Waterlogging is one of the major abiotic stresses threatening crop yields globally.Under waterlogging stress,plants suffer from oxidative stress,heavy metal toxicity and energy deficiency,leading to metabolic disorder...Waterlogging is one of the major abiotic stresses threatening crop yields globally.Under waterlogging stress,plants suffer from oxidative stress,heavy metal toxicity and energy deficiency,leading to metabolic disorders and growth inhibition.On the other hand,plants have evolved waterlogging-tolerance or adaptive mechanisms,including morphological changes,alternation of respiratory pathways,antioxidant protection and endogenous hormonal regulation.In this review,recent advances in studies on the effects of waterlogging stress and the mechanisms of waterlogging tolerance in plants are presented,and the genetic differences in waterlogging tolerance among plant species or genotypes within a species are illustrated.We also summarize the identified QTLs and key genes associated with waterlogging tolerance.展开更多
Melatonin and dopamine can potentially prevent waterlogging stress in apples.The current study investigated the mechanism by which melatonin and dopamine alleviate apple waterlogging stress.This study demonstrated tha...Melatonin and dopamine can potentially prevent waterlogging stress in apples.The current study investigated the mechanism by which melatonin and dopamine alleviate apple waterlogging stress.This study demonstrated that melatonin and dopamine alleviated waterlogging by removing reactive oxygen species(ROS),and that the nitric oxide(NO)content and nitrate reductase(NR)activity were significantly correlated.Melatonin and dopamine were also found to recruit different candidate beneficial endophytes(melatonin:Novosphingobium,Propionivibrio,and Cellvibrio;dopamine:Hydrogenophaga,Simplicispira,Methyloversatilis,Candidatus_Kaiserbacteria,and Humicola),and these endophytes were significantly and positively correlated with plant growth.Network analyses showed that melatonin and dopamine significantly affected the endophytic bacterial and fungal communities under waterlogging stress.The metabolomic results showed that melatonin and dopamine led to waterlogging resistance by upregulating the abundance of beneficial substances such as amino acids,flavonoids,coumarins,and organic acids.In addition,melatonin and dopamine regulated the physicochemical properties of the soil,which altered the endophyte community and affected plant growth.The co-occurrence network demonstrated close and complex relationships among endophytes,metabolites,soil,and the plants.Our results demonstrate that melatonin and dopamine alleviate waterlogging stress in apples by recruiting beneficial endophytes to enhance physiological resilience.This study provides new insights into how melatonin and dopamine alleviate stress and a theoretical basis for synergistic beneficial microbial resistance to waterlogging stress.展开更多
Foxtail millet(Setaria italica)growth was inhibited because of waterlogging stress,which has caused yield reduc-tion.ERF family plays an important role to plant adversity tolerance.In our study,we obtained 19,819 diff...Foxtail millet(Setaria italica)growth was inhibited because of waterlogging stress,which has caused yield reduc-tion.ERF family plays an important role to plant adversity tolerance.In our study,we obtained 19,819 differential expressed genes(DEGs)between the two treatments based on the RNA-seq sequencing of foxtail millet of water-logging stress.Furthermore,a total of 28 ERF family members were obtained,which have a complete open read-ing frame.We studied the evolution and function of SiERF family and how they affected the waterlogging tolerance.It was found that SiERF1A/B/C(GenBank ID:OR775217,OR775219,OR775218)and SiRAP2-12(GenBank ID:OR775216)have similar functions to the known waterlogging tolerance genes of other plants.Among them,the SiRAP2-12 expression was obviously significantly up-regulated in foxtail millet after 5d water-logging stress.After SiRAP2-12 was silenced,the activity of defense enzymes in millet decreased significantly.In details,superoxide dismutase(SOD),catalase(CAT)and peroxidase(POD),the osmotic regulator proline(Pro),and the activity of the anaerobic respiratory enzyme alcohol dehydrogenase(ADH)content were decreased by 78.61%,29.52%,79.95%,19.41%and 54.77%,respectively.In contrast,the relative electrical conductivity contents(REC),malondialdehyde(MDA),and hydrogen peroxide(H_(2)O_(2))of the foxtail millet subjected to virus-induced gene silencing clearly increased by 1.03-fold,36.09%,and 15.21%,respectively.The content of sodium(Na^(+))in the SiRAP2-12-silenced foxtail millet also increased,but that of potassium(K^(+))decreased.Interestingly,we found that ethylene content was significantly reduced.Further,the SiAOC1 expression,an essential gene for ethylene synthesis,was inhibited in SiRAP2-12-silenced foxtail millet after waterlogging stress.Taken together,we hypothesized that SiRAP2-12 might be a positive regulator of millet tolerance to waterlogging stress.展开更多
A field experiment was performed to investigate the physiological mechanism of the simultaneous stresses of waterlogging and shading on leaf photosynthetic and senescence during three growth stages of summer maize.The...A field experiment was performed to investigate the physiological mechanism of the simultaneous stresses of waterlogging and shading on leaf photosynthetic and senescence during three growth stages of summer maize.The responses of leaf gas exchange parameters and antioxidant enzyme activities of the summer maize hybrids Denghai 605(DH605)to waterlogging(W),shading(S),and their combination(W+S)for 6 days at the third leaf stage(V3),the sixth leaf stage(V6),and the tasseling stage(VT)were recorded.Shading,waterlogging,and their combination disturbed the activities of protective enzymes and increased the contents of H2O2and O-2,accelerating leaf senescence and disordering photosynthetic characteristics.Under waterlogging,shading and their combination,leaf Pn,the photo-assimilates and grain yield was decreased.The greatest reduction for waterlogging and the combined stresses occurred at V3 and that for shading stress occurred at VT.The individual and combined stresses reduced the activities of protective enzymes and inhibited photosynthesis,reducing the accumulation of photosynthetic compounds and thereby yield.Waterlogging and the combined stresses at the V3 stage showed the greatest effect on leaf photosynthetic and senescence,followed by the V6 and VT stages.The greatest effect for shading stress occurred at VT,followed by the V6 and V3 stages,and the combined influence of shading and waterlogging was greater than that of either single stress.展开更多
Waterlogging is a growing threat to wheat production in high-rainfall areas.In this study,a doubled haploid(DH) population developed from a cross between Yangmai 16(waterlogging-tolerant) and Zhongmai895(waterlogging-...Waterlogging is a growing threat to wheat production in high-rainfall areas.In this study,a doubled haploid(DH) population developed from a cross between Yangmai 16(waterlogging-tolerant) and Zhongmai895(waterlogging-sensitive) was used to map quantitative trait loci(QTL) for waterlogging tolerance using a high-density 660K single-nucleotide polymorphism(SNP) array.Two experimental designs,waterlogging concrete tank(CT) and waterlogging plastic tank(PT),were used to simulate waterlogging during anthesis in five environments across three growing seasons.Waterlogging significantly decreased thousand-kernel weight(TKW) relative to non-waterlogged controls,although the degree varied across lines.Three QTL for waterlogging tolerance were identified on chromosomes 4AL,5AS,and 7DL in at least two environments.All favorable alleles were contributed by the waterlogging-tolerant parent Yangmai16.QWTC.caas-4AL exhibited pleiotropic effects on both enhancing waterlogging tolerance and decreasing plant height.Six high-confidence genes were annotated within the QTL interval.The combined effects of QWTC.caas-4AL and QWTC.caas-5AS greatly improved waterlogging tolerance,while the combined effects of all three identified QTL(QWTC.caas-4AL,QWTC.caas-5AS,and QWTC.caas-7DL) exhibited the most significant effect on waterlogging tolerance.Breeder-friendly kompetitive allele-specific PCR(KASP) markers(K_AX_111523809,K_AX_108971224,and K_AX_110553316) flanking the interval of QWTC.caas-4AL,QWTC.caas-5AS,and QWTC.caas-7DL were produced.These markers were tested in a collection of 240 wheat accessions,and three superior polymorphisms of the markers distributed over 67elite cultivars in the test population,from the Chinese provinces of Jiangsu,Anhui,and Hubei.The three KASP markers could be used for marker-assisted selection(MAS) to improve waterlogging tolerance in wheat.展开更多
