期刊文献+
共找到22,575篇文章
< 1 2 250 >
每页显示 20 50 100
Influence of heat treatment on microstructure,mechanical and corrosion behavior of WE43 alloy fabricated by laser-beam powder bed fusion 被引量:6
1
作者 Chenrong Ling Qiang Li +6 位作者 Zhe Zhang Youwen Yang Wenhao Zhou Wenlong Chen Zhi Dong Chunrong Pan Cijun Shuai 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期258-275,共18页
Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.Howe... Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.However,the as-built part usually exhibits undesirable microstructure and unsatisfactory performance.In this work,WE43 parts were firstly fabricated by PBF-LB and then subjected to heat treatment.Although a high densification rate of 99.91%was achieved using suitable processes,the as-built parts exhibited anisotropic and layeredmicrostructure with heterogeneously precipitated Nd-rich intermetallic.After heat treatment,fine and nano-scaled Mg24Y5particles were precipitated.Meanwhile,theα-Mg grainsunderwent recrystallization and turned coarsened slightly,which effectively weakened thetexture intensity and reduced the anisotropy.As a consequence,the yield strength and ultimate tensile strength were significantly improved to(250.2±3.5)MPa and(312±3.7)MPa,respectively,while the elongation was still maintained at a high level of 15.2%.Furthermore,the homogenized microstructure reduced the tendency of localized corrosion and favoredthe development of uniform passivation film.Thus,the degradation rate of WE43 parts was decreased by an order of magnitude.Besides,in-vitro cell experiments proved their favorable biocompatibility. 展开更多
关键词 laser-beam powder bed fusion WE43 alloys heat treatment mechanical performance biodegradation behavior
下载PDF
Interface property of dissimilar Ti-6Al-4V/AA1050 composite laminate made by non-equal channel lateral co-extrusion and heat treatment
2
作者 Juan Liao Mengmeng Tian Xin Xue 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期197-208,共12页
The purpose of this paper is to examine the effect of processing parameters and subsequent heat treatments on the microstructures and bonding strengths of Ti-6Al-4V/AA1050 laminations formed via a non-equal channel la... The purpose of this paper is to examine the effect of processing parameters and subsequent heat treatments on the microstructures and bonding strengths of Ti-6Al-4V/AA1050 laminations formed via a non-equal channel lateral co-extrusion process.The microstructural evolution and growth mechanism in the diffusion layer were discussed further to optimize the bonding quality by appropriately adjusting process parameters.Scanning electron microscopes(SEM),energy dispersive spectrometer(EDS),and X-ray diffraction(XRD)were used to characterize interfacial diffusion layers.The shear test was used to determine the mechanical properties of the interfacial diffusion layer.The experimental results indicate that it is possible to co-extrusion Ti-6Al-4V/AA1050 compound profiles using non-equal channel lateral co-extrusion.Different heat treatment processes affect the thickness of the diffusion layer.When the temperature and time of heat treatment increase,the thickness of the reaction layers increases dramatically.Additionally,the shear strength of the Ti-6Al-4V/AA1050 composite interface is proportional to the diffusion layer thickness.It is observed that a medium interface thickness results in superior mechanical performance when compared to neither a greater nor a lesser interface thickness.Microstructural characterization of all heat treatments reveals that the only intermetallic compound observed in the diffusion layers is TiAl_(3).Due to the inter-diffusion of Ti and Al atoms,the TiAl_(3) layer grows primarily at AA1050/TiAl_(3) interfaces. 展开更多
关键词 Shear strength CO-EXTRUSION heat treatment Microstructure Intermetallic compounds
下载PDF
Role of alloying and heat treatment on microstructure and mechanical properties of cast Al-Li alloys:A review
3
作者 Guo-hua Wu You-jie Guo +4 位作者 Fang-zhou Qi Shen Zhang Yi-xiao Wang Xin Tong Liang Zhang 《China Foundry》 SCIE EI CAS CSCD 2024年第5期445-460,共16页
