The equivalent simplification of large wind farms is essential for evaluating the safety of power systems.However,sub-synchronous oscillations can significantly affect the stability of power systems.Although detailed ...The equivalent simplification of large wind farms is essential for evaluating the safety of power systems.However,sub-synchronous oscillations can significantly affect the stability of power systems.Although detailed mathematical models of wind farms can help accurately analyze the oscillation mechanism,the solution process is complicated and may lead to problems such as the“dimensional disaster.”Therefore,this paper proposes a sub-synchronous frequency domain-equivalent modeling method for wind farms based on the nature of the equivalent resistance of the rotor,in order to analyze sub-synchronous oscillations accurately.To this end,Matlab/Simulink is used to simulate a detailed model,a single-unit model,and an equivalent model,considering a wind farm as an example.A simulation analysis is then performed under the sub-synchronous frequency to prove that the model is effective and that the wind farm equivalence model method is valid.展开更多
Nowadays with the improvement in the degree of emphasis on new energy, the wind power system has developed more and more rapidly over the world. Usually the wind plants are located in the remote areas which are far fr...Nowadays with the improvement in the degree of emphasis on new energy, the wind power system has developed more and more rapidly over the world. Usually the wind plants are located in the remote areas which are far from the load centers. Generally series compensated AC transmission and high voltage DC transmission are made use of to improve the transmission capacity as two main effective ways which can solve the problem of large scale wind power transmission. The paper describes the three kinds of impact varieties and impact mechanisms in the sub-synchronous oscillation phenomena of wind power system based on doubly fed induction generator (DFIG) wind generators. At last, we point out the important problem that should be stressed in the wind power system.展开更多
When wind farms,which is based on double fed induction generator(DFIG),are connected to the series compensation power system,the phenomenon of sub-synchronous oscillation(SSO)may occur.In order to study the sub-synchr...When wind farms,which is based on double fed induction generator(DFIG),are connected to the series compensation power system,the phenomenon of sub-synchronous oscillation(SSO)may occur.In order to study the sub-synchronous oscillation in wind power connected to series compensated power system and its influencing factors,we used RT-LAB to establish a simulation model concerning wind power connected to series-compensation power system.This model take a wind power connected to series compensation power system in north China as prototype.All influence factors of wind power SSO are simulated and analyzed by using time domain analysis method.The simulation results show that the effects of wind speed,series compensation degree and proportional control coefficient of rotor side converter(RSC)are most obvious.展开更多
With the rapid development of wind power, wind turbines are accompanied by a large quantity of power electronic converters connected to the grid, causing changes in the characteristics of the power system and leading ...With the rapid development of wind power, wind turbines are accompanied by a large quantity of power electronic converters connected to the grid, causing changes in the characteristics of the power system and leading to increasingly serious sub-synchronous oscillation (SSO) problems, which urgently require the generalized classification and characterization of the emerging oscillation problems. This paper classifies and characterizes the emerging types of SSO caused by grid-connected wind turbines to address these issues. Finally, the impact of the typical system parameters changes on the oscillation pattern is analyzed in depth to provide effective support for the subsequent suppression and prevention of SSO.展开更多
This paper deals with the problem of limit cycles for the whirling pendulum equation x=y,y=sin x(cosx-r)under piecewise smooth perturbations of polynomials of cos x,sin x and y of degree n with the switching line x=0....This paper deals with the problem of limit cycles for the whirling pendulum equation x=y,y=sin x(cosx-r)under piecewise smooth perturbations of polynomials of cos x,sin x and y of degree n with the switching line x=0.The upper bounds of the number of limit cycles in both the oscillatory and the rotary regions are obtained using the Picard-Fuchs equations,which the generating functions of the associated first order Melnikov functions satisfy.Furthermore,the exact bound of a special case is given using the Chebyshev system.At the end,some numerical simulations are given to illustrate the existence of limit cycles.展开更多
