4 elderly care service stations in Zhanlan Road Street,Xicheng District,Beijing are selected,and questionnaires are designed and distributed to the surrounding elderly population to understand their needs and satisfac...4 elderly care service stations in Zhanlan Road Street,Xicheng District,Beijing are selected,and questionnaires are designed and distributed to the surrounding elderly population to understand their needs and satisfaction with the station environment.By observing elderly care service stations on site,the characteristics,obstacles,and shortcomings of the environment are recorded,and relevant data are collected and analyzed,such as the characteristics of the elderly population being interviewed,the planning and design data of the station environment,and the distribution of service facilities.The overall characteristics of the spatial environment of elderly care stations are summarized,and renovation measures and optimization suggestions are provided for the current shortcomings,thereby providing some basis for the spatial design of community elderly care service stations in the future.展开更多
Blended teaching has emerged as a prominent subject in the recent reform and innovation of higher education.It has become imperative and guiding for colleges and universities to embrace a mixed teaching approach that ...Blended teaching has emerged as a prominent subject in the recent reform and innovation of higher education.It has become imperative and guiding for colleges and universities to embrace a mixed teaching approach that aligns with the evolving needs of education and teaching in the new era.This paper aims to provide a comprehensive overview of the research status surrounding blended teaching,encompassing fundamental issues,teaching design,practical guidance,teaching effectiveness,and evaluation.By critically examining the current challenges associated with blended teaching,this study proposes optimization strategies including enhancing student participation and interaction,promoting deep learning,improving teachers’preparedness,teaching technologies,and curriculum design capabilities,strengthening top-level design,and perfecting evaluation and incentive mechanisms.These strategies provide new directions for the reform of blended teaching.展开更多
There has been increasing demand for high-energy density and longcycle life rechargeable batteries to satisfy the ever-growing requirements for nextgeneration energy storage systems.Among all available candidates,dual...There has been increasing demand for high-energy density and longcycle life rechargeable batteries to satisfy the ever-growing requirements for nextgeneration energy storage systems.Among all available candidates,dual-ion batteries(DIBs)have drawn tremendous attention in the past few years from both academic and industrial battery communities because of their fascinating advantages of high working voltage,excellent safety,and environmental friendliness.However,the dynamic imbalance between the electrodes and the mismatch of traditional electrolyte systems remain elusive.To fully employ the advantages of DIBs,the overall optimization of anode materials,cathode materials,and compatible electrolyte systems is urgently needed.Here,we review the development history and the reaction mechanisms involved in DIBs.Afterward,the optimization strategies toward DIB materials and electrolytes are highlighted.In addition,their energy-related applications are also provided.Lastly,the research challenges and possible development directions of DIBs are outlined.展开更多
Exploration of alternative energy storage systems has been more than necessary in view of the supply risks haunting lithium-ion batteries.Among various alternative electrochemical energy storage devices,sodium-ion bat...Exploration of alternative energy storage systems has been more than necessary in view of the supply risks haunting lithium-ion batteries.Among various alternative electrochemical energy storage devices,sodium-ion battery outstands with advantages of cost-effectiveness and comparable energy density with lithium-ion batteries.Thanks to the similar electrochemical mechanism,the research and development of lithium-ion batteries have forged a solid foundation for sodium-ion battery explorations.Advancements in sodium-ion batteries have been witnessed in terms of superior electrochemical performance and broader application scenarios.Here,the strategies adopted to optimize the battery components(cathode,anode,electrolyte,separator,binder,current collector,etc.)and the cost,safety,and commercialization issues in sodium-ion batteries are summarized and discussed.Based on these optimization strategies,assembly of functional(flexible,stretchable,self-healable,and self-chargeable)and integrated sodium-ion batteries(−actuators,−sensors,electrochromic,etc.)have been realized.Despite these achievements,challenges including energy density,scalability,trade-off between energy density and functionality,cost,etc.are to be addressed for sodium-ion battery commercialization.This review aims at providing an overview of the up-to-date achievements in sodium-ion batteries and serves to inspire more efforts in designing upgraded sodium-ion batteries.展开更多
Spark,a distributed computing platform,has rapidly developed in the field of big data.Its in-memory computing feature reduces disk read overhead and shortens data processing time,making it have broad application prosp...Spark,a distributed computing platform,has rapidly developed in the field of big data.Its in-memory computing feature reduces disk read overhead and shortens data processing time,making it have broad application prospects in large-scale computing applications such as machine learning and image processing.However,the performance of the Spark platform still needs to be improved.When a large number of tasks are processed simultaneously,Spark’s cache replacementmechanismcannot identify high-value data partitions,resulting inmemory resources not being fully utilized and affecting the performance of the Spark platform.To address the problem that Spark’s default cache replacement algorithm cannot accurately evaluate high-value data partitions,firstly the weight influence factors of data partitions are modeled and evaluated.Then,based on this weighted model,a cache replacement algorithm based on dynamic weighted data value is proposed,which takes into account hit rate and data difference.Better integration and usage strategies are implemented based on LRU(LeastRecentlyUsed).Theweight update algorithm updates the weight value when the data partition information changes,accurately measuring the importance of the partition in the current job;the cache removal algorithm clears partitions without useful values in the cache to releasememory resources;the weight replacement algorithm combines partition weights and partition information to replace RDD partitions when memory remaining space is insufficient.Finally,by setting up a Spark cluster environment,the algorithm proposed in this paper is experimentally verified.Experiments have shown that this algorithmcan effectively improve cache hit rate,enhance the performance of the platform,and reduce job execution time by 7.61%compared to existing improved algorithms.展开更多