Due to the prominent advantages of low density,high elastic modulus,high specific strength and specific stiffness,cast Al-Li alloys are suitable metallic materials for manufacturing complex large-sized components and ... Due to the prominent advantages of low density,high elastic modulus,high specific strength and specific stiffness,cast Al-Li alloys are suitable metallic materials for manufacturing complex large-sized components and are ideal structural materials for aerospace,defense and military industries.On the basis of the microstructural characteristics of cast Al-Li alloys,exploring the role of alloying and micro-alloying can stabilize their dominant position and further expand their application scope.In this review,the development progress of cast Al-Li alloys was summarized comprehensively.According to the latest research highlights,the influence of alloying and heat treatment on the microstructure and mechanical properties was systematically analyzed.The potential methods to improve the alloy performance were concluded.In response to the practical engineering requirements of cast Al-Li alloys,the scientific challenges and future research directions were discussed and prospected. 展开更多
关键词 cast Al-Li alloy ALLOYING microstructure mechanical properties heat treatment
下载PDF
Effect of heat treatment on the microstructure,mechanical properties and fracture behaviors of ultra-high-strength SiC/Al-Zn-Mg-Cu composites
4
作者 Guonan Ma Shize Zhu +3 位作者 Dong Wang Peng Xue BolüXiao Zongyi Ma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2233-2243,共11页
A high-zinc composite,12vol%SiC/Al-13.3 Zn-3.27 Mg-1.07Cu(wt%),with an ultra-high-strength of 781 MPa was success-fully fabricated through a powder metallurgy method,followed by an extrusion process.The effects of sol... A high-zinc composite,12vol%SiC/Al-13.3 Zn-3.27 Mg-1.07Cu(wt%),with an ultra-high-strength of 781 MPa was success-fully fabricated through a powder metallurgy method,followed by an extrusion process.The effects of solid-solution and aging heat treat-ments on the microstructure and mechanical properties of the composite were extensively investigated.Compared with a single-stage sol-id-solution treatment,a two-stage solid-solution treatment(470℃/1 h+480℃/1 h)exhibited a more effective solid-solution strengthen-ing owing to the higher degree of solid-solution and a more uniform microstructure.According to the aging hardness curves of the com-posite,the optimized aging parameter(100℃/22 h)was determined.Reducing the aging temperature and time resulted in finer and more uniform nanoscale precipitates but only yielded a marginal increase in tensile strength.The fractography analysis revealed that intergranu-lar cracking and interface debonding were the main fracture mechanisms in the ultra-high-strength SiC/Al-Zn-Mg-Cu composites.Weak regions,such as the SiC/Al interface containing numerous compounds and the precipitate-free zones at the high-angle grain boundaries,were identified as significant factors limiting the strength enhancement of the composite.Interfacial compounds,including MgO,MgZn2,and Cu5Zn8,reduced the interfacial bonding strength,leading to interfacial debonding. 展开更多
关键词 metal matrix composites heat treatment interfacial reaction mechanical properties fracture mechanism
下载PDF
Numerical simulation on directional solidification and heat treatment processes of turbine blades
5
作者 Ye-yuan Hu Ju-huai Ma Qing-yan Xu 《China Foundry》 SCIE EI CAS CSCD 2024年第5期476-490,共15页
Study on turbine blades is crucial due to their critical role in ensuring the efficient and reliable operation of aircraft engines.Nickel-based single crystal superalloys are extensively used in the hot manufacturing ... Study on turbine blades is crucial due to their critical role in ensuring the efficient and reliable operation of aircraft engines.Nickel-based single crystal superalloys are extensively used in the hot manufacturing of turbine blades due to their exceptional high-temperature mechanical properties.The hot manufacturing of single crystal blades involves directional solidification and heat treatment.Experimental