中间表示对编译器的性能、效率和可扩展性都起着决定性作用.Open64编译器采用一种树型结构的中间表示WHIRL,能表示各种高级控制流结构,但不能显式的提供数据流信息.本文基于WHIRL对SSA(Static Single Assignment)进行扩展,提出了一个新...中间表示对编译器的性能、效率和可扩展性都起着决定性作用.Open64编译器采用一种树型结构的中间表示WHIRL,能表示各种高级控制流结构,但不能显式的提供数据流信息.本文基于WHIRL对SSA(Static Single Assignment)进行扩展,提出了一个新的优化结构WHIRL SSA.WHIRL SSA通过将SSA信息标注在WHIRL节点上,显式的为数据流分析提供使用-定义(UD)信息.相比于传统的数据流信息构建方法,WHIRL SSA提供了更精确、有效的数据流信息.本文讨论了WHIRL SSA的设计与实现和基于WHIRL SSA的优化.展开更多
BACKGROUND Internal hernia(IH)is a rare culprit of small bowel obstruction(SBO)with an incidence of<1%.It poses a considerable diagnostic challenge requiring a high index of suspicion to prevent misdiagnosis,improp...BACKGROUND Internal hernia(IH)is a rare culprit of small bowel obstruction(SBO)with an incidence of<1%.It poses a considerable diagnostic challenge requiring a high index of suspicion to prevent misdiagnosis,improper treatment,and subsequent morbidity and mortality.AIM To determine the clinico-demographic profile,radiological and operative findings,and postoperative course of patients with IH and its association with SBO.METHODS Medical records of 586 patients with features of SBO presenting at a tertiary care centre at Lucknow,India between September 2010 and August 2023 were reviewed.RESULTS Out of 586 patients,7(1.2%)were diagnosed with IH.Among these,4 had congenital IH and 3 had acquired IH.The male-to-female ratio was 4:3.The median age at presentation was 32 years.Contrast-enhanced computed tomography(CECT)was the most reliable investigation for preoperative identification,demonstrating mesenteric whirling and clumped-up bowel loops.Left paraduodenal hernia and transmesenteric hernia occurred with an equal frequency(approximately 43%each).Intraoperatively,one patient was found to have bowel ischemia and one had associated malrotation of gut.During follow-up,no recurrences were reported.CONCLUSION IH,being a rare cause,must be considered as a differential diagnosis for SBO,especially in young patients in their 30s or with unexplained abdominal pain or discomfort post-surgery.A rapid imaging evaluation,preferably with CECT,is necessary to aid in an early diagnosis and prompt intervention,thereby reducing financial burden related to unnecessary investigations and preventing the morbidity and mortality associated with closed-loop obstruction and strangulation of the bowel.展开更多
Based on AVISO (archiving, validation and interpretation of satellite data in oceanography) data from 1993 to 2010, QuikSCAT (Quick Scatterometer) data from 2000 to 2008, and Argo data from 2003 to 2008, the inter...Based on AVISO (archiving, validation and interpretation of satellite data in oceanography) data from 1993 to 2010, QuikSCAT (Quick Scatterometer) data from 2000 to 2008, and Argo data from 2003 to 2008, the interannual variability of the Great Whirl (GW) and related mechanisms are studied. It shows that the origin and termination times of the GW, as well as its location and intensity, have significant interarmual variability. The GW appeared earliest (latest) in 2004 (2008) and vanished ear- liest (latest) in 2006 (2001), with the shortest (longest) duration in 2008 (2001). Its center was most southward (northward) in 2007 (1995), while the minimum (maximum) amplitude and area occurred in 2003 and 2002 (1997 and 2007), respectively. The GW was weaker and disappeared earlier with its location tending to be in the southwest in 2003, while in 2005 it was stronger, van- ished later and tended to be in northeast. The abnormal years were often not the same among different characters of the GW, and were not all coincident with ENSO (El Nifio-Southern Oscillation) or IOD (Indian Ocean Dipole) events, indicating the very com- plex nature of GW variations. Mechanism investigations shows that the interannual variability of intraseasonal wind stress curl in GW region results in that of the GW. The generation of the GW is coincident with the arrival of Rossby waves at the Somali coast in spring; the intensity of the GW is also influenced by Rossby waves. The termination of the GW corresponds well to the second one of the top two peaks in the baroclinic energy conversion rate in GW region, and the intensity and the position of the GW are also closely related to the top two baroclinic energy conversion rates.展开更多
