期刊文献+
共找到444篇文章
< 1 2 23 >
每页显示 20 50 100
Unveiling evapotranspiration patterns and energy balance in a subalpine forest of the Qinghai-Tibet Plateau:observations and analysis from an eddy covariance system
1
作者 Niu Zhu Jinniu Wang +6 位作者 Dongliang Luo Xufeng Wang Cheng Shen Ning Wu Ning Zhang Binghui Tian Aihong Gai 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第3期175-188,共14页
Evapotranspiration is an important parameter used to characterize the water cycle of ecosystems.To under-stand the properties of the evapotranspiration and energy balance of a subalpine forest in the southeastern Qing... Evapotranspiration is an important parameter used to characterize the water cycle of ecosystems.To under-stand the properties of the evapotranspiration and energy balance of a subalpine forest in the southeastern Qinghai-Tibet Plateau,an open-path eddy covariance system was set up to monitor the forest from November 2020 to October 2021 in a core area of the Three Parallel Rivers in the Qing-hai-Tibet Plateau.The results show that the evapotranspira-tion peaked daily,the maximum occurring between 11:00 and 15:00.Environmental factors had significant effects on evapotranspiration,among them,net radiation the greatest(R^(2)=0.487),and relative humidity the least(R^(2)=0.001).The energy flux varied considerably in different seasons and sensible heat flux accounted for the main part of turbulent energy.The energy balance ratio in the dormant season was less than that in the growing season,and there is an energy imbalance at the site on an annual time scale. 展开更多
关键词 EVAPOTRANSPIRATION Energy balance subalpine forest Three Parallel Rivers region Southeast Qinghai-Tibet Plateau
下载PDF
Remote Sensing Monitoring of the Subalpine Coniferous Forests and Quantitative Analysis of the Characteristics of Succession in East Mountain Area of Tibetan Plateau——A Case Study With Zamtang County 被引量:5
2
作者 张学儒 张镱锂 +2 位作者 刘林山 张继平 高俊刚 《Agricultural Science & Technology》 CAS 2011年第6期926-930,共5页
The study area lies in the Dadu River drainage area in upstream Yangtze River.The spatial distribution of subalpine coniferous forests in 1989 and 2009 was extracted by means of a combined method of object orientation... The study area lies in the Dadu River drainage area in upstream Yangtze River.The spatial distribution of subalpine coniferous forests in 1989 and 2009 was extracted by means of a combined method of object orientation and visual interpretation,and then the overlaying analysis of these data was conducted.The type and spatial location of succession were discovered and served as the sample of dependant variable.Meanwhile,supported by GIS technology and based on DEM and thematic data,the eight variables including altitude,slope,sin and cosin of aspect,curvity of land surface,and distance to residential area,cultivated land and road were extracted served as the sample of spatial succession of subalpine coniferous forests to fit Logistic Regression,and then the contribution of each independent variable as well as the spatial property of the occurrence probability of succession was calculated.The results suggested that,during the succession of subalpine coniferous forests to meadow,the closer to the residential area and cultivated land,the greater the contribution to succession is.In particular,when the distance to the residential area decreases by one unit,the probability for its conversion to meadow will be increased by 1.15 times.During the succession of subalpine coniferous forests to deciduous-broadleaved shrubs,the sin of aspect and distance to residential area contribute more,and the probability of succession increases with increasing degree of northwardness,i.e.when the degree of northwardness increases by one unit,the probability will be increased by 1.2 times.The quantitative analysis of spatial succession property of subalpine coniferous forests will supply scientific basis to the protection and restoration of subalpine coniferous forests. 展开更多
关键词 subalpine Coniferous forests Logistic Regression GIS East Mountain Area of Tibetan Plateau
下载PDF
The features of soil aggregation and its eco-environmental effects under different subalpine forests on the east slope of Gongga Mountain, China 被引量:3
3
作者 张保华 何毓蓉 +1 位作者 周红艺 程根伟 《Journal of Forestry Research》 SCIE CAS CSCD 2003年第1期80-82,共3页
Structural properties of forest soils have important hydro-ecological function and can influence the soil water-physical characters and soil erosion. The experimental soil samples were obtained in surface horizon (0-1... Structural properties of forest soils have important hydro-ecological function and can influence the soil water-physical characters and soil erosion. The experimental soil samples were obtained in surface horizon (0-10 cm) from different subalpine forest types on east slope of Gongga Mountain in the upriver area of Yangtze River China in May 2002. The soil bulk density, porosity, stable infiltration rate, aggregate distribution and particle-size distribution were analyzed by the routine methods in room, and the features and effects on eco-environment of soil aggregation were studied. The results showed that the structure of soil under mixed mature forest is in the best condition and can clearly enhance the eco-environmental function of soil, and the soil structure under the clear-cutting forest is the worst, the others are ranked between them. The study results can offer a basic guidance for the eco-environmental construction in the upper reaches of Yangtze River. 展开更多