Perennial waterlogged soil(PWS) is induced by the high level of groundwater, and has a persistent impact on natural ecosystems and agricultural production. Traditionally, distribution information regarding PWS is ma...Perennial waterlogged soil(PWS) is induced by the high level of groundwater, and has a persistent impact on natural ecosystems and agricultural production. Traditionally, distribution information regarding PWS is mainly collected from in situ measurements through groundwater level surveys and physicochemical property analyses. However, in situ measurements of PWS are costly and time-consuming, only rough estimates of PWS areas are available in some regions. In this paper, we developed a method to monitor the perennial waterlogged cropland using time-series moderate resolution imaging spectroradiometer(MODIS) data. The Jianghan Plain, a floodplain located in the middle reaches of the Yangtze River, was selected as the study area. Temporal variations of the enhanced vegetation index(EVI), night land surface temperature(LST), diurnal LST differences(ΔLST), albedo, and the apparent thermal inertia(ATI) were used to analyze the ecological and thermodynamic characteristics of the waterlogged croplands. To obtain pure remote sensing signatures of the waterlogged cropland from mixed pixels, the croplands were classified into different types according to soil and land cover types in this paper, and a linear mixing model was developed by fitting the signatures using the multiple linear regression approach. Afterwards, another linear spectral mixing model was used to get the proportions of waterlogged croplands in each 1 km×1 km pixel. The result showed an acceptable accuracy with a root-mean-square error of 0.093. As a tentative method, the procedure described in this paper works efficiently as a method to monitor the spatial patterns of perennial sub-surface waterlogged croplands at a wide scale.展开更多
Recent publications have highlighted significant progress in utilizing agronomic interventions to alleviate waterlogging stress in cotton production.Based on these advancements,we provide a concise comment on the effe...Recent publications have highlighted significant progress in utilizing agronomic interventions to alleviate waterlogging stress in cotton production.Based on these advancements,we provide a concise comment on the effects and underlying mechanisms of various strategies such as utilizing stress-tolerant cotton varieties,applying nitric oxide(NO),and implementing ridge intertillage.Finally,we recommend a combination of measures to enhance cotton’s ability to withstand waterlogging and reduce yield losses.展开更多
High-strength pervious concrete(HSPC) with porosity ranging from 0.08% to 2.011% was prepared. The mechanical properties and rainstorm waterlogging resistance of HSPC were evaluated,and a design method of HSPC pore ch...High-strength pervious concrete(HSPC) with porosity ranging from 0.08% to 2.011% was prepared. The mechanical properties and rainstorm waterlogging resistance of HSPC were evaluated,and a design method of HSPC pore characteristics(porosity and pore diameter) based on the mechanical properties and rainstorm waterlogging resistance was proposed. The results showed that the reduction of effective cross-sectional area caused by artificial channels was the main factor affecting flexural strength but had limited influence on compressive strength. Compared with the concrete matrix without artificial channels,the compressive strength of HSPC with porosity of 2.011% decreased by 7.4%, while the flexural strength decreased by 48.3%. The permeability coefficient of HSPC can reach 16.35 mm/s even at low porosity(2.011%).HSPC can meet the requirements of no rainstorm waterlogging, even if exposed to 100-year rainstorms. When the mechanical properties and rainstorm waterlogging resistance are compromised, the recommended porosity ranges from 1.1% to 3.5%, and the recommended pore diameter ranges from 0.8 to 2.7 mm.展开更多
A novel high-strength straight-hole recycled pervious concrete(HSRPC)for the secondary highway pavement was prepared in this paper.This study aimed to investigate the effect of porosity(0.126%,0.502%,and 1.13%),vehicl...A novel high-strength straight-hole recycled pervious concrete(HSRPC)for the secondary highway pavement was prepared in this paper.This study aimed to investigate the effect of porosity(0.126%,0.502%,and 1.13%),vehicle loading stress level(0.5 and 0.8)and service life on the resistance to rainstormbased waterlogging of HSRPC under fatigue loading.The mechanical properties of HSRPC in terms of flexural strength and dynamic elastic modulus were studied.The waterlogging resistance of HSRPC was described by surface water depth and drainage time.The microstructure of HSRPC were observed with scanning electron microscopy(SEM).Results showed that although the dynamic elastic modulus and flexural strength of HSRPC decreased with the increasing number of fatigue loading,the flexural strength of HSRPC was still greater than5 MPa after design service life of 20 years.After 2.5×10^(5)times of fatigue loading,the permeability coefficient of HSRPC with a porosity of 0.502%and 1.13%increased by 18.4%and 22.9%,respectively;while the permeability coefficient of HSRPC with 0.126%porosity dropped to 0.35 mm/s.The maximum surface water depth of HSRPC with a porosity of 0.126%,0.502%,and 1.13%were 8,5 and 4 mm,respectively.SEM results showed that fatigue loading expanded the number and width of cracks around the tiny pores in HSRPC.展开更多
The coding sequence of Vitreoscilla hemoglobin (vhb) was cloned with PCR technique from Vitreoscilla stercoraria Pringsheim. The plant expression vector with vhb gene under the control of CaMV 35S promoter was constru...The coding sequence of Vitreoscilla hemoglobin (vhb) was cloned with PCR technique from Vitreoscilla stercoraria Pringsheim. The plant expression vector with vhb gene under the control of CaMV 35S promoter was constructed and used in the transformation of Petunia hybrida Vilm by the Agrobacterium mediated procedure. The results of PCR amplification and Southern hybridization indicated that the vhb gene had been integrated into the petunia genome and the vhb gene expression had been detected by RT-PCR amplification. In hydroponic culture the transgenic petunias grew much better than non-transgenic controls. For further analysis of hypoxia tolerance of transgenic petunia, the petunia plants with vhb gene were submerged into liquid MS medium. The transgenic plants survived in hypoxic condition and grew out of the liquid surface in a few weeks, while non-transgenic plants were still submerged and suffocated in culture solution without ability to grow out of liquid medium in submersed culture for four to five weeks. The vhb gene transformed petunia plants had been planted and tested in a simulated flooding condition, and showed obvious tolerance to water-logging. It seen is that hemoglobin gene from Vitreoscilla might have the potential use in molecular breeding for the improvement of plant resistance to hypoxia and flooding.展开更多