A combined method of numerical simulation and field testing was adopted in this study in the interest of solving the problem of hard to control high concentrate dusts on a fully mechanized mining face. In addi- tion, ...A combined method of numerical simulation and field testing was adopted in this study in the interest of solving the problem of hard to control high concentrate dusts on a fully mechanized mining face. In addi- tion, the dust suppression effect of a multi-direction whirling air curtain was studied in this paper. Under the influence of the wall attachment effect, the compressed air which blows out from the two-phase or three-phase radial outlets on the generator of the air curtain can form a multi-direction whirling air curtain, which can cover the whole roadway section of a fully mechanized mining face. The traditional method of controlling dust is a forcing system with exhaust overlap which has the major disadvantage of lacking a jet effect and consequently results in poor dust control. It is difficult to form the air flow field within the range of Lp ≤ 5√S. However, due to the effect of this novel system, the radial airflow can be turned into axial airflow allowing fresh air to flow through the length of the heading. The air flow field which is good at controlling dust diffusion can be formed 12.8 m from the heading face. Furthermore, the field measurement results show that before the application of a multi-direction whirling air curtain, the dust concentration is 348.6 mg/m^3 and 271.4 mg/m^3 respectively at the roadway cross-section measurement points which are 5 m and 10 m from the heading face. However, after the application of the multi-direction whirling air curtain, the dust concentration is only 61.2 mg/m3 and 14.8 mg/m^3, respectively. Therefore, the dust control effect of a multi-direction whirling air curtain is obvious.展开更多
Under the sliding bearing support for the rotor-bearing system, the dynamic model of a rotor-bearing system is established under the action of non-linear oil film force. The rotor-bearing system has been studied by th...Under the sliding bearing support for the rotor-bearing system, the dynamic model of a rotor-bearing system is established under the action of non-linear oil film force. The rotor-bearing system has been studied by the application of nonlinear dynamics theory, and the system's response was obtained by the numerical integration approach. The effects of eccentricity, speed, lubricant viscosity, radius gap, bearing length and journal radius on the system's response have been studied by using an amplitude-frequency curve, three-dimensional spectrum and bifurcation, which provides a theoretical basis for the diagnosis of the oil whirl fault effectively in the rotor-bearing system supported by a sliding bearing.展开更多
Whirling is a cutting process in which a series of cutting edges on whirling ring remove material by turning over a rotating workpiece. In this study static and dynamic stability of whirling unit was estimated by usin...Whirling is a cutting process in which a series of cutting edges on whirling ring remove material by turning over a rotating workpiece. In this study static and dynamic stability of whirling unit was estimated by using ADAMS and NASTRAN softwares. Each maximum force acting on the bearing attached to the spindle assembly and the cutting tool attached to the whirling ring with the rotating speed of 6 000 r/min was 235 N and 902 N respectively. The maximum stress of 0.74 MPa on the base frame is far smaller than the yield strength of 282 MPa. The calculated natural frequency of 148 Hz of the system is far from the frequency of the driving speed of 6 000 r/min. The experimentally obtained maximum cutting force of 792 N is smaller than that of calculated value. And the experimentally obtained natural frequency of 118 Hz is beyond the driving speed of 6000 r/min. From above results it can be judged that the whirling system is statically and dynamically stable.展开更多
Nonlinear dynamics of a cracked rotor with whirling were analyzed and were compared to a rotor without whirling. Distinct differences have been found in bifurcation, amplitude, orbit and Poincare map when carrying on ...Nonlinear dynamics of a cracked rotor with whirling were analyzed and were compared to a rotor without whirling. Distinct differences have been found in bifurcation, amplitude, orbit and Poincare map when carrying on this comparison. Complicated dynamics may be found when a cracked rotor has its whirling speed. The results revealed may be useful in crack-early-detection and diagnosis.展开更多