With the development of the Internet of Things(IoT),it requires better performance from wireless sensor networks(WSNs),such as larger coverage,longer lifetime,and lower latency.However,a large amount of data generated...With the development of the Internet of Things(IoT),it requires better performance from wireless sensor networks(WSNs),such as larger coverage,longer lifetime,and lower latency.However,a large amount of data generated from monitoring and long-distance transmission places a heavy burden on sensor nodes with the limited battery power.For this,we investigate an unmanned aerial vehicles assisted mobile wireless sensor network(UAV-assisted WSN)to prolong the network lifetime in this paper.Specifically,we use UAVs to assist the WSN in collecting data.In the current UAV-assisted WSN,the clustering and routing schemes are determined sequentially.However,such a separate consideration might not maximize the lifetime of the whole WSN due to the mutual coupling of clustering and routing.To efficiently prolong the lifetime of the WSN,we propose an integrated clustering and routing scheme that jointly optimizes the clustering and routing together.In the whole network space,it is intractable to efficiently obtain the optimal integrated clustering and routing scheme.Therefore,we propose the Monte-Las search strategy based on Monte Carlo and Las Vegas ideas,which can generate the chain matrix to guide the algorithm to find the solution faster.Unnecessary point-to-point collection leads to long collection paths,so a triangle optimization strategy is then proposed that finds a compromise path to shorten the collection path based on the geometric distribution and energy of sensor nodes.To avoid the coverage hole caused by the death of sensor nodes,the deployment of mobile sensor nodes and the preventive mechanism design are indispensable.An emergency data transmission mechanism is further proposed to reduce the latency of collecting the latency-sensitive data due to the absence of UAVs.Compared with the existing schemes,the proposed scheme can prolong the lifetime of the UAVassisted WSN at least by 360%,and shorten the collection path of UAVs by 56.24%.展开更多
The quantization algorithm compresses the original network by reducing the numerical bit width of the model,which improves the computation speed. Because different layers have different redundancy and sensitivity to d...The quantization algorithm compresses the original network by reducing the numerical bit width of the model,which improves the computation speed. Because different layers have different redundancy and sensitivity to databit width. Reducing the data bit width will result in a loss of accuracy. Therefore, it is difficult to determinethe optimal bit width for different parts of the network with guaranteed accuracy. Mixed precision quantizationcan effectively reduce the amount of computation while keeping the model accuracy basically unchanged. In thispaper, a hardware-aware mixed precision quantization strategy optimal assignment algorithm adapted to low bitwidth is proposed, and reinforcement learning is used to automatically predict the mixed precision that meets theconstraints of hardware resources. In the state-space design, the standard deviation of weights is used to measurethe distribution difference of data, the execution speed feedback of simulated neural network accelerator inferenceis used as the environment to limit the action space of the agent, and the accuracy of the quantization model afterretraining is used as the reward function to guide the agent to carry out deep reinforcement learning training. Theexperimental results show that the proposed method obtains a suitable model layer-by-layer quantization strategyunder the condition that the computational resources are satisfied, and themodel accuracy is effectively improved.The proposed method has strong intelligence and certain universality and has strong application potential in thefield of mixed precision quantization and embedded neural network model deployment.展开更多
Aiming at the problems that the original Harris Hawk optimization algorithm is easy to fall into local optimum and slow in finding the optimum,this paper proposes an improved Harris Hawk optimization algorithm(GHHO).F...Aiming at the problems that the original Harris Hawk optimization algorithm is easy to fall into local optimum and slow in finding the optimum,this paper proposes an improved Harris Hawk optimization algorithm(GHHO).Firstly,we used a Gaussian chaotic mapping strategy to initialize the positions of individuals in the population,which enriches the initial individual species characteristics.Secondly,by optimizing the energy parameter and introducing the cosine strategy,the algorithm's ability to jump out of the local optimum is enhanced,which improves the performance of the algorithm.Finally,comparison experiments with other intelligent algorithms were conducted on 13 classical test function sets.The results show that GHHO has better performance in all aspects compared to other optimization algorithms.The improved algorithm is more suitable for generalization to real optimization problems.展开更多
To solve the problem of slow convergence and easy to get into the local optimum of the spider monkey optimization algorithm,this paper presents a new algorithm based on multi-strategy(ISMO).First,the initial populatio...To solve the problem of slow convergence and easy to get into the local optimum of the spider monkey optimization algorithm,this paper presents a new algorithm based on multi-strategy(ISMO).First,the initial population is generated by a refracted opposition-based learning strategy to enhance diversity and ergodicity.Second,this paper introduces a non-linear adaptive dynamic weight factor to improve convergence efficiency.Then,using the crisscross strategy,using the horizontal crossover to enhance the global search and vertical crossover to keep the diversity of the population to avoid being trapped in the local optimum.At last,we adopt a Gauss-Cauchy mutation strategy to improve the stability of the algorithm by mutation of the optimal individuals.Therefore,the application of ISMO is validated by ten benchmark functions and feature selection.It is proved that the proposed method can resolve the problem of feature selection.展开更多
With the acceleration of urbanization in China,the discharge of domestic sewage and industrial wastewater is increasing,and accidents of sewage spilling out and polluting the environment occur from time to time.Proble...With the acceleration of urbanization in China,the discharge of domestic sewage and industrial wastewater is increasing,and accidents of sewage spilling out and polluting the environment occur from time to time.Problems such as imperfect facilities and backward control methods are com-mon in the urban drainage network systems in China.Efficient drainage not only strengthens infrastructure such as rain and sewage diversion,pollution source monitoring,transportation,drainage and storage but also urgently needs technical means to monitor and optimize production and operation.Aiming at the optimal control of single-stage pumping stations and the coordinated control between two-stage pumping stations,this paper studies the modelling and optimal control of drainage network systems.Based on the Long Short Term Memory(LSTM)water level prediction model of the sewage pumping stations,and then based on the mechanism analysis of drainage pipe network,the factors that may cause the water level change of pumping station are obtained.Grey correlation analysis is carried out on these influencing factors,and the prediction model is established by taking the factors with a high correlation degree as input.The research results show that compared with the traditional prediction model,the LSTM model not only has higher prediction accuracy but also has better inflection point tracking ability.展开更多