[Objective] This study aimed to investigate the effects of waterlogging in different growth stages on nitrogen (N) uptake, distribution, and utilization of cotton. [Method] A pool-culture experiment in field was con...[Objective] This study aimed to investigate the effects of waterlogging in different growth stages on nitrogen (N) uptake, distribution, and utilization of cotton. [Method] A pool-culture experiment in field was conducted to investigate the effects of wateriogging through comparing WL1 (waterlogging at peak squaring stage) and WL2 (waterlogging at flowering and boll-forming stage) treatments with their controls respectively. [Result] The results showed that the effect of WL1 on N uptake of cotton root was stronger than WL2. At 20 days (d) after WL1 treatment, the root biomass (RB), N uptake (NU), and N uptake rate (NUR) significantly decreased by 38.1%, 48.6%, and 53.0% respectively. At 20 d after WL2 treatment, the RB, NU, and NUR significantly decreased by 27.3%, 46.0%, and 44.8% respectively. More N was distributed to root and leaf after WL1 treatment, and to square, flower, and boll after WL2 treatment. N physiological use efficiency increased by 11.4% and 44.4% after WL1 and WL2 treatments respectively. Further analysis showed that the effects of WL1 on yield and its components of cotton were stronger than WL2. The boll number, boll weight, and lint yield per plant significantly reduced by 40.5%, 12.4%, and 49.5% after WL1 treatment, and significantly decreased by 23.1%, 6.9%, and 29.9% after WL2 treatment, respectively. [Conclusion] The negative effects of water- logging at peak squaring stage on N nutrition and yield of cotton were stronger than waterlogging at flowering and boll-forming stage, indicating that more attention should be paid to waterlogging at peak squaring stage and sound N management can improve cotton regrowth and reduce yield loss after waterlogging.展开更多
[Objective] The aim was to master waterlogging tolerance of cut rose vari-eties, and provided technical reference for promoting cut rose largely. [Method] Based on natural rainfal information from July to October in S...[Objective] The aim was to master waterlogging tolerance of cut rose vari-eties, and provided technical reference for promoting cut rose largely. [Method] Based on natural rainfal information from July to October in Sanya, comprehensive performance of 22 varieties were observed in two consecutive years to analyze wa-terlogging tolerance ability of cut rose at waterlogging disaster. [Result] The mortality rates of Diana, Black Magic, Eric Red and Vendela were over 15%, and Diana ’s was 25.7%. Carola, Rouge Meil and, Perfume white, Lovers ’ Meeting, Choice, Tineke, Vendela, Marina, Samantha, Golden Emblem, Asagumo, Pink Fan and Dou-ble Delight grew better and recovered quickly after the disaster, with waterlogging tolerance. [Conclusion] The waterlogging tolerance of Carola, Rouge Meil and, My Choice, Tineke, Vendela, Marina, Samantha, Golden Emblem, Asagumo, Pink Fan and Double Delight was the best, which is also true for their comprehensive perfor-mances. But the waterlogging tolerance of other major cultivars such as Black Magic, Movie Star, Tineke and Vendela was poorer.展开更多
The effects of waterlogging stress on the growth, chlorophyll and MDA content of cucumber seedlings were studied by using cucumber varieties (Cucumis sativus L. cv. Jinyan No.7) as materials. The results show that p...The effects of waterlogging stress on the growth, chlorophyll and MDA content of cucumber seedlings were studied by using cucumber varieties (Cucumis sativus L. cv. Jinyan No.7) as materials. The results show that plant height, leaf number, shoot fresh weight, total root length, total projected area and total surface area of cucumber seedlings showed insignificant differences with those of the control; root fresh weight, root average diameter, total root volume were significantly higher, but the number of root tips and furcation number increased first and then reduced; the chlorophyll content of cucumber seedlings was significantly lower than that of control; MDA content was significantly higher than that of control under waterlogging stress. It was showed that the cucumber was tolerant to waterlogging stress, but the ability of waterlogging stress was limited, and the physiological was significantly hurt and photosynthesis of cucumber seedlings was significantly affected by waterlogging stress.展开更多
To better understand the physiological and biochemical mechanisms of waterlogging tolerance, waterlogging effects on lipid peroxidation and the activity of antioxidative enzymes were investigated in leaves and roots o...To better understand the physiological and biochemical mechanisms of waterlogging tolerance, waterlogging effects on lipid peroxidation and the activity of antioxidative enzymes were investigated in leaves and roots of two maize genotypes, HZ32 (waterlogging-tolerant) and K12 (waterlogging-sensitive). Potted maize plants were waterlogged at the second leaf stage under glasshouse conditions. Leaves and roots were harvested 1 d before and 2, 4, 6, 8 and 10 d after the start of waterlogging treatment. Through comparing the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), catalase (CAT) and guaiacol peroxidase (POD) between waterlogging-tolerant and waterloggingsensitive genotype, we deduced that CAT was the most important H2O2 scavenging enzyme in leaves, while APX seemed to play a key role in roots. POD, APX, GR and CAT activities in conjunction with SOD seem to play an essential protective role in the O2^- and H2O2 scavenging process. Lipid peroxidation was enhanced significantly only in K12 (P 〈 0.001) and there was no difference (P 〉 0.05) in HZ32 up to 6 d after waterlogging stress. These results indicated that oxidative stress may play an important role in waterlogging-stressed maize plants and that the greater protection of HZ32 leaves and roots from waterlogging-induced oxidative damage results, at least in part, through the maintenance of increased antioxidant enzyme activity.展开更多
Waterlogging is a widespread limiting factor for wheat production throughout the world. To identify quantitative trait loci (QTLs) associated with waterlogging tolerance at early stages of growth, survival rate (SR...Waterlogging is a widespread limiting factor for wheat production throughout the world. To identify quantitative trait loci (QTLs) associated with waterlogging tolerance at early stages of growth, survival rate (SR), germination rate index (GRI), leaf chlorophyll content index (CCI), root length index (RLI), plant height index (PHI), root dry weight index (RDWI), shoot dry weight index (SDWI), and total dry weight index (DWI) were assessed using the International Triticeae Mapping Initiative (ITMI) population W7984/Opata85. Significant and positive correlations were detected for all traits in this population except RLI. A total of 32 QTLs were associated with waterlogging tolerance on all chromosomes except 3A, 3D, 4B, 5A, 5D, 6A, and 6D. Some of the QTLs explained large proportions of the phenotypic variance. One of these is the QTL for GRI on 7A, which explained 23.92% of the phenotypic variation. Of them, 22 alleles from the synthetic hexaploid wheat W7984 contributed positively. These results suggested that synthetic hexaploid wheat W7984 is an important genetic resource for waterlogging tolerance in wheat. These alleles conferring waterlogging tolerance at early stages of growth in wheat could be utilized in wheat breeding for improving waterlogging tolerance.展开更多