The general features of the Great Whirl(GW)off the Somali Coast in 2017 and its influences on chlorophyll a(Chl a)concentration were studied by using satellite data and model outputs.Results show that GW,which initiat...The general features of the Great Whirl(GW)off the Somali Coast in 2017 and its influences on chlorophyll a(Chl a)concentration were studied by using satellite data and model outputs.Results show that GW,which initiated at7°N,53°E on June 13,had a lifetime of 153 d with an average amplitude of 16 cm and an average radius of 205 km.After the formation of GW,the concentration of Chl a in the interior of GW showed a downward trend throughout its life cycle,except in early July and mid-October.In early July,the Chl a blooms in the interior of GW were attributed to the combined effect of three processes.They are eddy horizontal transportation,the deepening of the mixed layer caused by the monsoon and eddy pumping,and the upward transportation of nutrients caused by eddy-induced Ekman pumping.In October,the Chl a blooms were probably due to the weakening of GW.During the period,water exchange occurred more frequently across the eddy,thus phytoplanktons were imported into the interior of GW.展开更多
Fire whirls cause an increase in fire damage. This study clarified the unsteady behavior of fire whirls, considering that instantaneous changes in the temperature and flame shape of fire whirls can affect the damage t...Fire whirls cause an increase in fire damage. This study clarified the unsteady behavior of fire whirls, considering that instantaneous changes in the temperature and flame shape of fire whirls can affect the damage to the surrounding area. Numerical simulations of a lab-scale flame that simulates a fire whirl were performed to investigate the changes in gas temperature and velocity fields under various fuel inflow velocities. The flow field was obtained by solving a continuity equation and a three-dimensional Navier-Stokes equation, and the turbulence was resolved using a large eddy simulation. A chemical equilibrium partially premixed combustion model was used, and radiation effects were considered. The time-averaged gas temperature distribution along the burner central axis revealed that the gas temperature decreased monotonically from upstream to downstream. The time-averaged velocity distribution along the burner central axis showed that the velocity decreased as one moved downstream, but the decrease was uneven. The time variation of the gas temperature demonstrated that the higher the fuel inflow velocity, especially near the burner, the greater the gas temperature flutter. Furthermore, the larger the fuel inflow velocity, the larger the flame swell and wobble. The results showed that the fuel inflow velocity affected temperature fluctuation and flame undulating movement.展开更多
This paper deals with the theoretic simulation of a drill bit whirling under conditions of its contact interaction with the bore-hole bottom rock plane. The bit is considered to be an absolutely rigid ellipsoidal body...This paper deals with the theoretic simulation of a drill bit whirling under conditions of its contact interaction with the bore-hole bottom rock plane. The bit is considered to be an absolutely rigid ellipsoidal body with uneven surface. It is attached to the lower end of a rotating elastic drill string. In the perturbed state, the bit can roll without sliding on the bore-hole bottom, performing whirling vibrations (the model of dynamic equilibrium with pure rolling when maximum cohesive force does not exceed the ultimate Coulombic friction). To describe these motions, a nonholonomic dynamic model is proposed, constitutive partial differential equations are deduced. With their use, the whirling vibrations of oblong and oblate ellipsoidal bits are analyzed, the functions of cohesive (frictional) forces are calculated. It is shown that the system of elastic drill string and ellipsoidal bit can acquire stable or unstable whirl modes with approaching critical Eulerian values by the parameters of axial force, torque and angular velocity. The analogy of the found modes of motions with ones of the Celtic stones is established. It is shown that the ellipsoidal bits can stop their whirling vibrations and change directions of their circumferential motions in the same manner as the ellipsoidal Celtic stones do. As this takes place, the trajectories of the oblate ellipsoidal bits are characterized by more complicated paths and irregularities.展开更多