With the advent of the economic era of“Internet+,”new media has become a new means of enterprise marketing by virtue of its own advantages,including fast communication speed,diversified communication channels,low co...With the advent of the economic era of“Internet+,”new media has become a new means of enterprise marketing by virtue of its own advantages,including fast communication speed,diversified communication channels,low cost,and novel content.Enterprises should actively integrate into the new media era,constantly improve their cultural soft power and new media marketing ability,build new marketing systems,set up professional new media marketing teams,and further improve their marketing ability;innovate new media marketing content,attract consumers’attention,and expand the audience group;open up new media marketing channels,carry out diversified marketing,comprehensively enhance their marketing ability,and succeed in the fierce market competition.展开更多
The evolutionary strategy with a dynamic weighting schedule is proposed to find all the compromised solutions of the multi-objective integrated structure and control optimization problem, where the optimal system perf...The evolutionary strategy with a dynamic weighting schedule is proposed to find all the compromised solutions of the multi-objective integrated structure and control optimization problem, where the optimal system performance and control cost are defined by H2 or H∞ norms. During this optimization process, the weights are varying with the increasing generation instead of fixed values. The proposed strategy together with the linear matrix inequality (LMI) or the Riccati controller design method can find a series of uniformly distributed nondominated solutions in a single run. Therefore, this method can greatly reduce the computation intensity of the integrated optimization problem compared with the weight-based single objective genetic algorithm. Active automotive suspension is adopted as an example to illustrate the effectiveness of the proposed method.展开更多
The time-of-use(TOU)strategy can effectively improve the energy consumption mode of customers,reduce the peak-valley difference of load curve,and optimize the allocation of energy resources.This study presents an Opti...The time-of-use(TOU)strategy can effectively improve the energy consumption mode of customers,reduce the peak-valley difference of load curve,and optimize the allocation of energy resources.This study presents an Optimal guidance mechanism of the flexible load based on strategies of direct load control and time-of-use.First,this study proposes a period partitioning model,which is based on a moving boundary technique with constraint factors,and the Dunn Validity Index(DVI)is used as the objective to solve the period partitioning.Second,a control strategy for the curtailable flexible load is investigated,and a TOU strategy is utilized for further modifying load curve.Third,a price demand response strategy for adjusting transferable load is proposed in this paper.Finally,through the case study analysis of typical daily flexible load curve,the efficiency and correctness of the proposed method and model are validated and proved.展开更多
Despite the series-parallel hybrid electric vehicle inherits the performance advantages from both series and parallel hybrid electric vehicle, few researches about the series-parallel hybrid electric vehicle have been...Despite the series-parallel hybrid electric vehicle inherits the performance advantages from both series and parallel hybrid electric vehicle, few researches about the series-parallel hybrid electric vehicle have been revealed because of its complex co nstruction and control strategy. In this paper, a series-parallel hybrid electric bus as well as its control strategy is revealed, and a control parameter optimization approach using the real-valued genetic algorithm is proposed. The optimization objective is to minimize the fuel consumption while sustain the battery state of charge, a tangent penalty function of state of charge(SOC) is embodied in the objective function to recast this multi-objective nonlinear optimization problem as a single linear optimization problem. For this strategy, the vehicle operating mode is switched based on the vehicle speed, and an "optimal line" typed strategy is designed for the parallel control. The optimization parameters include the speed threshold for mode switching, the highest state of charge allowed, the lowest state of charge allowed and the scale factor of the engine optimal torque to the engine maximum torque at a rotational speed. They are optimized through numerical experiments based on real-value genes, arithmetic crossover and mutation operators. The hybrid bus has been evaluated at the Chinese Transit Bus City Driving Cycle via road test, in which a control area network-based monitor system was used to trace the driving schedule. The test result shows that this approach is feasible for the control parameter optimization. This approach can be applied to not only the novel construction presented in this paper, but also other types of hybrid electric vehicles.展开更多
The determination of optimal values for three parameters required in the original particle swarm optimization algorithm is very difficult. It is proposed that two new parameters simulating the harmony search strategy ...The determination of optimal values for three parameters required in the original particle swarm optimization algorithm is very difficult. It is proposed that two new parameters simulating the harmony search strategy can be adopted instead of the three parameters which are required in the original particle swarm optimization algorithm to update the positions of all the particles. The improved particle swarm optimization is used in the location of the critical slip surface of soil slope, and it is found that the improved particle swarm optimization algorithm is insensitive to the two parameters while the original particle swarm optimization algorithm can be sensitive to its three parameters.展开更多
Axial flux permanent magnet synchronous motors(AFPMSMs)have been widely used in wind-power generation,electric vehicles,aircraft,and other renewable-energy applications owing to their high power density,operating effi...Axial flux permanent magnet synchronous motors(AFPMSMs)have been widely used in wind-power generation,electric vehicles,aircraft,and other renewable-energy applications owing to their high power density,operating efficiency,and integrability.To facilitate comprehensive research on AFPMSM,this article reviews the developments in the research on the design and control optimization of AFPMSMs.First,the basic topologies of AFPMSMs are introduced and classified.Second,the key points of the design optimization of core and coreless AFPMSMs are summarized from the aspects of parameter design,structure design,and material optimization.Third,because efficiency improvement is an issue that needs to be addressed when AFPMSMs are applied to electric or other vehicles,the development status of efficiency-optimization control strategies is reviewed.Moreover,control strategies proposed to suppress torque ripple caused by the small inductance of disc coreless permanent magnet synchronous motors(DCPMSMs)are summarized.An overview of the rotor-synchronization control strategies for disc contra-rotating permanent magnet synchronous motors(CRPMSMs)is presented.Finally,the current difficulties and development trends revealed in this review are discussed.展开更多