Waterlogging strongly affects agronomic performance of maize (Zea mays L.). In order to investigate the suitable selection criteria of waterflooding tolerant genotypes, and identify the most susceptible stage and th...Waterlogging strongly affects agronomic performance of maize (Zea mays L.). In order to investigate the suitable selection criteria of waterflooding tolerant genotypes, and identify the most susceptible stage and the best continuous treatment time to waterlogging, 20 common maize inbred lines were subjected to successive artificial waterflooding at seedling stage, and waterlogging tolerance coefficient (WTC) was used to screen waterflooding tolerant genotypes. In addition, peroxidase (POD) activities and malondialdehyde (MDA) contents were measured for 6 of 20 lines. The results showed that the second leaf stage (V2) was the most susceptible stage, and 6 d after waterflooding was the best continuous treatment time. Dry weight (DW) of both shoots and roots of all lines were significantly reduced at 6 d time-point of waterlogging, compared to control. POD activities and MDA contents were negatively and significantly correlated, and the correlation coefficient was -0.9686 (P 〈 0.0001). According to the results, WTC of shoot DW can be used for practical screening as a suitable index, which is significantly different from control and waterlogged plants happened 6 d earlier. Furthermore, leaf chlorosis, MDA content and POD activities could also be used as reference index for material screening. The implications of the results for waterlogging-tolerant material screening and waterlogging-tolerant breeding have been discussed in maize.展开更多
RNA sequencing of the sensitive GH01 variety of Brassica napus L. seedling roots under 12 h of waterlogging was compared with previously published data of the ZS9 tolerant variety to unravel genetic mechanisms of wate...RNA sequencing of the sensitive GH01 variety of Brassica napus L. seedling roots under 12 h of waterlogging was compared with previously published data of the ZS9 tolerant variety to unravel genetic mechanisms of waterlogging tolerance beyond natural variation. A total of 2 977 genes with similar expression patterns and 17 genes with opposite expression patterns were identiifed in the transcription proifles of ZS9 and GH01. An additional 1 438 genes in ZS9 and 1 861 genes in GH01 showed strain speciifc regulation. Analysis of the overlapped genes between ZS9 and GH01 revealed that waterlogging tolerance is determined by ability to regulate genes with similar expression patterns. Moreover, differences in both gene expression proifles and abscisic acid (ABA) contents between the two varieties suggest that ABA may play some role in waterlogging tolerance. This study identiifes a subset of candidate genes for further functional analysis.展开更多
A field experiment was carried out to study genotypic difference in the effect of waterlogging on photosynthesis, chlorophyll content and antioxidative enzyme activities in barley. Waterlogging caused a rapid decline ...A field experiment was carried out to study genotypic difference in the effect of waterlogging on photosynthesis, chlorophyll content and antioxidative enzyme activities in barley. Waterlogging caused a rapid decline in net photosynthetic rate (Pn) and stomatal conductance (gs), and little change in chlorophyll content during early days of the treatment. A dramatic increase in malondialdehyde (MDA) content, superoxide dismutase (SOD) and peroxidase (POD) in waterlogged plants in the early days of the experiment was found, indicating the occurrence of oxidative stress in barley plants exposed to waterlogging. There was a highly significant difference in the changed extent of all these parameters among genotypes. Franklin and Yongjiahong Liuleng Damai, which were relatively sensitive to waterlogging in terms of growth, photosynthesis and chlorophyll content, accumulated much more MDA than the other two relatively tolerant genotypes (93-3143 and QS). After removal of waterlogging, the genotypic difference became much greater in recovering of these examined parameters. Yongjiahong Liuleng Damai showed higher recovery, while Franklin only recovered to 50% of the control at the 14 day after waterlogging removal. It may be concluded that it is the difference in anti-oxidative stress caused by waterlogging that account for the major difference in photosynthesis among barley genotypes.展开更多
Four images of 1991 AVHRR, 2003 and 2007 MODIS were used to extract waterlogging inundated water of three years, and three inundated water maps were overlaid to estimate waterlogging affected frequency. Based on wa-te...Four images of 1991 AVHRR, 2003 and 2007 MODIS were used to extract waterlogging inundated water of three years, and three inundated water maps were overlaid to estimate waterlogging affected frequency. Based on wa-terlogging affected frequency, waterlogging hazard of pixel scale was assessed. According to the weighed score of area percentage of different waterlogging affected frequency in 13 counties/cities of Lixiahe region, waterlogging hazard rank of every county/city was assessed. Waterlogging affected frequency map and 1km×1km grid landuse map were used to assess waterlogging risk of pixel scale; and then waterlogging risk rank of every county/city was assessed by the similar method by which waterlogging hazard rank of every county/city was assessed. High risk region is located mainly in core zone of Lixiahe hinterland, medium risk region is adjacent to high risk region, and low risk region is located in the most outlying area of risk zone and mainly in south to middle part of Lixiahe region. Xinghua and Gaoyou belong to high risk city, Jiangyan belongs to medium risk city, and the other counties/cities have low or lower waterlogging risk. The method of assessing waterlogging risk in this paper is simple and applicable. This paper can provide guidance for the waterlogging risk analysis in broader area of Huaihe River Basin.展开更多
Cross combinations from six rapeseed cultivars and lines were evaluated under waterlogging stress condition in order to understand the genetic mechanism of waterlogging tolerance of Brassica napus L.and provide reason...Cross combinations from six rapeseed cultivars and lines were evaluated under waterlogging stress condition in order to understand the genetic mechanism of waterlogging tolerance of Brassica napus L.and provide reasonable improvement programs.There were six germination traits investigated on combining ability and heritability using complete diallel crossing method designed for 30 combinations from those six cultivars and lines.The traits included relative root length,stem length,fresh weight per plant,survival rate,electrical conductivity,and vigor index.After flooding treatment,the six traits of parents and F1 were analyzed.The general combining ability(GCA) and special combining ability(SCA) of germination traits were analyzed using Griffing I method.Among 30 cross combinations,the GCA was significantly different among six waterlogging resistance traits.The SCA of these traits was significantly different except the SCA of electrical conductivity.As a representative trait of waterlogging tolerance in rapeseed,relative vigor index had the highest narrow heritability and relatively low broad heritability.The cultivars Zhongshuang 9 and P79 had higher tolerance potential to waterlogging stress.It can be concluded that combining ability and genetic effects of relative vigor index during germination stage could be used to identify the waterlogging tolerance of rapeseed in breeding program.展开更多
基金supported by the Key Research Projects of Zhejiang Province,China(2021C02064-3 and 2021C02057)the China Agriculture Research System(CARS-05)the Jiangsu Collaborative Innovation Center for Modern Crop Production,China(JCIC-MCP).
