid),which is a prerequisite for survivability assessment of on-orbit spacecraft.An impact sensitivity assessment method of spacecraft based on virtual exterior wall was proposed to improve the computational efficiency.This method eliminates determination of the outermost surface elements of the spacecraft before generating the debris rays,which are assumed to originate from a non-concave virtual wall that completely wraps the spacecraft.The Dist Mesh method was adopted for the generating of the virtual wall to ensure its mesh quality.The influences of the sizes,mesh densities,shapes of the virtual wall on the efficiency and accuracy were considered to obtain the best combination of the size and mesh density of the wall and spacecraft.The results of this method were compared with those of S3DE(Survivability of Spacecraft in Space Debris Environment),BUMPER,MDPANTO,ESABASE2/Debris to verify the feasibility of the method.The PCHIP(Piecewise Cubic Hermite Interpolating Polynomial)was used to fit the size vs.flux relationship of the space debris to acquire the impact probability of OD/M with arbitrary size on the spacecraft.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12104190,12104189,and 12204312)the Natural Science Foundation of Jiangsu Province (Grant No.BK20210874)+2 种基金the Jiangsu Provincial Key Research and Development Program (Grant No.BE2022143)the Jiangxi Provincial Natural Science Foundation (Grant Nos.20224BAB211014 and 20232BAB201042)the General Project of Natural Science Research in Colleges and Universities of Jiangsu Province (Grant No.20KJB140008)。
文摘We focus on the Mach–Zehnder interferometer(MZI) with the input of a coherent beam and one of the bright entangled twin beams with an external power reference beam employed for measurement. The results show that the phase sensitivity can reach sub-Heisenberg limit and approach quantum Cramer–Rao bound by changing the squeezing parameters and the photon number of the coherent beam, under the phase-matching condition. The absence of the external power reference beam will degrade the performance of the phase sensitivity. Meanwhile, this scheme shows good robustness against the losses of the photon detectors. We present a detailed discussion about the phase sensitivities when the inputs are two coherent beams, or a coherent beam plus a single-mode squeezed vacuum beam based on the MZI. This scenario can be applied in the field of phase precision measurements and other optical sensors.
基金Project supported by the Engineering and Physical Sciences Research Council of U. K.(Nos. EP/S030875/1, EP/T017899/1, and EP/T517896/1)。
文摘Within this work,we perform a sensitivity analysis to determine the influence of the material input parameters on the pressure in an isotropic porous solid cylinder.We provide a step-by-step guide to obtain the analytical solution for a porous isotropic elastic cylinder in terms of the pressure,stresses,and elastic displacement.We obtain the solution by performing a Laplace transform on the governing equations,which are those of Biot's poroelasticity in cylindrical polar coordinates.We enforce radial boundary conditions and obtain the solution in the Laplace transformed domain before reverting back to the time domain.The sensitivity analysis is then carried out,considering only the derived pressure solution.This analysis finds that the time t,Biot's modulus M,and Poisson's ratio ν have the highest influence on the pressure whereas the initial value of pressure P_(0) plays a very little role.
文摘AIM:To investigate the types of bacteria in patients with eye infections in Suzhou and their drug resistance to commonly used antibacterial drugs.METHODS:The clinical data of 155 patients were retrospectively collected in this study,and the pathogenic bacteria species and drug resistance of each pathogenic bacteria were analyzed.RESULTS:Among the 155 patients(age from 12 to 87 years old,with an average age of 57,99 males and 56 females)with eye infections(160 eyes:74 in the left eye,76 in the right eye and 5 in both eyes,all of which were exogenous),71(45.81%)strains were gram-positive bacteria,23(14.84%)strains were gram-negative bacteria and 61(39.35%)strains were fungi.Gram-positive bacteria were highly resistant to penicillin and erythromycin(78.87%and 46.48%respectively),but least resistant to vancomycin at 0.Gram-negative bacteria were highly resistant to cefoxitin and compound sulfamethoxazole(100%and 95.65%respectively),but least resistant to meropenem at 0.Comparison of the resistance of gram-positive and gram-negative bacteria to some drugs revealed statistically significant differences(P<0.05)in the resistance of both to cefoxitin,cotrimoxazole,levofloxacin,cefuroxime,ceftriaxone and ceftazidime,and both had higher rates of resistance to gram-negative bacteria than to gram-positive bacteria.The distribution of bacterial infection strains showed that Staphylococcus epidermidis was the most common strain in the conjunctiva,cornea,aqueous humor or vitreous body and other eye parts.Besides,Fusarium and Pseudomonas aeruginosa were also among the most common strains of conjunctival and corneal infections.CONCLUSION:Gram-positive bacteria are the dominant bacteria in eye infections,followed by gram-negative bacteria and fungi.Considering the resistance of gramnegative bacteria to multiple drugs,monitoring of bacteria should be strengthened in eye bacterial infections for effective prevention and control to reduce complications caused by eye infections.