manufacturing of these blades is time-consuming,capital-intensive,and often insufficient to meet industrial demands.Numerical simulation techniques have gained widespread acceptance in blade manufacturing research due to their low energy consumption,high efficiency,and rapid turnaround time.This article introduces the modeling and simulation of hot manufacturing in single crystal blades.The discussion outlines the prevalent mathematical models employed in numerical simulations related to blade hot manufacturing.It encapsulates the advancements in research concerning macro to micro-level numerical simulation techniques for directional solidification and heat treatment processes.Furthermore,potential future trajectories for the numerical simulation of single crystal blade hot manufacturing are also discussed. 展开更多
关键词 single crystal blades Ni-based superalloy directional solidification heat treatment numerical simulation
下载PDF
Customized heat treatment process enabled excellent mechanical properties in wire arc additively manufactured Mg-RE-Zn-Zr alloys
6
作者 Dong Ma Chunjie Xu +7 位作者 Shang Sui Yuanshen Qi Can Guo Zhongming Zhang Jun Tian Fanhong Zeng Sergei Remennik Dan Shechtman 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第4期276-289,共14页
Customized heat treatment is essential for enhancing the mechanical properties of additively manufactured metallic materials,especially for alloys with complex phase constituents and heterogenous microstructure.Howeve... Customized heat treatment is essential for enhancing the mechanical properties of additively manufactured metallic materials,especially for alloys with complex phase constituents and heterogenous microstructure.However,the interrelated evolutions of different microstructure features make it difficult to establish optimal heat treatment processes.Herein,we proposed a method for customized heat treatment process exploration and establishment to overcome this challenge for such kind of alloys,and a wire arc additively manufactured(WAAM)Mg-Gd-Y-Zn-Zr alloy with layered heterostructure was used for feasibility verification.Through this method,the optimal microstructures(fine grain,controllable amount of long period stacking ordered(LPSO)structure and nano-scaleβ'precipitates)and the corresponding customized heat treatment processes(520°C/30 min+200°C/48 h)were obtained to achieve a good combination of a high strength of 364 MPa and a considerable elongation of 6.2%,which surpassed those of other state-of-the-art WAAM-processed Mg alloys.Furthermore,we evidenced that the favorable effect of the undeformed LPSO structures on the mechanical properties was emphasized only when the nano-scaleβ'precipitates were present.It is believed that the findings promote the application of magnesium alloy workpieces and help to establish customized heat treatment processes for additively manufactured materials. 展开更多
关键词 wire arc additive manufacturing heat treatment Mg-RE-Zn-Zr alloys LPSO structure mechanical properties
下载PDF
Effect of Heat Treatment on Microstructure and Mechanical Properties of Multiscale SiC_p Hybrid Reinforced 6061 Aluminum Matrix Composites
7
作者 吴健铭 许晓静 +3 位作者 ZHANG Xu LUO Yuntian LI Shuaidi HUANG Lin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期174-181,共8页
The performance of solid solution aging treatment on aluminum matrix composites prepared by powder metallurgy and reinforced with 6061 aluminum alloy powder as matrix;meanwhile, nano silicon carbide particles(nm Si Cp... The performance of solid solution aging treatment on aluminum matrix composites prepared by powder metallurgy and reinforced with 6061 aluminum alloy powder as matrix;meanwhile, nano silicon carbide particles(nm Si Cp), submicron silicon carbide particles(1 μm Si Cp) and Ti particles were studied. The Al/Si Cp composite powder was prepared by high-energy ball milling, and then cold-pressed, sintered, hotextruded, and then heat-treated with different solution temperatures and aging times for the extruded composites. Optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy(EDS), X-ray diffractometer(XRD) and