文摘Waterlogging is one of the major abiotic stresses threatening crop yields globally.Under waterlogging stress,plants suffer from oxidative stress,heavy metal toxicity and energy deficiency,leading to metabolic disorders and growth inhibition.On the other hand,plants have evolved waterlogging-tolerance or adaptive mechanisms,including morphological changes,alternation of respiratory pathways,antioxidant protection and endogenous hormonal regulation.In this review,recent advances in studies on the effects of waterlogging stress and the mechanisms of waterlogging tolerance in plants are presented,and the genetic differences in waterlogging tolerance among plant species or genotypes within a species are illustrated.We also summarize the identified QTLs and key genes associated with waterlogging tolerance.
基金supported by the National Natural Science Foundation of China(31901964)the Natural Science Foundation of Hebei,China(C2021204158)+3 种基金the Science and Technology Project of Hebei Education Department,China(BJK2022012)the Introduced Talents Project of Hebei Agricultural University,China(YJ201904)the earmarked fund for Hebei Apple Innovation Team of Modern Agroindustry Technology Research System,China(HBCT2024150205)the earmarked fund for the China Agricultural Research System,China(CARS-27).
文摘Melatonin and dopamine can potentially prevent waterlogging stress in apples.The current study investigated the mechanism by which melatonin and dopamine alleviate apple waterlogging stress.This study demonstrated that melatonin and dopamine alleviated waterlogging by removing reactive oxygen species(ROS),and that the nitric oxide(NO)content and nitrate reductase(NR)activity were significantly correlated.Melatonin and dopamine were also found to recruit different candidate beneficial endophytes(melatonin:Novosphingobium,Propionivibrio,and Cellvibrio;dopamine:Hydrogenophaga,Simplicispira,Methyloversatilis,Candidatus_Kaiserbacteria,and Humicola),and these endophytes were significantly and positively correlated with plant growth.Network analyses showed that melatonin and dopamine significantly affected the endophytic bacterial and fungal communities under waterlogging stress.The metabolomic results showed that melatonin and dopamine led to waterlogging resistance by upregulating the abundance of beneficial substances such as amino acids,flavonoids,coumarins,and organic acids.In addition,melatonin and dopamine regulated the physicochemical properties of the soil,which altered the endophyte community and affected plant growth.The co-occurrence network demonstrated close and complex relationships among endophytes,metabolites,soil,and the plants.Our results demonstrate that melatonin and dopamine alleviate waterlogging stress in apples by recruiting beneficial endophytes to enhance physiological resilience.This study provides new insights into how melatonin and dopamine alleviate stress and a theoretical basis for synergistic beneficial microbial resistance to waterlogging stress.
基金This research was supported by the China Agricultural Research System(CARS-06-14.5-A23)HAAFS Basic Science and Technology Contract Project(Grant No.HBNKY-BGZ-02)Technical System of Foxtail Millet Industry in Hebei Province.
文摘Foxtail millet(Setaria italica)growth was inhibited because of waterlogging stress,which has caused yield reduc-tion.ERF family plays an important role to plant adversity tolerance.In our study,we obtained 19,819 differential expressed genes(DEGs)between the two treatments based on the RNA-seq sequencing of foxtail millet of water-logging stress.Furthermore,a total of 28 ERF family members were obtained,which have a complete open read-ing frame.We studied the evolution and function of SiERF family and how they affected the waterlogging tolerance.It was found that SiERF1A/B/C(GenBank ID:OR775217,OR775219,OR775218)and SiRAP2-12(GenBank ID:OR775216)have similar functions to the known waterlogging tolerance genes of other plants.Among them,the SiRAP2-12 expression was obviously significantly up-regulated in foxtail millet after 5d water-logging stress.After SiRAP2-12 was silenced,the activity of defense enzymes in millet decreased significantly.In details,superoxide dismutase(SOD),catalase(CAT)and peroxidase(POD),the osmotic regulator proline(Pro),and the activity of the anaerobic respiratory enzyme alcohol dehydrogenase(ADH)content were decreased by 78.61%,29.52%,79.95%,19.41%and 54.77%,respectively.In contrast,the relative electrical conductivity contents(REC),malondialdehyde(MDA),and hydrogen peroxide(H_(2)O_(2))of the foxtail millet subjected to virus-induced gene silencing clearly increased by 1.03-fold,36.09%,and 15.21%,respectively.The content of sodium(Na^(+))in the SiRAP2-12-silenced foxtail millet also increased,but that of potassium(K^(+))decreased.Interestingly,we found that ethylene content was significantly reduced.Further,the SiAOC1 expression,an essential gene for ethylene synthesis,was inhibited in SiRAP2-12-silenced foxtail millet after waterlogging stress.Taken together,we hypothesized that SiRAP2-12 might be a positive regulator of millet tolerance to waterlogging stress.
基金funded by the National Natural Science Foundation of China(31801296)the Postdoctoral Innovation Program of Shandong Province(202003039)China Agriculture Research System of MOF and MARA(CARS-02-21)。
文摘A field experiment was performed to investigate the physiological mechanism of the simultaneous stresses of waterlogging and shading on leaf photosynthetic and senescence during three growth stages of summer maize.The responses of leaf gas exchange parameters and antioxidant enzyme activities of the summer maize hybrids Denghai 605(DH605)to waterlogging(W),shading(S),and their combination(W+S)for 6 days at the third leaf stage(V3),the sixth leaf stage(V6),and the tasseling stage(VT)were recorded.Shading,waterlogging,and their combination disturbed the activities of protective enzymes and increased the contents of H2O2and O-2,accelerating leaf senescence and disordering photosynthetic characteristics.Under waterlogging,shading and their combination,leaf Pn,the photo-assimilates and grain yield was decreased.The greatest reduction for waterlogging and the combined stresses occurred at V3 and that for shading stress occurred at VT.The individual and combined stresses reduced the activities of protective enzymes and inhibited photosynthesis,reducing the accumulation of photosynthetic compounds and thereby yield.Waterlogging and the combined stresses at the V3 stage showed the greatest effect on leaf photosynthetic and senescence,followed by the V6 and VT stages.The greatest effect for shading stress occurred at VT,followed by the V6 and V3 stages,and the combined influence of shading and waterlogging was greater than that of either single stress.