基金funded in part by the National Natural Science Foundation of China,grant number 51574257in part by the National Key Research and Development Program of China,grant number 2015CB250904。
文摘Research on reservoir rock stress sensitivity has traditionally focused on unary granular structures,neglecting the binary nature of real reservoirs,especially tight reservoirs.Understanding the stresssensitive behavior and mathematical characterization of binary granular media remains a challenging task.In this study,we conducted online-NMR experiments to investigate the permeability and porosity evolution as well as stress-sensitive control mechanisms in tight sandy conglomerate samples.The results revealed stress sensitivity coefficients between 0.042 and 0.098 and permeability damage rates ranging from 65.6%to 90.9%,with an average pore compression coefficient of 0.0168—0.0208 MPa 1.Pore-scale compression occurred in three stages:filling,compression,and compaction,with matrix pores playing a dominant role in pore compression.The stress sensitivity of binary granular media was found to be influenced by the support structure and particle properties.High stress sensitivity was associated with small fine particle size,high fines content,high uniformity coefficient of particle size,high plastic deformation,and low Young's modulus.Matrix-supported samples exhibited a high irreversible permeability damage rate(average=74.2%)and stress sensitivity coefficients(average=0.089),with pore spaces more slit-like.In contrast,grain-supported samples showed low stress sensitivity coefficients(average=0.021)at high stress stages.Based on the experiments,we developed a mathematical model for stress sensitivity in binary granular media,considering binary granular properties and nested interactions using Hertz contact deformation and Poiseuille theory.By describing the change in activity content of fines under stress,we characterized the non-stationary state of compressive deformation in the binary granular structure and classified the reservoir into three categories.The model was applied for production prediction using actual data from the Mahu reservoir in China,showing that the energy retention rates of support-dominated,fill-dominated,and matrix-controlled reservoirs should be higher than 70.1%,88%,and 90.2%,respectively.
基金supported by the National Natural Science Foundation of China (62373224,62333013,U23A20327)。
文摘Battery production is crucial for determining the quality of electrode,which in turn affects the manufactured battery performance.As battery production is complicated with strongly coupled intermediate and control parameters,an efficient solution that can perform a reliable sensitivity analysis of the production terms of interest and forecast key battery properties in the early production phase is urgently required.This paper performs detailed sensitivity analysis of key production terms on determining the properties of manufactured battery electrode via advanced data-driven modelling.To be specific,an explainable neural network named generalized additive model with structured interaction(GAM-SI)is designed to predict two key battery properties,including electrode mass loading and porosity,while the effects of four early production terms on manufactured batteries are explained and analysed.The experimental results reveal that the proposed method is able to accurately predict battery electrode properties in the mixing and coating stages.In addition,the importance ratio ranking,global interpretation and local interpretation of both the main effects and pairwise interactions can be effectively visualized by the designed neural network.Due to the merits of interpretability,the proposed GAM-SI can help engineers gain important insights for understanding complicated production behavior,further benefitting smart battery production.
基金Supported by National Natural Science Foundation of China,No.32200944“Qing Lan”Project of Jiangsu Provincethe Jiangsu Research Institute of Sports Science Foundation,No.BM-2023-03.