The application and development of a wide-area measurement system(WAMS)has enabled many applications and led to several requirements based on dynamic measurement data.Such data are transmitted as big data information ...The application and development of a wide-area measurement system(WAMS)has enabled many applications and led to several requirements based on dynamic measurement data.Such data are transmitted as big data information flow.To ensure effective transmission of wide-frequency electrical information by the communication protocol of a WAMS,this study performs real-time traffic monitoring and analysis of the data network of a power information system,and establishes corresponding network optimization strategies to solve existing transmission problems.This study utilizes the traffic analysis results obtained using the current real-time dynamic monitoring system to design an optimization strategy,covering the optimization in three progressive levels:the underlying communication protocol,source data,and transmission process.Optimization of the system structure and scheduling optimization of data information are validated to be feasible and practical via tests.展开更多
Harris Hawks Optimization(HHO)is a novel meta-heuristic algorithm that imitates the predation characteristics of Harris Hawk and combines Lévy flight to solve complex multidimensional problems.Nevertheless,the ba...Harris Hawks Optimization(HHO)is a novel meta-heuristic algorithm that imitates the predation characteristics of Harris Hawk and combines Lévy flight to solve complex multidimensional problems.Nevertheless,the basic HHO algorithm still has certain limitations,including the tendency to fall into the local optima and poor convergence accuracy.Coot Bird Optimization(CBO)is another new swarm-based optimization algorithm.CBO originates from the regular and irregular motion of a bird called Coot on the water’s surface.Although the framework of CBO is slightly complicated,it has outstanding exploration potential and excellent capability to avoid falling into local optimal solutions.This paper proposes a novel enhanced hybrid algorithm based on the basic HHO and CBO named Enhanced Harris Hawks Optimization Integrated with Coot Bird Optimization(EHHOCBO).EHHOCBO can provide higher-quality solutions for numerical optimization problems.It first embeds the leadership mechanism of CBO into the population initialization process of HHO.This way can take full advantage of the valuable solution information to provide a good foundation for the global search of the hybrid algorithm.Secondly,the Ensemble Mutation Strategy(EMS)is introduced to generate the mutant candidate positions for consideration,further improving the hybrid algorithm’s exploration trend and population diversity.To further reduce the likelihood of falling into the local optima and speed up the convergence,Refracted Opposition-Based Learning(ROBL)is adopted to update the current optimal solution in the swarm.Using 23 classical benchmark functions and the IEEE CEC2017 test suite,the performance of the proposed EHHOCBO is comprehensively evaluated and compared with eight other basic meta-heuristic algorithms and six improved variants.Experimental results show that EHHOCBO can achieve better solution accuracy,faster convergence speed,and a more robust ability to jump out of local optima than other advanced optimizers in most test cases.Finally,EHHOCBOis applied to address four engineering design problems.Our findings indicate that the proposed method also provides satisfactory performance regarding the convergence accuracy of the optimal global solution.展开更多
Testing is the premise and foundation of realizing equipment health management (EHM). To address the problem that the static periodic test strategy may cause deficient test or excessive test, a dynamic sequential te...Testing is the premise and foundation of realizing equipment health management (EHM). To address the problem that the static periodic test strategy may cause deficient test or excessive test, a dynamic sequential test strategy (DSTS) for EHM is presented. Considering the situation that equipment health state is not completely observable in reality, a DSTS optimization method based on partially observable semi-Markov decision pro- cess (POSMDP) is proposed. Firstly, an equipment health state degradation model is constructed by Markov process, and the control limit maintenance policy is also introduced. Secondly, POSMDP is formulated in great detail. And then, POSMDP is converted to completely observable belief semi-Markov decision process (BSMDP) through belief state. The optimal equation and the corresponding optimal DSTS, which minimize the long-run ex- pected average cost per unit time, are obtained with BSMDP. The results of application in complex equipment show that the proposed DSTS is feasible and effective.展开更多
Spacecraft in the aerospace field and military equipment in the military field are at risk of being impacted by external objects,which can cause local damage to the structure.The randomness of local damage is a newcha...Spacecraft in the aerospace field and military equipment in the military field are at risk of being impacted by external objects,which can cause local damage to the structure.The randomness of local damage is a newchallenge for structural design,and it is essential to take random damage into account in the conceptual design phase for the purpose of improving structure’s resistance to external shocks.In this article,a random damaged structure is assumed to have damages of the same size and shape at random locations,and the random damage is considered as multiple damage conditions of the structure.In order to improve the randomness and comprehensiveness of the multiple damage conditions,the stacking strategy is used to generate the distribution of the damage area.Following this strategy,the topology optimization design of the random damaged structure,which is to minimize the weight of the structure with a constraint on the stress of the structure under multiple damage conditions,is formulated based on the independent continuousmapping(ICM)method.The dual sequence quadratic programming(DSQP)algorithm combined with the stress globalization method is adopted to solve the optimization problem.The numerical examples demonstrate the effectiveness and applicability of the proposed method in the topology optimization of strength-safe continuum structures.展开更多
基金Sponsored by the National Natural Science Foundation of China(51708004)Beijing Youth Teaching Master Team Construction Project(108051360023XN261)Yuyou Talent Training Program of North China University of Technology(215051360020XN160/009).