基金Chinese Scholarship Council for financial support (202203250009)financially supported by the Key Research and Development Program of Hubei Province (2021BBA225)+1 种基金the Agricultural Science and Technology Innovation Programthe Fundamental Research Funds for Central Non-Profit of the Institute of Crop Sciences, CAAS。
文摘Waterlogging is a growing threat to wheat production in high-rainfall areas.In this study,a doubled haploid(DH) population developed from a cross between Yangmai 16(waterlogging-tolerant) and Zhongmai895(waterlogging-sensitive) was used to map quantitative trait loci(QTL) for waterlogging tolerance using a high-density 660K single-nucleotide polymorphism(SNP) array.Two experimental designs,waterlogging concrete tank(CT) and waterlogging plastic tank(PT),were used to simulate waterlogging during anthesis in five environments across three growing seasons.Waterlogging significantly decreased thousand-kernel weight(TKW) relative to non-waterlogged controls,although the degree varied across lines.Three QTL for waterlogging tolerance were identified on chromosomes 4AL,5AS,and 7DL in at least two environments.All favorable alleles were contributed by the waterlogging-tolerant parent Yangmai16.QWTC.caas-4AL exhibited pleiotropic effects on both enhancing waterlogging tolerance and decreasing plant height.Six high-confidence genes were annotated within the QTL interval.The combined effects of QWTC.caas-4AL and QWTC.caas-5AS greatly improved waterlogging tolerance,while the combined effects of all three identified QTL(QWTC.caas-4AL,QWTC.caas-5AS,and QWTC.caas-7DL) exhibited the most significant effect on waterlogging tolerance.Breeder-friendly kompetitive allele-specific PCR(KASP) markers(K_AX_111523809,K_AX_108971224,and K_AX_110553316) flanking the interval of QWTC.caas-4AL,QWTC.caas-5AS,and QWTC.caas-7DL were produced.These markers were tested in a collection of 240 wheat accessions,and three superior polymorphisms of the markers distributed over 67elite cultivars in the test population,from the Chinese provinces of Jiangsu,Anhui,and Hubei.The three KASP markers could be used for marker-assisted selection(MAS) to improve waterlogging tolerance in wheat.
基金supported by the National Basic Research Program of China (2012CB417001)the National Natural Science Foundation of China (41271125)
文摘Perennial waterlogged soil(PWS) is induced by the high level of groundwater, and has a persistent impact on natural ecosystems and agricultural production. Traditionally, distribution information regarding PWS is mainly collected from in situ measurements through groundwater level surveys and physicochemical property analyses. However, in situ measurements of PWS are costly and time-consuming, only rough estimates of PWS areas are available in some regions. In this paper, we developed a method to monitor the perennial waterlogged cropland using time-series moderate resolution imaging spectroradiometer(MODIS) data. The Jianghan Plain, a floodplain located in the middle reaches of the Yangtze River, was selected as the study area. Temporal variations of the enhanced vegetation index(EVI), night land surface temperature(LST), diurnal LST differences(ΔLST), albedo, and the apparent thermal inertia(ATI) were used to analyze the ecological and thermodynamic characteristics of the waterlogged croplands. To obtain pure remote sensing signatures of the waterlogged cropland from mixed pixels, the croplands were classified into different types according to soil and land cover types in this paper, and a linear mixing model was developed by fitting the signatures using the multiple linear regression approach. Afterwards, another linear spectral mixing model was used to get the proportions of waterlogged croplands in each 1 km×1 km pixel. The result showed an acceptable accuracy with a root-mean-square error of 0.093. As a tentative method, the procedure described in this paper works efficiently as a method to monitor the spatial patterns of perennial sub-surface waterlogged croplands at a wide scale.
基金National Natural Science Foundation of China(31771718,31801307).
文摘Recent publications have highlighted significant progress in utilizing agronomic interventions to alleviate waterlogging stress in cotton production.Based on these advancements,we provide a concise comment on the effects and underlying mechanisms of various strategies such as utilizing stress-tolerant cotton varieties,applying nitric oxide(NO),and implementing ridge intertillage.Finally,we recommend a combination of measures to enhance cotton’s ability to withstand waterlogging and reduce yield losses.
基金Funded by the National Natural Science Foundation of China (No. 51878081)Natural Science Foundation of Jiangsu Province (No. BK20220626)+1 种基金Changzhou Leading Innovative Talent Introduction and Cultivation Project (No. CQ20210085)Postgraduate Research and Practice Innovation Program of Jiangsu Province (No. KYCX21_2847)。
文摘High-strength pervious concrete(HSPC) with porosity ranging from 0.08% to 2.011% was prepared. The mechanical properties and rainstorm waterlogging resistance of HSPC were evaluated,and a design method of HSPC pore characteristics(porosity and pore diameter) based on the mechanical properties and rainstorm waterlogging resistance was proposed. The results showed that the reduction of effective cross-sectional area caused by artificial channels was the main factor affecting flexural strength but had limited influence on compressive strength. Compared with the concrete matrix without artificial channels,the compressive strength of HSPC with porosity of 2.011% decreased by 7.4%, while the flexural strength decreased by 48.3%. The permeability coefficient of HSPC can reach 16.35 mm/s even at low porosity(2.011%).HSPC can meet the requirements of no rainstorm waterlogging, even if exposed to 100-year rainstorms. When the mechanical properties and rainstorm waterlogging resistance are compromised, the recommended porosity ranges from 1.1% to 3.5%, and the recommended pore diameter ranges from 0.8 to 2.7 mm.
基金Funded by the National Natural Science Foundation of China(No.51878081)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX21_1262)。
文摘A novel high-strength straight-hole recycled pervious concrete(HSRPC)for the secondary highway pavement was prepared in this paper.This study aimed to investigate the effect of porosity(0.126%,0.502%,and 1.13%),vehicle loading stress level(0.5 and 0.8)and service life on the resistance to rainstormbased waterlogging of HSRPC under fatigue loading.The mechanical properties of HSRPC in terms of flexural strength and dynamic elastic modulus were studied.The waterlogging resistance of HSRPC was described by surface water depth and drainage time.The microstructure of HSRPC were observed with scanning electron microscopy(SEM).Results showed that although the dynamic elastic modulus and flexural strength of HSRPC decreased with the increasing number of fatigue loading,the flexural strength of HSRPC was still greater than5 MPa after design service life of 20 years.After 2.5×10^(5)times of fatigue loading,the permeability coefficient of HSRPC with a porosity of 0.502%and 1.13%increased by 18.4%and 22.9%,respectively;while the permeability coefficient of HSRPC with 0.126%porosity dropped to 0.35 mm/s.The maximum surface water depth of HSRPC with a porosity of 0.126%,0.502%,and 1.13%were 8,5 and 4 mm,respectively.SEM results showed that fatigue loading expanded the number and width of cracks around the tiny pores in HSRPC.