关键词 Soil aggregation Eco-environmental effects subalpine forest Gongga Mountain China
下载PDF
Litter Dynamics of Three Subalpine Forests in Western Sichuan 被引量:84
4
作者 YANG Wan-Qin WANG Kai-Yun +1 位作者 S. KELLOMAKI GONG He-De 《Pedosphere》 SCIE CAS CSCD 2005年第5期653-659,共7页
Litter production, components and dynamics were investigated and forest floor litter was quantified throughout awhole year in three subalpine forests, dominated by tree species of spruce (SF), fir (FF) and birch (BF),... Litter production, components and dynamics were investigated and forest floor litter was quantified throughout awhole year in three subalpine forests, dominated by tree species of spruce (SF), fir (FF) and birch (BF), in WesternSichuan, China, in order to understand the key factors that influenced litter production and dynamics. Litterfall in thethree forests consisted mainly of leaves, woody litter, reproductive organs and moss. Contribution of leaf litter to thetotal litterfall was significantly (P < 0.05) greater than that of woody litter, reproductive organs or moss. Regardlessof the stands, litterfall exhibited a marked monthly variation with the maximum litterfall peaks occurring in October,with smaller peaks occurring in February for SF and FF, and May for BF. The analysis indicated that tree species,stand density, leaf area index (LAI), stand basal area and stand age were the key factors determining litter production.Meanwhile tree species and phenology controlled the litter dynamics, with wind and snow modifying the litter componentsand dynamics. 展开更多
关键词 litter dynamics litter stock litter production subalpine forests
下载PDF
Annual and Monthly Variations in Litter Macronutrients of Three Subalpine Forests in Western China 被引量:49
5
作者 YANG Wan-Qin WANG Kai-Yun +1 位作者 S. KELLOMAKI ZHANG Jian 《Pedosphere》 SCIE CAS CSCD 2006年第6期788-798,共11页
Macronutrients (N, P, K, Ca, Mg, and S) in litter of three primarily spruce (Picea purpurea Masters) (SF), fir (Abies faxoniana Rehder & E. H. Wilson) (FF), and birch (Betula platyphylla Sukaczev) (BF) ... Macronutrients (N, P, K, Ca, Mg, and S) in litter of three primarily spruce (Picea purpurea Masters) (SF), fir (Abies faxoniana Rehder & E. H. Wilson) (FF), and birch (Betula platyphylla Sukaczev) (BF) subalpine forests in western China were measured to understand the monthly variations in litter nutrient concentrations and annual and monthly nutrient returns via litteffall. Nutrient concentration in litter showed the rank order of Ca 〉 N 〉 Mg 〉 K 〉 S 〉 P. Monthly variations in nutrient concentrations were greater in leaf litter (LL) than other litter components. The highest and lowest concentrations of N, P, K, and S in LL were found in the growing season and the nongrowing season, respectively, but Ca and Mg were the opposite. Nutrient returns via litterfall showed a marked monthly pattern with a major peak in October and one or two small peaks in February and/or May, varying with the element and stand type, but no marked monthly variations in nutrient returns via woody litter, reproductive litter, except in May for the BF, and moss litter. Not only litter production but also nutrient concentration controlled the annual nutrient return and the monthly nutrient return pattern. The monthly patterns of the nutrient concentration and return were of ecological importance for nutrient cycling and plant growth in the subalpine forest ecosystems. 展开更多
关键词 LITTERFALL macronutrient return monthly variation nutrient concentration subalpine forest
下载PDF
Effects of litter quality and climate change along an elevational gradient on litter decomposition of subalpine forests, Eastern Tibetan Plateau, China 被引量:7
6
作者 Zhenfeng Xu Jianxiao Zhu +3 位作者 Fuzhong Wu Yang Liu Bo Tan Wanqin Yang 《Journal of Forestry Research》 SCIE CAS CSCD 2016年第3期505-511,共7页