文摘4 elderly care service stations in Zhanlan Road Street,Xicheng District,Beijing are selected,and questionnaires are designed and distributed to the surrounding elderly population to understand their needs and satisfaction with the station environment.By observing elderly care service stations on site,the characteristics,obstacles,and shortcomings of the environment are recorded,and relevant data are collected and analyzed,such as the characteristics of the elderly population being interviewed,the planning and design data of the station environment,and the distribution of service facilities.The overall characteristics of the spatial environment of elderly care stations are summarized,and renovation measures and optimization suggestions are provided for the current shortcomings,thereby providing some basis for the spatial design of community elderly care service stations in the future.
基金The 2020 Guangxi Higher Education Undergraduate Teaching Reform Project“Research and Practice of Blended Course Evaluation System Based on College Students’Learning Effect”(Project number:2020JGZ116)。
文摘Blended teaching has emerged as a prominent subject in the recent reform and innovation of higher education.It has become imperative and guiding for colleges and universities to embrace a mixed teaching approach that aligns with the evolving needs of education and teaching in the new era.This paper aims to provide a comprehensive overview of the research status surrounding blended teaching,encompassing fundamental issues,teaching design,practical guidance,teaching effectiveness,and evaluation.By critically examining the current challenges associated with blended teaching,this study proposes optimization strategies including enhancing student participation and interaction,promoting deep learning,improving teachers’preparedness,teaching technologies,and curriculum design capabilities,strengthening top-level design,and perfecting evaluation and incentive mechanisms.These strategies provide new directions for the reform of blended teaching.
基金support from the National Key R&D Program of China(2022YFB2402600)National Natural Science Foundation of China(52125105,51972329)+2 种基金NSFC/RGC Joint Research Scheme(Project No:N_CityU104/20 and 52061160484)Shenzhen Science and Technology Planning Project(JCYJ20200109115624923,JSGG20220831104004008)Science and Technology Planning Project of Guangdong Province(2019TX05L389).
文摘There has been increasing demand for high-energy density and longcycle life rechargeable batteries to satisfy the ever-growing requirements for nextgeneration energy storage systems.Among all available candidates,dual-ion batteries(DIBs)have drawn tremendous attention in the past few years from both academic and industrial battery communities because of their fascinating advantages of high working voltage,excellent safety,and environmental friendliness.However,the dynamic imbalance between the electrodes and the mismatch of traditional electrolyte systems remain elusive.To fully employ the advantages of DIBs,the overall optimization of anode materials,cathode materials,and compatible electrolyte systems is urgently needed.Here,we review the development history and the reaction mechanisms involved in DIBs.Afterward,the optimization strategies toward DIB materials and electrolytes are highlighted.In addition,their energy-related applications are also provided.Lastly,the research challenges and possible development directions of DIBs are outlined.
基金supported by the National Natural Science Foundation of China(No.52202320)the Fundamental Research Funds for the Central Universities(No.862201013153)+2 种基金the Shandong Excel ent Young Scientists Fund Program(Overseas)(2023HWYQ-060)the Ministry of Education Ac RF Tier 1 Award RT15/20,SingaporeD.H.C.C.acknowledges the funding support from NUS R284000-227-114
文摘Exploration of alternative energy storage systems has been more than necessary in view of the supply risks haunting lithium-ion batteries.Among various alternative electrochemical energy storage devices,sodium-ion battery outstands with advantages of cost-effectiveness and comparable energy density with lithium-ion batteries.Thanks to the similar electrochemical mechanism,the research and development of lithium-ion batteries have forged a solid foundation for sodium-ion battery explorations.Advancements in sodium-ion batteries have been witnessed in terms of superior electrochemical performance and broader application scenarios.Here,the strategies adopted to optimize the battery components(cathode,anode,electrolyte,separator,binder,current collector,etc.)and the cost,safety,and commercialization issues in sodium-ion batteries are summarized and discussed.Based on these optimization strategies,assembly of functional(flexible,stretchable,self-healable,and self-chargeable)and integrated sodium-ion batteries(−actuators,−sensors,electrochromic,etc.)have been realized.Despite these achievements,challenges including energy density,scalability,trade-off between energy density and functionality,cost,etc.are to be addressed for sodium-ion battery commercialization.This review aims at providing an overview of the up-to-date achievements in sodium-ion batteries and serves to inspire more efforts in designing upgraded sodium-ion batteries.