文摘The coding sequence of Vitreoscilla hemoglobin (vhb) was cloned with PCR technique from Vitreoscilla stercoraria Pringsheim. The plant expression vector with vhb gene under the control of CaMV 35S promoter was constructed and used in the transformation of Petunia hybrida Vilm by the Agrobacterium mediated procedure. The results of PCR amplification and Southern hybridization indicated that the vhb gene had been integrated into the petunia genome and the vhb gene expression had been detected by RT-PCR amplification. In hydroponic culture the transgenic petunias grew much better than non-transgenic controls. For further analysis of hypoxia tolerance of transgenic petunia, the petunia plants with vhb gene were submerged into liquid MS medium. The transgenic plants survived in hypoxic condition and grew out of the liquid surface in a few weeks, while non-transgenic plants were still submerged and suffocated in culture solution without ability to grow out of liquid medium in submersed culture for four to five weeks. The vhb gene transformed petunia plants had been planted and tested in a simulated flooding condition, and showed obvious tolerance to water-logging. It seen is that hemoglobin gene from Vitreoscilla might have the potential use in molecular breeding for the improvement of plant resistance to hypoxia and flooding.
基金Supported by Jiangsu Agricultural Science and Technology Independent-innovation Fund Project(SCX(13)5071)National Natural Science Foundation of China(30900877)~~
文摘[Objective] This study aimed to investigate the effects of waterlogging in different growth stages on nitrogen (N) uptake, distribution, and utilization of cotton. [Method] A pool-culture experiment in field was conducted to investigate the effects of wateriogging through comparing WL1 (waterlogging at peak squaring stage) and WL2 (waterlogging at flowering and boll-forming stage) treatments with their controls respectively. [Result] The results showed that the effect of WL1 on N uptake of cotton root was stronger than WL2. At 20 days (d) after WL1 treatment, the root biomass (RB), N uptake (NU), and N uptake rate (NUR) significantly decreased by 38.1%, 48.6%, and 53.0% respectively. At 20 d after WL2 treatment, the RB, NU, and NUR significantly decreased by 27.3%, 46.0%, and 44.8% respectively. More N was distributed to root and leaf after WL1 treatment, and to square, flower, and boll after WL2 treatment. N physiological use efficiency increased by 11.4% and 44.4% after WL1 and WL2 treatments respectively. Further analysis showed that the effects of WL1 on yield and its components of cotton were stronger than WL2. The boll number, boll weight, and lint yield per plant significantly reduced by 40.5%, 12.4%, and 49.5% after WL1 treatment, and significantly decreased by 23.1%, 6.9%, and 29.9% after WL2 treatment, respectively. [Conclusion] The negative effects of water- logging at peak squaring stage on N nutrition and yield of cotton were stronger than waterlogging at flowering and boll-forming stage, indicating that more attention should be paid to waterlogging at peak squaring stage and sound N management can improve cotton regrowth and reduce yield loss after waterlogging.
基金Supported by National Science and Technology Project(2013GB2E200390)Hainan Major Science and Technology Project(ZDZX2013012-3)~~
文摘[Objective] The aim was to master waterlogging tolerance of cut rose vari-eties, and provided technical reference for promoting cut rose largely. [Method] Based on natural rainfal information from July to October in Sanya, comprehensive performance of 22 varieties were observed in two consecutive years to analyze wa-terlogging tolerance ability of cut rose at waterlogging disaster. [Result] The mortality rates of Diana, Black Magic, Eric Red and Vendela were over 15%, and Diana ’s was 25.7%. Carola, Rouge Meil and, Perfume white, Lovers ’ Meeting, Choice, Tineke, Vendela, Marina, Samantha, Golden Emblem, Asagumo, Pink Fan and Dou-ble Delight grew better and recovered quickly after the disaster, with waterlogging tolerance. [Conclusion] The waterlogging tolerance of Carola, Rouge Meil and, My Choice, Tineke, Vendela, Marina, Samantha, Golden Emblem, Asagumo, Pink Fan and Double Delight was the best, which is also true for their comprehensive perfor-mances. But the waterlogging tolerance of other major cultivars such as Black Magic, Movie Star, Tineke and Vendela was poorer.
文摘The effects of waterlogging stress on the growth, chlorophyll and MDA content of cucumber seedlings were studied by using cucumber varieties (Cucumis sativus L. cv. Jinyan No.7) as materials. The results show that plant height, leaf number, shoot fresh weight, total root length, total projected area and total surface area of cucumber seedlings showed insignificant differences with those of the control; root fresh weight, root average diameter, total root volume were significantly higher, but the number of root tips and furcation number increased first and then reduced; the chlorophyll content of cucumber seedlings was significantly lower than that of control; MDA content was significantly higher than that of control under waterlogging stress. It was showed that the cucumber was tolerant to waterlogging stress, but the ability of waterlogging stress was limited, and the physiological was significantly hurt and photosynthesis of cucumber seedlings was significantly affected by waterlogging stress.
基金supported by the Natural Science Foundation of Hubei Province, China (2008CDB079)the National High Technology Research and Development Program of China (863 Program, 2006AA100103)
文摘To better understand the physiological and biochemical mechanisms of waterlogging tolerance, waterlogging effects on lipid peroxidation and the activity of antioxidative enzymes were investigated in leaves and roots of two maize genotypes, HZ32 (waterlogging-tolerant) and K12 (waterlogging-sensitive). Potted maize plants were waterlogged at the second leaf stage under glasshouse conditions. Leaves and roots were harvested 1 d before and 2, 4, 6, 8 and 10 d after the start of waterlogging treatment. Through comparing the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), catalase (CAT) and guaiacol peroxidase (POD) between waterlogging-tolerant and waterloggingsensitive genotype, we deduced that CAT was the most important H2O2 scavenging enzyme in leaves, while APX seemed to play a key role in roots. POD, APX, GR and CAT activities in conjunction with SOD seem to play an essential protective role in the O2^- and H2O2 scavenging process. Lipid peroxidation was enhanced significantly only in K12 (P 〈 0.001) and there was no difference (P 〉 0.05) in HZ32 up to 6 d after waterlogging stress. These results indicated that oxidative stress may play an important role in waterlogging-stressed maize plants and that the greater protection of HZ32 leaves and roots from waterlogging-induced oxidative damage results, at least in part, through the maintenance of increased antioxidant enzyme activity.
基金supported by the National Basic Research Program of China (2011CB100100)the National High-Tech R&D Program of China (2011AA100103)the National Natural Science Foundation of China (31230053 and 31171556)
文摘Waterlogging is a widespread limiting factor for wheat production throughout the world. To identify quantitative trait loci (QTLs) associated with waterlogging tolerance at early stages of growth, survival rate (SR), germination rate index (GRI), leaf chlorophyll content index (CCI), root length index (RLI), plant height index (PHI), root dry weight index (RDWI), shoot dry weight index (SDWI), and total dry weight index (DWI) were assessed using the International Triticeae Mapping Initiative (ITMI) population W7984/Opata85. Significant and positive correlations were detected for all traits in this population except RLI. A total of 32 QTLs were associated with waterlogging tolerance on all chromosomes except 3A, 3D, 4B, 5A, 5D, 6A, and 6D. Some of the QTLs explained large proportions of the phenotypic variance. One of these is the QTL for GRI on 7A, which explained 23.92% of the phenotypic variation. Of them, 22 alleles from the synthetic hexaploid wheat W7984 contributed positively. These results suggested that synthetic hexaploid wheat W7984 is an important genetic resource for waterlogging tolerance in wheat. These alleles conferring waterlogging tolerance at early stages of growth in wheat could be utilized in wheat breeding for improving waterlogging tolerance.