extrusion testing were used to analyze and test the microstructure and mechanical properties of aluminum matrix composites. The results show that after the multi-stage solid solution at 530 ℃×2 h+535 ℃×2 h+540 ℃×2 h, the particles are mainly equiaxed grains and uniformly distributed. There is no reinforcement agglomeration, and the surface is dense and the insoluble phase is basically dissolved. In the matrix, the strengthening effect is good, and the hardness and compressive strength are 179.43 HV and 680.42 MPa, respectively. Under this solution process, when the aluminum matrix composites are aged at 170 ℃ for 10 h, the hardness and compressive strength can reach their peaks and increase to 195.82 HV and 721.48 MPa, respectively. 展开更多
关键词 aluminum matrix composites Si C particles multiscale hybrid enhancement heat treatment mechanical properties
下载PDF
Rapid Fabrication of Electrodes for Symmetrical Solid Oxide Cells by Extreme Heat Treatment
8
作者 Weiwei Fan Zhu Sun +2 位作者 Manxi Wang Manxian Li Yuming Chen 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第5期349-356,共8页
Symmetrical solid oxide cells(SSOCs)are very useful for energy generation and conversion.To fabricate the electrode of SSOC,it is very time-consuming to use the conventional approach.In this work,we design and develop... Symmetrical solid oxide cells(SSOCs)are very useful for energy generation and conversion.To fabricate the electrode of SSOC,it is very time-consuming to use the conventional approach.In this work,we design and develop a novel method,extreme heat treatment(EHT),to rapidly fabricate electrodes for SSOC.We show that by using the EHT method,the electrode can be fabricated in seconds(the fastest method to date),benefiting from enhanced reaction kinetics.The EHT-fabricated electrode presents a porous structure and good adhesion with the electrolyte.In contrast,tens of hours are needed to prepare the electrode by the conventional approach,and the prepared electrode exhibits a dense structure with a larger particle size due to the lengthy treatment.The EHT-fabricated electrode shows desirable electrochemical performance.Moreover,we show that the electrocatalytic activity of the perovskite electrode can be tuned by the vigorous approach of fast exsolution,deriving from the increased active sites for enhancing the electrochemical reactions.At 900℃,a promising peak power density of 966 mW cm^(-2)is reached.Our work exploits a new territory to fabricate and develop advanced electrodes for SSOCs in a rapid and high-throughput manner. 展开更多
关键词 electrochemical performance extreme heat treatment perovskite electrode symmetrical solid oxide cells
下载PDF
The Impact of Heat Treatment and Surface Treatment on Thermal Conductivity of Heat Sinks Made of Aluminium Die Casting Alloys
9
作者 Rajesh Kumar Manickam Dilip Raja Narayana 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第4期34-41,共8页
This research contributes to understand the thermal management capabilities of Plate Fin Heat Sinks(PFHS)fabricated from AlSi10Mg.The uniqueness in this study is that the heat sinks were exposed to abrasive blasting,h... This research contributes to understand the thermal management capabilities of Plate Fin Heat Sinks(PFHS)fabricated from AlSi10Mg.The uniqueness in this study is that the heat sinks were exposed to abrasive blasting,heat treatment,and graphene coating,and a full evaluation of the influence of the aforementioned treatments on the thermal management capacities of PFHS was found.Untreated PFHS is compared with 1)abrasive blasted and graphene coated heat sink,and 2)heat treated and graphene coated heat sink.To assess the thermal efficiency of the PFHS variants,a dedicated experimental set up was meticulously constructed.It is noteworthy that a junction temperature of 60℃was assumed as the reference point for the analysis.The results revealed that the charging cycle time which denotes the time required attaining the junction temperature,increased 1.3 times for the sample being abrasive-blasted at 0.5 MPa pressure and graphene-coated for 0.5 mm when the maximum heat input of 45 W is evaluated.When low heat input of 15 W is evaluated,the results revealed that there is no significant difference in charging cycle when compared to the untreated heat sink.The charging cycle time increased 2 times for the sample which is heat-treated at 450℃and graphene-coated for 0.5 mm at heat input of 15 W.This finding unequivocally underscores the heightened capacity of the heat treated and graphene coated PFHS made of AlSi10Mg to withstand elevated junction temperatures. 展开更多