基金the National Natural Science Foundation of China(61872284)Key Research and Development Program of Shaanxi(2023-YBGY-203,2023-YBGY-021)+3 种基金Industrialization Project of Shaanxi ProvincialDepartment of Education(21JC017)“Thirteenth Five-Year”National Key R&D Program Project(Project Number:2019YFD1100901)Natural Science Foundation of Shannxi Province,China(2021JLM-16,2023-JC-YB-825)Key R&D Plan of Xianyang City(L2023-ZDYF-QYCX-021)。
文摘Spark,a distributed computing platform,has rapidly developed in the field of big data.Its in-memory computing feature reduces disk read overhead and shortens data processing time,making it have broad application prospects in large-scale computing applications such as machine learning and image processing.However,the performance of the Spark platform still needs to be improved.When a large number of tasks are processed simultaneously,Spark’s cache replacementmechanismcannot identify high-value data partitions,resulting inmemory resources not being fully utilized and affecting the performance of the Spark platform.To address the problem that Spark’s default cache replacement algorithm cannot accurately evaluate high-value data partitions,firstly the weight influence factors of data partitions are modeled and evaluated.Then,based on this weighted model,a cache replacement algorithm based on dynamic weighted data value is proposed,which takes into account hit rate and data difference.Better integration and usage strategies are implemented based on LRU(LeastRecentlyUsed).Theweight update algorithm updates the weight value when the data partition information changes,accurately measuring the importance of the partition in the current job;the cache removal algorithm clears partitions without useful values in the cache to releasememory resources;the weight replacement algorithm combines partition weights and partition information to replace RDD partitions when memory remaining space is insufficient.Finally,by setting up a Spark cluster environment,the algorithm proposed in this paper is experimentally verified.Experiments have shown that this algorithmcan effectively improve cache hit rate,enhance the performance of the platform,and reduce job execution time by 7.61%compared to existing improved algorithms.
基金supported in part by National Natural Science Foundation of China under Grants 62122069, 62071431, 62072490 and 62301490in part by Science and Technology Development Fund of Macao SAR, China under Grant 0158/2022/A+2 种基金in part by the Guangdong Basic and Applied Basic Research Foundation (2022A1515011287)in part by MYRG202000107-IOTSCin part by FDCT SKL-IOTSC (UM)-2021-2023
文摘With the development of the Internet of Things(IoT),it requires better performance from wireless sensor networks(WSNs),such as larger coverage,longer lifetime,and lower latency.However,a large amount of data generated from monitoring and long-distance transmission places a heavy burden on sensor nodes with the limited battery power.For this,we investigate an unmanned aerial vehicles assisted mobile wireless sensor network(UAV-assisted WSN)to prolong the network lifetime in this paper.Specifically,we use UAVs to assist the WSN in collecting data.In the current UAV-assisted WSN,the clustering and routing schemes are determined sequentially.However,such a separate consideration might not maximize the lifetime of the whole WSN due to the mutual coupling of clustering and routing.To efficiently prolong the lifetime of the WSN,we propose an integrated clustering and routing scheme that jointly optimizes the clustering and routing together.In the whole network space,it is intractable to efficiently obtain the optimal integrated clustering and routing scheme.Therefore,we propose the Monte-Las search strategy based on Monte Carlo and Las Vegas ideas,which can generate the chain matrix to guide the algorithm to find the solution faster.Unnecessary point-to-point collection leads to long collection paths,so a triangle optimization strategy is then proposed that finds a compromise path to shorten the collection path based on the geometric distribution and energy of sensor nodes.To avoid the coverage hole caused by the death of sensor nodes,the deployment of mobile sensor nodes and the preventive mechanism design are indispensable.An emergency data transmission mechanism is further proposed to reduce the latency of collecting the latency-sensitive data due to the absence of UAVs.Compared with the existing schemes,the proposed scheme can prolong the lifetime of the UAVassisted WSN at least by 360%,and shorten the collection path of UAVs by 56.24%.
文摘The quantization algorithm compresses the original network by reducing the numerical bit width of the model,which improves the computation speed. Because different layers have different redundancy and sensitivity to databit width. Reducing the data bit width will result in a loss of accuracy. Therefore, it is difficult to determinethe optimal bit width for different parts of the network with guaranteed accuracy. Mixed precision quantizationcan effectively reduce the amount of computation while keeping the model accuracy basically unchanged. In thispaper, a hardware-aware mixed precision quantization strategy optimal assignment algorithm adapted to low bitwidth is proposed, and reinforcement learning is used to automatically predict the mixed precision that meets theconstraints of hardware resources. In the state-space design, the standard deviation of weights is used to measurethe distribution difference of data, the execution speed feedback of simulated neural network accelerator inferenceis used as the environment to limit the action space of the agent, and the accuracy of the quantization model afterretraining is used as the reward function to guide the agent to carry out deep reinforcement learning training. Theexperimental results show that the proposed method obtains a suitable model layer-by-layer quantization strategyunder the condition that the computational resources are satisfied, and themodel accuracy is effectively improved.The proposed method has strong intelligence and certain universality and has strong application potential in thefield of mixed precision quantization and embedded neural network model deployment.
文摘Aiming at the problems that the original Harris Hawk optimization algorithm is easy to fall into local optimum and slow in finding the optimum,this paper proposes an improved Harris Hawk optimization algorithm(GHHO).Firstly,we used a Gaussian chaotic mapping strategy to initialize the positions of individuals in the population,which enriches the initial individual species characteristics.Secondly,by optimizing the energy parameter and introducing the cosine strategy,the algorithm's ability to jump out of the local optimum is enhanced,which improves the performance of the algorithm.Finally,comparison experiments with other intelligent algorithms were conducted on 13 classical test function sets.The results show that GHHO has better performance in all aspects compared to other optimization algorithms.The improved algorithm is more suitable for generalization to real optimization problems.
文摘To solve the problem of slow convergence and easy to get into the local optimum of the spider monkey optimization algorithm,this paper presents a new algorithm based on multi-strategy(ISMO).First,the initial population is generated by a refracted opposition-based learning strategy to enhance diversity and ergodicity.Second,this paper introduces a non-linear adaptive dynamic weight factor to improve convergence efficiency.Then,using the crisscross strategy,using the horizontal crossover to enhance the global search and vertical crossover to keep the diversity of the population to avoid being trapped in the local optimum.At last,we adopt a Gauss-Cauchy mutation strategy to improve the stability of the algorithm by mutation of the optimal individuals.Therefore,the application of ISMO is validated by ten benchmark functions and feature selection.It is proved that the proposed method can resolve the problem of feature selection.