基金supported by the Natural Science Foundation of Hubei Province, China (2008CDB079)the National High Technology Research and Development Program of China (863 Program,2006AA100103)
文摘Waterlogging strongly affects agronomic performance of maize (Zea mays L.). In order to investigate the suitable selection criteria of waterflooding tolerant genotypes, and identify the most susceptible stage and the best continuous treatment time to waterlogging, 20 common maize inbred lines were subjected to successive artificial waterflooding at seedling stage, and waterlogging tolerance coefficient (WTC) was used to screen waterflooding tolerant genotypes. In addition, peroxidase (POD) activities and malondialdehyde (MDA) contents were measured for 6 of 20 lines. The results showed that the second leaf stage (V2) was the most susceptible stage, and 6 d after waterflooding was the best continuous treatment time. Dry weight (DW) of both shoots and roots of all lines were significantly reduced at 6 d time-point of waterlogging, compared to control. POD activities and MDA contents were negatively and significantly correlated, and the correlation coefficient was -0.9686 (P 〈 0.0001). According to the results, WTC of shoot DW can be used for practical screening as a suitable index, which is significantly different from control and waterlogged plants happened 6 d earlier. Furthermore, leaf chlorosis, MDA content and POD activities could also be used as reference index for material screening. The implications of the results for waterlogging-tolerant material screening and waterlogging-tolerant breeding have been discussed in maize.
文摘RNA sequencing of the sensitive GH01 variety of Brassica napus L. seedling roots under 12 h of waterlogging was compared with previously published data of the ZS9 tolerant variety to unravel genetic mechanisms of waterlogging tolerance beyond natural variation. A total of 2 977 genes with similar expression patterns and 17 genes with opposite expression patterns were identiifed in the transcription proifles of ZS9 and GH01. An additional 1 438 genes in ZS9 and 1 861 genes in GH01 showed strain speciifc regulation. Analysis of the overlapped genes between ZS9 and GH01 revealed that waterlogging tolerance is determined by ability to regulate genes with similar expression patterns. Moreover, differences in both gene expression proifles and abscisic acid (ABA) contents between the two varieties suggest that ABA may play some role in waterlogging tolerance. This study identiifes a subset of candidate genes for further functional analysis.
基金The work was supported in part by the Ministry of Science and Technology of China(China-Australian Special Link Research Program),Australian Bureau of Cereal Research and Development(UT-8)and the Na-tional 863 Program,China(2001AA241241).
文摘A field experiment was carried out to study genotypic difference in the effect of waterlogging on photosynthesis, chlorophyll content and antioxidative enzyme activities in barley. Waterlogging caused a rapid decline in net photosynthetic rate (Pn) and stomatal conductance (gs), and little change in chlorophyll content during early days of the treatment. A dramatic increase in malondialdehyde (MDA) content, superoxide dismutase (SOD) and peroxidase (POD) in waterlogged plants in the early days of the experiment was found, indicating the occurrence of oxidative stress in barley plants exposed to waterlogging. There was a highly significant difference in the changed extent of all these parameters among genotypes. Franklin and Yongjiahong Liuleng Damai, which were relatively sensitive to waterlogging in terms of growth, photosynthesis and chlorophyll content, accumulated much more MDA than the other two relatively tolerant genotypes (93-3143 and QS). After removal of waterlogging, the genotypic difference became much greater in recovering of these examined parameters. Yongjiahong Liuleng Damai showed higher recovery, while Franklin only recovered to 50% of the control at the 14 day after waterlogging removal. It may be concluded that it is the difference in anti-oxidative stress caused by waterlogging that account for the major difference in photosynthesis among barley genotypes.
基金Under the auspices of Ministry of Water Resources, P. R. China (No. [2001]29)
文摘Four images of 1991 AVHRR, 2003 and 2007 MODIS were used to extract waterlogging inundated water of three years, and three inundated water maps were overlaid to estimate waterlogging affected frequency. Based on wa-terlogging affected frequency, waterlogging hazard of pixel scale was assessed. According to the weighed score of area percentage of different waterlogging affected frequency in 13 counties/cities of Lixiahe region, waterlogging hazard rank of every county/city was assessed. Waterlogging affected frequency map and 1km×1km grid landuse map were used to assess waterlogging risk of pixel scale; and then waterlogging risk rank of every county/city was assessed by the similar method by which waterlogging hazard rank of every county/city was assessed. High risk region is located mainly in core zone of Lixiahe hinterland, medium risk region is adjacent to high risk region, and low risk region is located in the most outlying area of risk zone and mainly in south to middle part of Lixiahe region. Xinghua and Gaoyou belong to high risk city, Jiangyan belongs to medium risk city, and the other counties/cities have low or lower waterlogging risk. The method of assessing waterlogging risk in this paper is simple and applicable. This paper can provide guidance for the waterlogging risk analysis in broader area of Huaihe River Basin.
基金supported by the National High-Tech Research and Development Program of China (863 Program,2006AA10Z1C2)the Key Technologies R&D Program of China during the 10th Five-Year Plan period (2009BADA8B01,2110BAD01B09)the Natural Science Foundation of Hubei Province,China(2009CDA089)
文摘Cross combinations from six rapeseed cultivars and lines were evaluated under waterlogging stress condition in order to understand the genetic mechanism of waterlogging tolerance of Brassica napus L.and provide reasonable improvement programs.There were six germination traits investigated on combining ability and heritability using complete diallel crossing method designed for 30 combinations from those six cultivars and lines.The traits included relative root length,stem length,fresh weight per plant,survival rate,electrical conductivity,and vigor index.After flooding treatment,the six traits of parents and F1 were analyzed.The general combining ability(GCA) and special combining ability(SCA) of germination traits were analyzed using Griffing I method.Among 30 cross combinations,the GCA was significantly different among six waterlogging resistance traits.The SCA of these traits was significantly different except the SCA of electrical conductivity.As a representative trait of waterlogging tolerance in rapeseed,relative vigor index had the highest narrow heritability and relatively low broad heritability.The cultivars Zhongshuang 9 and P79 had higher tolerance potential to waterlogging stress.It can be concluded that combining ability and genetic effects of relative vigor index during germination stage could be used to identify the waterlogging tolerance of rapeseed in breeding program.