文摘BACKGROUND Skeletal muscle handles about 80% of insulin-stimulated glucose uptake and become the major organ occurring insulin resistance(IR).Many studies have confirmed the interactions between macrophages and skeletal muscle regulated the inflammation and regeneration of skeletal muscle.However,despite of the decades of research,whether macrophages infiltration and polarization in skeletal muscle under high glucose(HG)milieus results in the development of IR is yet to be elucidated.C2C12 myoblasts are well-established and excellent model to study myogenic regulation and its responses to stimulation.Further exploration of macrophages'role in myoblasts IR and the dynamics of their infiltration and polarization is warranted.AIM To evaluate interactions between myoblasts and macrophages under HG,and its effects on inflammation and IR in skeletal muscle.METHODS We detected the polarization status of macrophages infiltrated to skeletal muscles of IR mice by hematoxylin and eosin and immunohistochemical staining.Then,we developed an in vitro co-culture system to study the interactions between myoblasts and macrophages under HG milieus.The effects of myoblasts on macrophages were explored through morphological observation,CCK-8 assay,Flow Cytometry,and enzyme-linked immunosorbent assay.The mediation of macrophages to myogenesis and insulin sensitivity were detected by morphological observation,CCK-8 assay,Immunofluorescence,and 2-NBDG assay.RESULTS The F4/80 and co-localization of F4/80 and CD86 increased,and the myofiber size decreased in IR group(P<0.01,g=6.26).Compared to Mc group,F4/80+CD86+CD206-cells,tumor necrosis factor-α(TNFα),inerleukin-1β(IL-1β)and IL-6 decreased,and IL-10 increased in McM group(P<0.01,g>0.8).In McM+HG group,F4/80+CD86+CD206-cells,monocyte chemoattractant protein 1,TNFα,IL-1βand IL-6 were increased,and F4/80+CD206+CD86-cells and IL-10 were decreased compared with Mc+HG group and McM group(P<0.01,g>0.8).Compered to M group,myotube area,myotube number and E-MHC were increased in MMc group(P<0.01,g>0.8).In MMc+HG group,myotube area,myotube number,E-MHC,GLUT4 and glucose uptake were decreased compared with M+HG group and MMc group(P<0.01,g>0.8).CONCLUSION Interactions between myoblasts and macrophages under HG milieus results in inflammation and IR,which support that the macrophage may serve as a promising therapeutic target for skeletal muscle atrophy and IR.
文摘This compendium review focuses on the spatial distribution of sensitivity to localized absorption changes in optically diffuse media,particularly for measurements relevant to near-infrared spectroscopy.The three temporal domains,continuous wave,frequency domain,and time domain,each obtain different optical data types whose changes may be related to effective homogeneous changes in the absorption coefficient.Sensitivity is the relationship between a localized perturbation and the recovered effective homogeneous absorption change.Therefore,spatial sensitivity maps representing the perturbation location can be generated for the numerous optical data types in the three temporal domains.The review first presents a history of the past 30 years of work investigating this sensitivity in optically diffuse media.These works are experimental and theoretical,presenting one-,two-,and three-dimensional sensitivity maps for different Near-Infrared Spectroscopy methods,domains,and data types.Following this history,we present a compendium of sensitivity maps organized by temporal domain and then data type.This compendium provides a valuable tool to compare the spatial sensitivity of various measurement methods and parameters in one document.Methods for one to generate these maps are provided in Appendix A,including the code.This historical review and comprehensive sensitivity map compendium provides a single source researchers may use to visualize,investigate,compare,and generate sensitivity to localized absorption change maps.
文摘This work presents the “n<sup>th</sup>-Order Feature Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (abbreviated as “n<sup>th</sup>-FASAM-N”), which will be shown to be the most efficient methodology for computing exact expressions of sensitivities, of any order, of model responses with respect to features of model parameters and, subsequently, with respect to the model’s uncertain parameters, boundaries, and internal interfaces. The unparalleled efficiency and accuracy of the n<sup>th</sup>-FASAM-N methodology stems from the maximal reduction of the number of adjoint computations (which are considered to be “large-scale” computations) for computing high-order sensitivities. When applying the n<sup>th</sup>-FASAM-N methodology to compute the second- and higher-order sensitivities, the number of large-scale computations is proportional to the number of “model features” as opposed to being proportional to the number of model parameters (which are considerably more than the number of features).When a model has no “feature” functions of parameters, but only comprises primary parameters, the n<sup>th</sup>-FASAM-N methodology becomes identical to the extant n<sup>th</sup> CASAM-N (“n<sup>th</sup>-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems”) methodology. Both the n<sup>th</sup>-FASAM-N and the n<sup>th</sup>-CASAM-N methodologies are formulated in linearly increasing higher-dimensional Hilbert spaces as opposed to exponentially increasing parameter-dimensional spaces thus overcoming the curse of dimensionality in sensitivity analysis of nonlinear systems. Both the n<sup>th</sup>-FASAM-N and the n<sup>th</sup>-CASAM-N are incomparably more efficient and more accurate than any other methods (statistical, finite differences, etc.) for computing exact expressions of response sensitivities of any order with respect to the model’s features and/or primary uncertain parameters, boundaries, and internal interfaces.