文摘With the acceleration of urbanization in China,the discharge of domestic sewage and industrial wastewater is increasing,and accidents of sewage spilling out and polluting the environment occur from time to time.Problems such as imperfect facilities and backward control methods are com-mon in the urban drainage network systems in China.Efficient drainage not only strengthens infrastructure such as rain and sewage diversion,pollution source monitoring,transportation,drainage and storage but also urgently needs technical means to monitor and optimize production and operation.Aiming at the optimal control of single-stage pumping stations and the coordinated control between two-stage pumping stations,this paper studies the modelling and optimal control of drainage network systems.Based on the Long Short Term Memory(LSTM)water level prediction model of the sewage pumping stations,and then based on the mechanism analysis of drainage pipe network,the factors that may cause the water level change of pumping station are obtained.Grey correlation analysis is carried out on these influencing factors,and the prediction model is established by taking the factors with a high correlation degree as input.The research results show that compared with the traditional prediction model,the LSTM model not only has higher prediction accuracy but also has better inflection point tracking ability.
文摘With the advent of the economic era of“Internet+,”new media has become a new means of enterprise marketing by virtue of its own advantages,including fast communication speed,diversified communication channels,low cost,and novel content.Enterprises should actively integrate into the new media era,constantly improve their cultural soft power and new media marketing ability,build new marketing systems,set up professional new media marketing teams,and further improve their marketing ability;innovate new media marketing content,attract consumers’attention,and expand the audience group;open up new media marketing channels,carry out diversified marketing,comprehensively enhance their marketing ability,and succeed in the fierce market competition.
文摘The evolutionary strategy with a dynamic weighting schedule is proposed to find all the compromised solutions of the multi-objective integrated structure and control optimization problem, where the optimal system performance and control cost are defined by H2 or H∞ norms. During this optimization process, the weights are varying with the increasing generation instead of fixed values. The proposed strategy together with the linear matrix inequality (LMI) or the Riccati controller design method can find a series of uniformly distributed nondominated solutions in a single run. Therefore, this method can greatly reduce the computation intensity of the integrated optimization problem compared with the weight-based single objective genetic algorithm. Active automotive suspension is adopted as an example to illustrate the effectiveness of the proposed method.
基金supported by open fund of state key laboratory of operation and control of renewable energy&storage systems(China electric power research institute)(No.NYB51202201709).
文摘The time-of-use(TOU)strategy can effectively improve the energy consumption mode of customers,reduce the peak-valley difference of load curve,and optimize the allocation of energy resources.This study presents an Optimal guidance mechanism of the flexible load based on strategies of direct load control and time-of-use.First,this study proposes a period partitioning model,which is based on a moving boundary technique with constraint factors,and the Dunn Validity Index(DVI)is used as the objective to solve the period partitioning.Second,a control strategy for the curtailable flexible load is investigated,and a TOU strategy is utilized for further modifying load curve.Third,a price demand response strategy for adjusting transferable load is proposed in this paper.Finally,through the case study analysis of typical daily flexible load curve,the efficiency and correctness of the proposed method and model are validated and proved.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2006AA11A127)
文摘Despite the series-parallel hybrid electric vehicle inherits the performance advantages from both series and parallel hybrid electric vehicle, few researches about the series-parallel hybrid electric vehicle have been revealed because of its complex co nstruction and control strategy. In this paper, a series-parallel hybrid electric bus as well as its control strategy is revealed, and a control parameter optimization approach using the real-valued genetic algorithm is proposed. The optimization objective is to minimize the fuel consumption while sustain the battery state of charge, a tangent penalty function of state of charge(SOC) is embodied in the objective function to recast this multi-objective nonlinear optimization problem as a single linear optimization problem. For this strategy, the vehicle operating mode is switched based on the vehicle speed, and an "optimal line" typed strategy is designed for the parallel control. The optimization parameters include the speed threshold for mode switching, the highest state of charge allowed, the lowest state of charge allowed and the scale factor of the engine optimal torque to the engine maximum torque at a rotational speed. They are optimized through numerical experiments based on real-value genes, arithmetic crossover and mutation operators. The hybrid bus has been evaluated at the Chinese Transit Bus City Driving Cycle via road test, in which a control area network-based monitor system was used to trace the driving schedule. The test result shows that this approach is feasible for the control parameter optimization. This approach can be applied to not only the novel construction presented in this paper, but also other types of hybrid electric vehicles.
基金supported by the National Natural Science Foundation of China (Grant No. 51008167)S&T Plan Project (Grant No. J10LE07) from Shandong Provincial Education Departmentthe Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20103721120001)
文摘The determination of optimal values for three parameters required in the original particle swarm optimization algorithm is very difficult. It is proposed that two new parameters simulating the harmony search strategy can be adopted instead of the three parameters which are required in the original particle swarm optimization algorithm to update the positions of all the particles. The improved particle swarm optimization is used in the location of the critical slip surface of soil slope, and it is found that the improved particle swarm optimization algorithm is insensitive to the two parameters while the original particle swarm optimization algorithm can be sensitive to its three parameters.