关键词 PFHS abrasive blasting heat treatment GRAPHENE
下载PDF
Effect of heat treatment on corrosion behaviors of Mg-6Gd-3Y-0.5Zr alloy
10
作者 Fei Wang Bin-guo Fu +3 位作者 Yu-feng Wang Tian-shun Dong Guo-lu Li Jin-hai Liu 《China Foundry》 SCIE EI CAS CSCD 2024年第5期599-612,共14页
The microstructures and corrosion behaviors of as-cast,T4-treated,and T6-treated Mg-6Gd-3Y-0.5Zr alloys were systematically investigated by SEM,TEM,immersion test,and electrochemical corrosion test.The results show th... The microstructures and corrosion behaviors of as-cast,T4-treated,and T6-treated Mg-6Gd-3Y-0.5Zr alloys were systematically investigated by SEM,TEM,immersion test,and electrochemical corrosion test.The results show that the microstructure of the as-cast alloy is composed ofα-Mg and Mg_(24)(Gd,Y)_(5) eutectic phase,and in T4-treated alloy,Mg_(24)(Gd,Y)_(5) phase dissolves into theα-Mg matrix,leading to an increase in the(Y,Gd)H_(2) phase.After T6 treatment,nanoscale Mg_(24)(Gd,Y)_(5) phase dispersedly precipitates from theα-Mg matrix,and exhibits a specific orientation relationship with the α-Mg:(332)Mg_((24)(Gd,Y)_(5))//(1011)_(α-Mg),[136]Mg_((24)(Gd,Y)_(5))//[1210]_(α-Mg).The corrosion resistance of the Mg-6Gd-3Y-0.5Zr alloys can be ranked in the following order:T6-treated alloy exhibits the highest corrosion resistance,followed by the T4-treated alloy,and finally,the as-cast alloy.The corrosion products of the alloys are all composed of MgO,Mg(OH)_(2),Gd_(2)O_(3),Y_(2)O_(3),and MgCl_(2).The corrosion behavior of Mg-6Gd-3Y-0.5Zr alloy is closely related to the precipitated phase.By establishing the relationship between corrosion rate,hydrogen evolution rate,and corrosion potential,it is further demonstrated that during the micro galvanic corrosion process,the coarse Mg_(24)(Gd,Y)_(5)phase in the as-cast alloy undergoes extensive dissolution,and(Y,Gd)H_(2) phase promotes the dissolution of theα-Mg matrix in the T4-treated alloy,intensifying the hydrogen evolution reaction.The T6-treated alloy,with dispersive precipitation of nanoscale Mg_(24)(Gd,Y)_(5) phase,exhibits better corrosion resistance performance. 展开更多
关键词 Mg-6Gd-3Y-0.5Zr alloy heat treatment MICROSTRUCTURE precipitated phase corrosion resistance
下载PDF
Discussion on the Free Quenching Heat Treatment Process of Automotive Leaf Springs
11
作者 Xianfeng Xu 《Frontiers of Metallurgical Industry》 2024年第1期9-11,共3页
Free quenching of automotive leaf springs is a new technology that has gradually started to be applied in the industry in China in recent years.Only a few manufacturers are applying it in the industry.Through more tha... Free quenching of automotive leaf springs is a new technology that has gradually started to be applied in the industry in China in recent years.Only a few manufacturers are applying it in the industry.Through more than half a year of on-site practice,the changes in the hot forming of spring plates before free quenching have been explored,and finally a heat treatment process that meets the production requirements of our company has been developed,achieving normal production. 展开更多
关键词 automotive leaf springs free quenching heat treatment TECHNOLOGY
下载PDF
Effects of heat treatment on microstructure and mechanical properties of ZK60 Mg alloy 被引量:17
12
作者 陈先华 黄小旺 +3 位作者 潘复生 汤爱涛 王敬丰 张丁非 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第4期754-760,共7页