基金This work was supported financially by the National Natural Science Foundation of China(No.12375176).
文摘The phenomenology involved in severe accidents in nuclear reactors is highly complex.Currently,integrated analysis programs used for severe accident analysis heavily rely on custom empirical parameters,which introduce considerable uncertainty.Therefore,in recent years,the field of severe accidents has shifted its focus toward applying uncertainty analysis methods to quantify uncertainty in safety assessment programs,known as“best estimate plus uncertainty(BEPU).”This approach aids in enhancing our comprehension of these programs and their further development and improvement.This study concentrates on a third-generation pressurized water reactor equipped with advanced active and passive mitigation strategies.Through an Integrated Severe Accident Analysis Program(ISAA),numerical modeling and uncertainty analysis were conducted on severe accidents resulting from large break loss of coolant accidents.Seventeen uncertainty parameters of the ISAA program were meticulously screened.Using Wilks'formula,the developed uncertainty program code,SAUP,was employed to carry out Latin hypercube sampling,while ISAA was employed to execute batch calculations.Statistical analysis was then conducted on two figures of merit,namely hydrogen generation and the release of fission products within the pressure vessel.Uncertainty calculations revealed that hydrogen production and the fraction of fission product released exhibited a normal distribution,ranging from 182.784 to 330.664 kg and from 15.6 to 84.3%,respectively.The ratio of hydrogen production to reactor thermal power fell within the range of 0.0578–0.105.A sensitivity analysis was performed for uncertain input parameters,revealing significant correlations between the failure temperature of the cladding oxide layer,maximum melt flow rate,size of the particulate debris,and porosity of the debris with both hydrogen generation and the release of fission products.
文摘[Objectives]To fully understand the quality of commercial enzyme inhibition-colorimetric pesticide residue rapid detection kits,so that they can play a greater role in the detection and supervision of agricultural products.[Methods]The sensitivity of 28 kinds of pesticides was determined by using the commercially available enzyme inhibition colorimetric rapid detection kit with Hendu brand.[Results]There was a significant difference in the sensitivity of the kit to each pesticide,and the kit was more sensitive to dichlorvos among the 28 pesticides tested.The sensitivity to methyl isosalifos,dimethoate,isocarbophos,fenthion and phorate was poor,and the sensitivity to quinalphos was different between 3.0 and 2.5 mL.[Conclusions]The large difference of the sensitivity of the enzyme inhibition-colorimetric rapid detection kit for pesticide residues to different kits is a reason for the false positive and false negative test results of the kit,which needs to be considered by relevant personnel.
文摘Traditional global sensitivity analysis(GSA)neglects the epistemic uncertainties associated with the probabilistic characteristics(i.e.type of distribution type and its parameters)of input rock properties emanating due to the small size of datasets while mapping the relative importance of properties to the model response.This paper proposes an augmented Bayesian multi-model inference(BMMI)coupled with GSA methodology(BMMI-GSA)to address this issue by estimating the imprecision in the momentindependent sensitivity indices of rock structures arising from the small size of input data.The methodology employs BMMI to quantify the epistemic uncertainties associated with model type and parameters of input properties.The estimated uncertainties are propagated in estimating imprecision in moment-independent Borgonovo’s indices by employing a reweighting approach on candidate probabilistic models.The proposed methodology is showcased for a rock slope prone to stress-controlled failure in the Himalayan region of India.The proposed methodology was superior to the conventional GSA(neglects all epistemic uncertainties)and Bayesian coupled GSA(B-GSA)(neglects model uncertainty)due to its capability to incorporate the uncertainties in both model type and parameters of properties.Imprecise Borgonovo’s indices estimated via proposed methodology provide the confidence intervals of the sensitivity indices instead of their fixed-point estimates,which makes the user more informed in the data collection efforts.Analyses performed with the varying sample sizes suggested that the uncertainties in sensitivity indices reduce significantly with the increasing sample sizes.The accurate importance ranking of properties was only possible via samples of large sizes.Further,the impact of the prior knowledge in terms of prior ranges and distributions was significant;hence,any related assumption should be made carefully.