An incipient stage of a rotating drill string bit whirl motion proceeding on a well bottom surface is studied on the basis of kinematic (nonholonomic) models of mechanic interaction between the contacting uneven bod...An incipient stage of a rotating drill string bit whirl motion proceeding on a well bottom surface is studied on the basis of kinematic (nonholonomic) models of mechanic interaction between the contacting uneven bodies. The bit is considered to be an absolutely rigid spherical or ellipsoidal body, the well bottom surface can be plane or spherical. It is assumed that the system coaxiality is disturbed through small initial curvature of the drill string, imperfections of the bit and bore-well geometry or the system mass debalance. Linearized equations of the bit whirling are deducted, the frequencies of periodic motions are calculated, and their modes are constructed for different geometric parameters of the spherical and ellipsoidal bits. It is demonstrated that, depending on the system properties, the bit motion can acquire the regimes of forward and backward whMings or to transit to the state of stationary spinning relative to an immovable center of velocities. The most unfavorable and atypical whirling modes are characteristic for oblate eilipsoidal bits and curvilinear surfaces of the well bottom.展开更多
基金supported by the National Key R&D Program of China“Response-driven intelligent enhanced analysis and control for bulk power system stability”(No.2021YFB2400800)。
文摘The equivalent simplification of large wind farms is essential for evaluating the safety of power systems.However,sub-synchronous oscillations can significantly affect the stability of power systems.Although detailed mathematical models of wind farms can help accurately analyze the oscillation mechanism,the solution process is complicated and may lead to problems such as the“dimensional disaster.”Therefore,this paper proposes a sub-synchronous frequency domain-equivalent modeling method for wind farms based on the nature of the equivalent resistance of the rotor,in order to analyze sub-synchronous oscillations accurately.To this end,Matlab/Simulink is used to simulate a detailed model,a single-unit model,and an equivalent model,considering a wind farm as an example.A simulation analysis is then performed under the sub-synchronous frequency to prove that the model is effective and that the wind farm equivalence model method is valid.
文摘Nowadays with the improvement in the degree of emphasis on new energy, the wind power system has developed more and more rapidly over the world. Usually the wind plants are located in the remote areas which are far from the load centers. Generally series compensated AC transmission and high voltage DC transmission are made use of to improve the transmission capacity as two main effective ways which can solve the problem of large scale wind power transmission. The paper describes the three kinds of impact varieties and impact mechanisms in the sub-synchronous oscillation phenomena of wind power system based on doubly fed induction generator (DFIG) wind generators. At last, we point out the important problem that should be stressed in the wind power system.
基金This work was supported by a grant from the science-technology program of China State Grid Corp“Research on the operation and control characteristics when the power sent out through series compensation from large new energy base”(No.52010116000S)。
文摘When wind farms,which is based on double fed induction generator(DFIG),are connected to the series compensation power system,the phenomenon of sub-synchronous oscillation(SSO)may occur.In order to study the sub-synchronous oscillation in wind power connected to series compensated power system and its influencing factors,we used RT-LAB to establish a simulation model concerning wind power connected to series-compensation power system.This model take a wind power connected to series compensation power system in north China as prototype.All influence factors of wind power SSO are simulated and analyzed by using time domain analysis method.The simulation results show that the effects of wind speed,series compensation degree and proportional control coefficient of rotor side converter(RSC)are most obvious.
基金National Key Research and Development Program of China under Grant No.2017YFB0902002.
文摘With the rapid development of wind power, wind turbines are accompanied by a large quantity of power electronic converters connected to the grid, causing changes in the characteristics of the power system and leading to increasingly serious sub-synchronous oscillation (SSO) problems, which urgently require the generalized classification and characterization of the emerging oscillation problems. This paper classifies and characterizes the emerging types of SSO caused by grid-connected wind turbines to address these issues. Finally, the impact of the typical system parameters changes on the oscillation pattern is analyzed in depth to provide effective support for the subsequent suppression and prevention of SSO.