基金Supported by Shanghai Municipal Natural Science Foundation of China (Grant No.19ZR1418600)。
文摘Axial flux permanent magnet synchronous motors(AFPMSMs)have been widely used in wind-power generation,electric vehicles,aircraft,and other renewable-energy applications owing to their high power density,operating efficiency,and integrability.To facilitate comprehensive research on AFPMSM,this article reviews the developments in the research on the design and control optimization of AFPMSMs.First,the basic topologies of AFPMSMs are introduced and classified.Second,the key points of the design optimization of core and coreless AFPMSMs are summarized from the aspects of parameter design,structure design,and material optimization.Third,because efficiency improvement is an issue that needs to be addressed when AFPMSMs are applied to electric or other vehicles,the development status of efficiency-optimization control strategies is reviewed.Moreover,control strategies proposed to suppress torque ripple caused by the small inductance of disc coreless permanent magnet synchronous motors(DCPMSMs)are summarized.An overview of the rotor-synchronization control strategies for disc contra-rotating permanent magnet synchronous motors(CRPMSMs)is presented.Finally,the current difficulties and development trends revealed in this review are discussed.
文摘The application and development of a wide-area measurement system(WAMS)has enabled many applications and led to several requirements based on dynamic measurement data.Such data are transmitted as big data information flow.To ensure effective transmission of wide-frequency electrical information by the communication protocol of a WAMS,this study performs real-time traffic monitoring and analysis of the data network of a power information system,and establishes corresponding network optimization strategies to solve existing transmission problems.This study utilizes the traffic analysis results obtained using the current real-time dynamic monitoring system to design an optimization strategy,covering the optimization in three progressive levels:the underlying communication protocol,source data,and transmission process.Optimization of the system structure and scheduling optimization of data information are validated to be feasible and practical via tests.
基金supported by the National Natural Science Foundation of China under Grant 52075090Key Research and Development Program Projects of Heilongjiang Province under Grant GA21A403+1 种基金the Fundamental Research Funds for the Central Universities under Grant 2572021BF01Natural Science Foundation of Heilongjiang Province under Grant YQ2021E002.
文摘Harris Hawks Optimization(HHO)is a novel meta-heuristic algorithm that imitates the predation characteristics of Harris Hawk and combines Lévy flight to solve complex multidimensional problems.Nevertheless,the basic HHO algorithm still has certain limitations,including the tendency to fall into the local optima and poor convergence accuracy.Coot Bird Optimization(CBO)is another new swarm-based optimization algorithm.CBO originates from the regular and irregular motion of a bird called Coot on the water’s surface.Although the framework of CBO is slightly complicated,it has outstanding exploration potential and excellent capability to avoid falling into local optimal solutions.This paper proposes a novel enhanced hybrid algorithm based on the basic HHO and CBO named Enhanced Harris Hawks Optimization Integrated with Coot Bird Optimization(EHHOCBO).EHHOCBO can provide higher-quality solutions for numerical optimization problems.It first embeds the leadership mechanism of CBO into the population initialization process of HHO.This way can take full advantage of the valuable solution information to provide a good foundation for the global search of the hybrid algorithm.Secondly,the Ensemble Mutation Strategy(EMS)is introduced to generate the mutant candidate positions for consideration,further improving the hybrid algorithm’s exploration trend and population diversity.To further reduce the likelihood of falling into the local optima and speed up the convergence,Refracted Opposition-Based Learning(ROBL)is adopted to update the current optimal solution in the swarm.Using 23 classical benchmark functions and the IEEE CEC2017 test suite,the performance of the proposed EHHOCBO is comprehensively evaluated and compared with eight other basic meta-heuristic algorithms and six improved variants.Experimental results show that EHHOCBO can achieve better solution accuracy,faster convergence speed,and a more robust ability to jump out of local optima than other advanced optimizers in most test cases.Finally,EHHOCBOis applied to address four engineering design problems.Our findings indicate that the proposed method also provides satisfactory performance regarding the convergence accuracy of the optimal global solution.
基金supported by the National Natural Science Foundation of China (51175502)
文摘Testing is the premise and foundation of realizing equipment health management (EHM). To address the problem that the static periodic test strategy may cause deficient test or excessive test, a dynamic sequential test strategy (DSTS) for EHM is presented. Considering the situation that equipment health state is not completely observable in reality, a DSTS optimization method based on partially observable semi-Markov decision pro- cess (POSMDP) is proposed. Firstly, an equipment health state degradation model is constructed by Markov process, and the control limit maintenance policy is also introduced. Secondly, POSMDP is formulated in great detail. And then, POSMDP is converted to completely observable belief semi-Markov decision process (BSMDP) through belief state. The optimal equation and the corresponding optimal DSTS, which minimize the long-run ex- pected average cost per unit time, are obtained with BSMDP. The results of application in complex equipment show that the proposed DSTS is feasible and effective.
基金supported by the National Natural Science Foundation of China (Grant 11872080).
文摘Spacecraft in the aerospace field and military equipment in the military field are at risk of being impacted by external objects,which can cause local damage to the structure.The randomness of local damage is a newchallenge for structural design,and it is essential to take random damage into account in the conceptual design phase for the purpose of improving structure’s resistance to external shocks.In this article,a random damaged structure is assumed to have damages of the same size and shape at random locations,and the random damage is considered as multiple damage conditions of the structure.In order to improve the randomness and comprehensiveness of the multiple damage conditions,the stacking strategy is used to generate the distribution of the damage area.Following this strategy,the topology optimization design of the random damaged structure,which is to minimize the weight of the structure with a constraint on the stress of the structure under multiple damage conditions,is formulated based on the independent continuousmapping(ICM)method.The dual sequence quadratic programming(DSQP)algorithm combined with the stress globalization method is adopted to solve the optimization problem.The numerical examples demonstrate the effectiveness and applicability of the proposed method in the topology optimization of strength-safe continuum structures.