文摘Investigate the self-assessment of the skin sensitivity degree of Chinese cosmetic consumers,and explore the differences in lifestyle and skin conditions among consumers with different degrees of skin sensitivity.The study selected 716 female participants from different cities,and collected relevant data through questionnaire surveys,instrument tests,and other methods.The results found that the participants who self-assessed as having sensitive skin had a lower average age,frequency of skin care,frequency of makeup,and years of makeup.The proportion of choosing medical cosmetology and staying up late was higher,the skin was more elastic,the skin tone was more biased towards red,there were more red areas,and the skin texture was better(p<0.05).The research results can be used to guide the development of cosmetics to meet the needs of consumers with different degrees of skin sensitivity.
文摘This work highlights the unparalleled efficiency of the “n<sup>th</sup>-Order Function/ Feature Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (n<sup>th</sup>-FASAM-N) by considering the well-known Nordheim-Fuchs reactor dynamics/safety model. This model describes a short-time self-limiting power excursion in a nuclear reactor system having a negative temperature coefficient in which a large amount of reactivity is suddenly inserted, either intentionally or by accident. This nonlinear paradigm model is sufficiently complex to model realistically self-limiting power excursions for short times yet admits closed-form exact expressions for the time-dependent neutron flux, temperature distribution and energy released during the transient power burst. The n<sup>th</sup>-FASAM-N methodology is compared to the extant “n<sup>th</sup>-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (n<sup>th</sup>-CASAM-N) showing that: (i) the 1<sup>st</sup>-FASAM-N and the 1<sup>st</sup>-CASAM-N methodologies are equally efficient for computing the first-order sensitivities;each methodology requires a single large-scale computation for solving the “First-Level Adjoint Sensitivity System” (1<sup>st</sup>-LASS);(ii) the 2<sup>nd</sup>-FASAM-N methodology is considerably more efficient than the 2<sup>nd</sup>-CASAM-N methodology for computing the second-order sensitivities since the number of feature-functions is much smaller than the number of primary parameters;specifically for the Nordheim-Fuchs model, the 2<sup>nd</sup>-FASAM-N methodology requires 2 large-scale computations to obtain all of the exact expressions of the 28 distinct second-order response sensitivities with respect to the model parameters while the 2<sup>nd</sup>-CASAM-N methodology requires 7 large-scale computations for obtaining these 28 second-order sensitivities;(iii) the 3<sup>rd</sup>-FASAM-N methodology is even more efficient than the 3<sup>rd</sup>-CASAM-N methodology: only 2 large-scale computations are needed to obtain the exact expressions of the 84 distinct third-order response sensitivities with respect to the Nordheim-Fuchs model’s parameters when applying the 3<sup>rd</sup>-FASAM-N methodology, while the application of the 3<sup>rd</sup>-CASAM-N methodology requires at least 22 large-scale computations for computing the same 84 distinct third-order sensitivities. Together, the n<sup>th</sup>-FASAM-N and the n<sup>th</sup>-CASAM-N methodologies are the most practical methodologies for computing response sensitivities of any order comprehensively and accurately, overcoming the curse of dimensionality in sensitivity analysis.
文摘This paper presents an engineering system approach using a 2D model of conservation of mass to study the dynamics of ozone and concerned chemical species in the stratosphere.By considering all fourteen photolysis,ozone-generating,and-depleting chemical reactions,the model calculated the transient,spatial changes of ozone under different physical-chemical-radiative conditions.Validation against the measured data demonstrated good accuracy,close match of our model with the observed ozone concentrations at both 20°S and 90°N locations.The deviation in the average concentration was less than 1% and in ozone profiles less than 17%.The impacts of various chlorine-(Cl),nitrogen oxides-(NO_(x)),and bromine-(Br)depleting cycles on ozone concentrations and distribution were investigated.The chlorine catalytic depleting cycle was found to exhibit the most significant impact on ozone dynamics,confirming the key role of chlorine in the problem of ozone depletion.Sensitivity analysis was conducted with levels of 25%,50%,100%,200%,and 400% of the baseline value.The combined cycles(Cl+NO_(x)+Br)showed the most significant influence on ozone behavior.The total ozone abundance above the South Pole could decrease by a small 3%,from 281 DU(Dubson Units)to 273 DU for the 25% level,or by a huge thinning of 60%to 114 DU for the 400% concentration level.When the level of chlorine gases increased beyond 200%,it would cause ozone depletion to a level of ozone hole(below 220 DU).The 2D Ozone Model presented in this paper demonstrates robustness,convenience,efficiency,and executability for analyzing complex ozone phenomena in the stratosphere.