The microstructure and mechanical properties of ZK60 Mg alloy were investigated under different solution treatments and artificial aging conditions. When as-cast ZK60 alloy was solution treated at 400 ℃for 10 h and a... The microstructure and mechanical properties of ZK60 Mg alloy were investigated under different solution treatments and artificial aging conditions. When as-cast ZK60 alloy was solution treated at 400 ℃for 10 h and artificially aged at 150 ℃, the volume fraction of precipitates increased with the aging time up to 30 h. When the as-cast ZK60 alloy was solution treated at 400 ℃ for 10 h and artificially aged at 200 ℃ for 15 20 h, the volume fraction of precipitates reached a peak value. Tensile test at room temperature showed that a high density of the second phase precipitates was beneficial to improving the strength and elongation. Solution treatment at 400 ℃ for 10 h and artificial aging at 150 ℃ for 30 h is considered the optimum heat treatment condition to obtain a good combination of strength and ductility. 展开更多
关键词 Mg alloy heat treatment PRECIPITATE STRENGTH DUCTILITY
下载PDF
Effect of heat treatment on stress corrosion cracking, fracture toughness and strength of 7085 aluminum alloy 被引量:20
13
作者 陈送义 陈康华 +2 位作者 董朋轩 叶升平 黄兰萍 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第7期2320-2325,共6页
The influences of heat treatment on stress corrosion cracking (SCC), fracture toughness and strength of 7085 aluminum alloy were investigated by slow strain rate testing, Kahn tear testing combined with scanning ele... The influences of heat treatment on stress corrosion cracking (SCC), fracture toughness and strength of 7085 aluminum alloy were investigated by slow strain rate testing, Kahn tear testing combined with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that the fracture toughness of T74 overaging is increased by 22.9% at the expense of 13.6% strength, and retrogression and reaging (RRA) enhances fracture toughness 14.2% without reducing the strength compared with T6 temper. The fracture toughness of dual-retrogression and reaging (DRRA) is equivalent to that of T74 with an increased strength of 14.6%. The SCC resistance increases in the order: T6〈RRA〈DRRA≈T74. The differences of fracture toughness and SCC were explained on the basis of the role of matrix precipitates and grain boundary orecioitates. 展开更多
关键词 7085 aluminum alloy heat treatment stress corrosion cracking fracture toughness
下载PDF
Effect of heat treatment on microstructure and mechanical property of Ti-steel explosive-rolling clad plate 被引量:14
14
作者 江海涛 阎晓倩 +1 位作者 刘继雄 段晓鸽 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第3期697-704,共8页
The effect of heat treatment on microstructure and mechanical properties of the Ti-steel explosive-rolling clad plate was elaborated by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffracti... The effect of heat treatment on microstructure and mechanical properties of the Ti-steel explosive-rolling clad plate was elaborated by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), micro-hardness test and shear test. The composites were subjected to heat treatment at temperature of 650-950 ~C for 60 min. The results show that the heat treatment process results in a great enhancement of diffusion and microstructural transformation. The shear strength decreases as the treatment temperature increases. Heated at 850 ℃ or below, their shear strength decreases slowly as a result of the formation of TiC in the diffusion interaction layer; while at the temperature of 850 ℃ or above, the shear strength decreases obviously, which is the consequence of a large amount of Ti-Fe intermetaUics (Fe2Ti/FeTi) along with some TiC distributing continuously at diffusion reaction layer. 展开更多
关键词 Ti-steel explosive-rolling clad plate heat treatment DIFFUSION mechanical properties
下载PDF
Effect of heat treatment on microstructure and tensile properties of A356 alloys 被引量:27
15
作者 彭继华 唐小龙 +1 位作者 何健亭 许德英 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第9期1950-1956,共7页