基金supported by the Natural Science Foundation of Ningxia(2022AAC05044)the National Natural Science Foundation of China(12161069)。
文摘This paper deals with the problem of limit cycles for the whirling pendulum equation x=y,y=sin x(cosx-r)under piecewise smooth perturbations of polynomials of cos x,sin x and y of degree n with the switching line x=0.The upper bounds of the number of limit cycles in both the oscillatory and the rotary regions are obtained using the Picard-Fuchs equations,which the generating functions of the associated first order Melnikov functions satisfy.Furthermore,the exact bound of a special case is given using the Chebyshev system.At the end,some numerical simulations are given to illustrate the existence of limit cycles.
文摘BACKGROUND Internal hernia(IH)is a rare culprit of small bowel obstruction(SBO)with an incidence of<1%.It poses a considerable diagnostic challenge requiring a high index of suspicion to prevent misdiagnosis,improper treatment,and subsequent morbidity and mortality.AIM To determine the clinico-demographic profile,radiological and operative findings,and postoperative course of patients with IH and its association with SBO.METHODS Medical records of 586 patients with features of SBO presenting at a tertiary care centre at Lucknow,India between September 2010 and August 2023 were reviewed.RESULTS Out of 586 patients,7(1.2%)were diagnosed with IH.Among these,4 had congenital IH and 3 had acquired IH.The male-to-female ratio was 4:3.The median age at presentation was 32 years.Contrast-enhanced computed tomography(CECT)was the most reliable investigation for preoperative identification,demonstrating mesenteric whirling and clumped-up bowel loops.Left paraduodenal hernia and transmesenteric hernia occurred with an equal frequency(approximately 43%each).Intraoperatively,one patient was found to have bowel ischemia and one had associated malrotation of gut.During follow-up,no recurrences were reported.CONCLUSION IH,being a rare cause,must be considered as a differential diagnosis for SBO,especially in young patients in their 30s or with unexplained abdominal pain or discomfort post-surgery.A rapid imaging evaluation,preferably with CECT,is necessary to aid in an early diagnosis and prompt intervention,thereby reducing financial burden related to unnecessary investigations and preventing the morbidity and mortality associated with closed-loop obstruction and strangulation of the bowel.
基金supported by the National Natural Science Foundation of China (Grant No. 41076004)
文摘Based on AVISO (archiving, validation and interpretation of satellite data in oceanography) data from 1993 to 2010, QuikSCAT (Quick Scatterometer) data from 2000 to 2008, and Argo data from 2003 to 2008, the interannual variability of the Great Whirl (GW) and related mechanisms are studied. It shows that the origin and termination times of the GW, as well as its location and intensity, have significant interarmual variability. The GW appeared earliest (latest) in 2004 (2008) and vanished ear- liest (latest) in 2006 (2001), with the shortest (longest) duration in 2008 (2001). Its center was most southward (northward) in 2007 (1995), while the minimum (maximum) amplitude and area occurred in 2003 and 2002 (1997 and 2007), respectively. The GW was weaker and disappeared earlier with its location tending to be in the southwest in 2003, while in 2005 it was stronger, van- ished later and tended to be in northeast. The abnormal years were often not the same among different characters of the GW, and were not all coincident with ENSO (El Nifio-Southern Oscillation) or IOD (Indian Ocean Dipole) events, indicating the very com- plex nature of GW variations. Mechanism investigations shows that the interannual variability of intraseasonal wind stress curl in GW region results in that of the GW. The generation of the GW is coincident with the arrival of Rossby waves at the Somali coast in spring; the intensity of the GW is also influenced by Rossby waves. The termination of the GW corresponds well to the second one of the top two peaks in the baroclinic energy conversion rate in GW region, and the intensity and the position of the GW are also closely related to the top two baroclinic energy conversion rates.