Two heat treatments of A356 alloys with combined addition of rare earth and strontium were conducted.T6 treatment is a long time treatment(solution at 535 ℃ for 4 h + aging at 150 ℃ for 15 h).The other treatment ... Two heat treatments of A356 alloys with combined addition of rare earth and strontium were conducted.T6 treatment is a long time treatment(solution at 535 ℃ for 4 h + aging at 150 ℃ for 15 h).The other treatment is a short time treatment(solution at 550 ℃ for 2 h + aging at 170 ℃ for 2 h).The effects of heat treatment on microstructure and tensile properties of the Al-7%Si-0.3%Mg alloys were investigated by optical microscopy,scanning electronic microscopy and tension test.It is found that a 2 h solution at 550 ℃ is sufficient to make homogenization and saturation of magnesium and silicon in α(Al) phase,spheroid of eutectic Si phase.Followed by solution,a 2 h artificial aging at 170 ℃ is almost enough to produce hardening precipitates.Those samples treated with T6 achieve the maximum tensile strength and fracture elongation.With short time treatment(ST),samples can reach 90% of the maximum yield strength,95% of the maximum strength,and 80% of the maximum elongation. 展开更多
关键词 Al-Si casting alloys heat treatment tensile property microstructural evolution
下载PDF
Microstructure and mechanical properties of TC21 titanium alloy after heat treatment 被引量:13
16
作者 石志峰 郭鸿镇 +1 位作者 韩锦阳 姚泽坤 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第10期2882-2889,共8页
Microstructure evolutions during different heat treatments and influence of microstmcture on mechanical properties of TC21 titanium alloy were investigated. The results indicate that the excellent mechanical propertie... Microstructure evolutions during different heat treatments and influence of microstmcture on mechanical properties of TC21 titanium alloy were investigated. The results indicate that the excellent mechanical properties can be obtained by adopting air cooling after forging followed by heat treatment of (900℃, 1 h, AC)+(590 ℃, 4 h, AC). Deformation in single β field produces pan-like prior fl grains, while annealing in single fl field produces equiaxed prior fl grains. Cooling rate after forging or annealing in single fl field and the subsequent annealing on the top of α+β field determine the content and morphology of coarse a plates. During aging or the third annealing, fine secondary a plates precipitate. Both ultimate strength and yield strength decrease with the content increase of coarse a plates. Decreasing effective slip length and high crack propagation resistance increase the plasticity. The crisscross coarse a plates with large thickness are helpful to enhance the fracture toughness. 展开更多
关键词 TC21 titanium alloy heat treatment MICROSTRUCTURE mechanical properties
下载PDF
Effects of cooling rate on solution heat treatment of as-cast A356 alloy 被引量:13
17
作者 杨长林 李远兵 +2 位作者 党波 吕贺宾 刘峰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第10期3189-3196,共8页
The effect of cooling rate of the solidification process on the following solution heat treatment of A356 alloy was investigated,where the cooling rates of 96 K/s and 3 K/s were obtained by the step-like metal mold.Th... The effect of cooling rate of the solidification process on the following solution heat treatment of A356 alloy was investigated,where the cooling rates of 96 K/s and 3 K/s were obtained by the step-like metal mold.Then the eutectic silicon morphology evolution and tensile properties of the alloy samples were observed and analyzed after solution heat treatment at 540 °C for different time.The results show that the high cooling rate of the solidification process can not only reduce the solid solution heat treatment time to rapidly modify the eutectic silicon morphology,but also improve the alloy tensile properties.Specially,it is found that the disintegration,the spheroidization and coarsening of eutectic silicon of A356 alloy are completed during solution heat treatment through two stages,i.e.,at first,the disintegration and spheroidization of the eutectic silicon mainly takes place,then the eutectic silicon will coarsen. 展开更多
关键词 A356 aluminum alloy solution heat treatment eutectic silicon cooling rate
下载PDF
Effects of heat treatment on microstructure and mechanical properties of ZA27 alloy 被引量:9
18
作者 刘洋 李红英 +1 位作者 蒋浩帆 鲁晓超 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第3期642-649,共8页
The effects of heat treatment on the microstructure and mechanical properties of ZA27 alloy were studied by X-ray diffraction(XRD),scanning electron microscopy(SEM) and mechanical characterization.The results indi... The effects of heat treatment on the microstructure and mechanical properties of ZA27 alloy were studied by X-ray diffraction(XRD),scanning electron microscopy(SEM) and mechanical characterization.The results indicated that the as-cast microstructure of the alloy was mainly composed of α,decomposed β,η and ε phases.After solid solution treatment at 365 ℃ for 1 h,α and η phases dissolved,and the microstructure of specimen was mainly composed of the supersaturated β phases.The phase decomposition of supersaturated ZA27 alloy is a two-stage phase transformation:the decomposition of the supersaturated β phase at the early stage of aging,and with the increase of aging time,ε phase decomposition through a four-phase transformation:α+ε→T '+ η.A good combination of high tensile elongation and reasonable strength can be achieved by suitable heat treatments. 展开更多
关键词 ZA27 alloy heat treatment solid solution AGING mechanical properties MICROSTRUCTURE
下载PDF
Microstructural evolution of 2026 aluminum alloy during hot compression and subsequent heat treatment 被引量:7
19
作者 张辉 陈容 +1 位作者 黄旭东 陈江华 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第5期955-961,共7页
2026 aluminum alloy was compressed in a temperature range of 300-450 ℃ and strain rate range of 0.01-10 s^-1. The correlation between compression conditions and microstructural evolution after solution and aging heat... 2026 aluminum alloy was compressed in a temperature range of 300-450 ℃ and strain rate range of 0.01-10 s^-1. The correlation between compression conditions and microstructural evolution after solution and aging heat treatment was investigated. It is found that the recrystallization and precipitation behavior after heat treatment are associated with the temperature compensated strain rate Z value during hot deformation. Under low Z parameter condition, a small quantity of free recrystallized grains are formed, and the well formed subgrains with clean high-angle boundaries and coarse precipitates seem to be remained during heat treatment. Under high Z parameter condition, a large number of fine equiaxed recrystallized grains are produced, and a high dislocation density with poorly developed cellularity and considerable fine dynamic precipitates are replaced by the well formed subgrains and relatively coarse precipitates after heat treatment. The average recrystallized grain size after heat treatment decreases with increasing Z value and a quantitative relation between the average grain size and the Z value is obtained. 展开更多
关键词 2026 aluminum alloy hot deformation heat treatment RECRYSTALLIZATION precipitation
下载PDF
Microstructure evolution and thermal expansion of Cu-Zn alloy after high pressure heat treatment 被引量:7
20
作者 谌岩 刘琳 +2 位作者 王月辉 刘建华 张瑞军 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第10期2205-2209,共5页
The thermal expansion coefficients of Cu-Zn alloy before and after high pressure treatment were measured by thermal expansion instrument in the temperature range of 25?700 ℃,and the microstructure and phase transfor... The thermal expansion coefficients of Cu-Zn alloy before and after high pressure treatment were measured by thermal expansion instrument in the temperature range of 25?700 ℃,and the microstructure and phase transformation of the alloy were examined by optical microscope,X-ray diffractometer(XRD) and differential scanning calorimeter(DSC).Based on the experimental results,the effects of high pressure treatment on the microstructure and thermal expansion of Cu-Zn alloy were investigated.The results show that the high pressure treatment can refine the grain and increase the thermal expansion coefficient of the Cu-Zn alloy,resulting in that the thermal expansion coefficient exhibits a high peak value on the α-T curve,and the peak value decreases with increasing the pressure. 展开更多
关键词 Cu-Zn alloy high pressure heat treatment MICROSTRUCTURE thermal expansion coefficient
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部