基金supported by the Key Program of the Coal Joint Funds of the National Natural Science Foundation of China (No.U1261205)the Youth Program of National Natural Science Foundation of China (No.51404147)+2 种基金the Class General Financial Grant from the China Postdoctoral Science Foundation (No.2015M570601)the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents (No.2014RCJJ029)the State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology,Shandong University of Science and Technology (No.MDPC2013ZR02)
文摘A combined method of numerical simulation and field testing was adopted in this study in the interest of solving the problem of hard to control high concentrate dusts on a fully mechanized mining face. In addi- tion, the dust suppression effect of a multi-direction whirling air curtain was studied in this paper. Under the influence of the wall attachment effect, the compressed air which blows out from the two-phase or three-phase radial outlets on the generator of the air curtain can form a multi-direction whirling air curtain, which can cover the whole roadway section of a fully mechanized mining face. The traditional method of controlling dust is a forcing system with exhaust overlap which has the major disadvantage of lacking a jet effect and consequently results in poor dust control. It is difficult to form the air flow field within the range of Lp ≤ 5√S. However, due to the effect of this novel system, the radial airflow can be turned into axial airflow allowing fresh air to flow through the length of the heading. The air flow field which is good at controlling dust diffusion can be formed 12.8 m from the heading face. Furthermore, the field measurement results show that before the application of a multi-direction whirling air curtain, the dust concentration is 348.6 mg/m^3 and 271.4 mg/m^3 respectively at the roadway cross-section measurement points which are 5 m and 10 m from the heading face. However, after the application of the multi-direction whirling air curtain, the dust concentration is only 61.2 mg/m3 and 14.8 mg/m^3, respectively. Therefore, the dust control effect of a multi-direction whirling air curtain is obvious.
文摘Under the sliding bearing support for the rotor-bearing system, the dynamic model of a rotor-bearing system is established under the action of non-linear oil film force. The rotor-bearing system has been studied by the application of nonlinear dynamics theory, and the system's response was obtained by the numerical integration approach. The effects of eccentricity, speed, lubricant viscosity, radius gap, bearing length and journal radius on the system's response have been studied by using an amplitude-frequency curve, three-dimensional spectrum and bifurcation, which provides a theoretical basis for the diagnosis of the oil whirl fault effectively in the rotor-bearing system supported by a sliding bearing.
文摘Whirling is a cutting process in which a series of cutting edges on whirling ring remove material by turning over a rotating workpiece. In this study static and dynamic stability of whirling unit was estimated by using ADAMS and NASTRAN softwares. Each maximum force acting on the bearing attached to the spindle assembly and the cutting tool attached to the whirling ring with the rotating speed of 6 000 r/min was 235 N and 902 N respectively. The maximum stress of 0.74 MPa on the base frame is far smaller than the yield strength of 282 MPa. The calculated natural frequency of 148 Hz of the system is far from the frequency of the driving speed of 6 000 r/min. The experimentally obtained maximum cutting force of 792 N is smaller than that of calculated value. And the experimentally obtained natural frequency of 118 Hz is beyond the driving speed of 6000 r/min. From above results it can be judged that the whirling system is statically and dynamically stable.
文摘Nonlinear dynamics of a cracked rotor with whirling were analyzed and were compared to a rotor without whirling. Distinct differences have been found in bifurcation, amplitude, orbit and Poincare map when carrying on this comparison. Complicated dynamics may be found when a cracked rotor has its whirling speed. The results revealed may be useful in crack-early-detection and diagnosis.
基金The National Natural Science Foundation of China under contract Nos 41830538 and 42090042the Chinese Academy of Sciences Fund under contract Nos XDA15020901,133244KYSB20190031,ZDRW-XH-2019-2,ISEE2021PY02 and ISEE2021ZD01+1 种基金Guangdong Basic and Applied Basic Research Fund under contract No.2020A1515010498the Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)Fund under contract Nos GML2019ZD0303 and 2019BT02H594。
文摘The general features of the Great Whirl(GW)off the Somali Coast in 2017 and its influences on chlorophyll a(Chl a)concentration were studied by using satellite data and model outputs.Results show that GW,which initiated at7°N,53°E on June 13,had a lifetime of 153 d with an average amplitude of 16 cm and an average radius of 205 km.After the formation of GW,the concentration of Chl a in the interior of GW showed a downward trend throughout its life cycle,except in early July and mid-October.In early July,the Chl a blooms in the interior of GW were attributed to the combined effect of three processes.They are eddy horizontal transportation,the deepening of the mixed layer caused by the monsoon and eddy pumping,and the upward transportation of nutrients caused by eddy-induced Ekman pumping.In October,the Chl a blooms were probably due to the weakening of GW.During the period,water exchange occurred more frequently across the eddy,thus phytoplanktons were imported into the interior of GW.
文摘Fire whirls cause an increase in fire damage. This study clarified the unsteady behavior of fire whirls, considering that instantaneous changes in the temperature and flame shape of fire whirls can affect the damage to the surrounding area. Numerical simulations of a lab-scale flame that simulates a fire whirl were performed to investigate the changes in gas temperature and velocity fields under various fuel inflow velocities. The flow field was obtained by solving a continuity equation and a three-dimensional Navier-Stokes equation, and the turbulence was resolved using a large eddy simulation. A chemical equilibrium partially premixed combustion model was used, and radiation effects were considered. The time-averaged gas temperature distribution along the burner central axis revealed that the gas temperature decreased monotonically from upstream to downstream. The time-averaged velocity distribution along the burner central axis showed that the velocity decreased as one moved downstream, but the decrease was uneven. The time variation of the gas temperature demonstrated that the higher the fuel inflow velocity, especially near the burner, the greater the gas temperature flutter. Furthermore, the larger the fuel inflow velocity, the larger the flame swell and wobble. The results showed that the fuel inflow velocity affected temperature fluctuation and flame undulating movement.
文摘This paper deals with the theoretic simulation of a drill bit whirling under conditions of its contact interaction with the bore-hole bottom rock plane. The bit is considered to be an absolutely rigid ellipsoidal body with uneven surface. It is attached to the lower end of a rotating elastic drill string. In the perturbed state, the bit can roll without sliding on the bore-hole bottom, performing whirling vibrations (the model of dynamic equilibrium with pure rolling when maximum cohesive force does not exceed the ultimate Coulombic friction). To describe these motions, a nonholonomic dynamic model is proposed, constitutive partial differential equations are deduced. With their use, the whirling vibrations of oblong and oblate ellipsoidal bits are analyzed, the functions of cohesive (frictional) forces are calculated. It is shown that the system of elastic drill string and ellipsoidal bit can acquire stable or unstable whirl modes with approaching critical Eulerian values by the parameters of axial force, torque and angular velocity. The analogy of the found modes of motions with ones of the Celtic stones is established. It is shown that the ellipsoidal bits can stop their whirling vibrations and change directions of their circumferential motions in the same manner as the ellipsoidal Celtic stones do. As this takes place, the trajectories of the oblate ellipsoidal bits are characterized by more complicated paths and irregularities.
文摘An incipient stage of a rotating drill string bit whirl motion proceeding on a well bottom surface is studied on the basis of kinematic (nonholonomic) models of mechanic interaction between the contacting uneven bodies. The bit is considered to be an absolutely rigid spherical or ellipsoidal body, the well bottom surface can be plane or spherical. It is assumed that the system coaxiality is disturbed through small initial curvature of the drill string, imperfections of the bit and bore-well geometry or the system mass debalance. Linearized equations of the bit whirling are deducted, the frequencies of periodic motions are calculated, and their modes are constructed for different geometric parameters of the spherical and ellipsoidal bits. It is demonstrated that, depending on the system properties, the bit motion can acquire the regimes of forward and backward whMings or to transit to the state of stationary spinning relative to an immovable center of velocities. The most unfavorable and atypical whirling modes are characteristic for oblate eilipsoidal bits and curvilinear surfaces of the well bottom.