Temperature and freeze-thaw events are two key factors controlling litter decomposition in cold biomes.Predicted global warming and changes in freeze-thaw cycles therefore may directly or indirectly impact litter deco... Temperature and freeze-thaw events are two key factors controlling litter decomposition in cold biomes.Predicted global warming and changes in freeze-thaw cycles therefore may directly or indirectly impact litter decomposition in those ecosystems. Here, we conducted a2-year-long litter decomposition experiment along an elevational gradient from 3000 to 3600 m to determine the potential effects of litter quality, climate warming and freeze-thaw on the mass losses of three litter types [dragon spruce(Picea asperata Mast.), red birch(Betula albosinensis Burk.), and minjiang fir(Abies faxoniana Rehd. et Wild)]. Marked differences in mass loss were observed among the litter types and sampling dates. Decay constant(k) values of red birch were significantly higher than those of the needle litters. However, mass losses between elevations did not differ significantly for any litter type.During the winter, lost mass contributed 18.3-28.8 % of the net loss rates of the first year. Statistical analysis showed that the relationships between mass loss and litter chemistry or their ratios varied with decomposition periods. Our results indicated that short-term field incubations could overestimate the k value of litter decomposition.Considerable mass was lost from subalpine forest litters during the wintertime. Potential future warming may not affect the litter decomposition in the subalpine forest ecosystems of eastern Tibetan Plateau. 展开更多
关键词 alpine forest Elevational gradient FREEZE-THAW Global warming Mass losses
下载PDF
Nutrient and Litter Patterns in Three Subalpine Coniferous Forests of Western Sichuan, China 被引量:7
7
作者 LIN Bo LIU Qing +1 位作者 WU Yan HE Hai 《Pedosphere》 SCIE CAS CSCD 2006年第3期380-389,共10页
Investigations were conducted to quantify litterfall, and litter and nutrient accumulation in forest floor, and to acquire information on litter decomposition and nitrogen and phosphorus release patterns in three diff... Investigations were conducted to quantify litterfall, and litter and nutrient accumulation in forest floor, and to acquire information on litter decomposition and nitrogen and phosphorus release patterns in three different subalpine coniferous forests, a plantation (P1), a secondary forest (SF), and a primitive forest (PF), in western Sichuan, China. The litter trap method was used to evaluate litterfall with the litterbag method being utilized for litter decomposition. Seasonal patterns of litterfall were similar in the three forests, with two peaks occurring in September-November and March-May. The plantation revealed an annual litterfall of 4.38 x 103 kg ha-1, which was similar to those of SF and PF, but P1 had a lower mass loss rate and a higher C/N ratio. The C/N ratio may be a sound predictor for the decomposition differences. N concentrations of leaf litter in both the secondary forest and primitive forest increased first and then decreased, and the percentages of their final/initial values were 108.9% and 99.9%, respectively. P concentration in the three forests increased by the end of the study. The results of litterfall and decomposition indicated that in the plantation the potential to provide nutrients for soil organic matter was similar to those of SF and PF; however, its slower decomposition rate could result in a somewhat transient accumulation of litter in the forest floor. 展开更多
关键词 ACCUMULATION decomposition LITTERFALL nutrient release subalpine coniferous forests
下载PDF
Soil seed banks along elevational gradients in tropical, subtropical and subalpine forests in Yunnan Province, southwest China 被引量:2
8
作者 Xiaqin Luo Min Cao +4 位作者 Min Zhang Xiaoyang Song Jieqiong Li Akihiro Nakamura Roger Kitching 《Plant Diversity》 SCIE CAS CSCD 北大核心 2017年第5期273-286,共14页
Soil seed banks are a vital part of ecosystems and influence community dynamics and regeneration.Although soil seed banks in different habitats have been reported, how soil seed banks vary with elevational gradients i... Soil seed banks are a vital part of ecosystems and influence community dynamics and regeneration.Although soil seed banks in different habitats have been reported, how soil seed banks vary with elevational gradients in different climatic zones is still unknown. This paper investigates seed density,species composition and nonconstituent species of forest soil seed banks in Yunnan Province, southwest China. Similarity between the soil seed bank and standing vegetation was also examined. We collected soil samples from sites spanning 12 elevations in tropical rain forests, subtropical evergreen broadleaved forests and subalpine coniferous forests, and transported them to a glasshouse for germination trials for species identification. The soil seed banks of tropical and subtropical forests had much higher seed densities and species richness than those of subalpine forests. Seeds of woody species dominated the soil seed banks of tropical and subtropical forests, while herbs dominated those of subalpine forests.The nonconstituent species in the soil seed banks were all herbs and were most abundant in tropical forests, followed by subtropical forests but were completely absent from subalpine forests. 展开更多
关键词 Elevational gradient Soil seed bank Standing vegetation subalpine forest Subtropical forest Tropical forest
下载PDF
The Altitudinal Belts of Subalpine Virgin Forest on Mt.Gongga Simulated by a Succession Model 被引量:3
9
作者 CHENG Gen-wei SUN Jian +1 位作者 SHA Yu-kun FAN Ji-hui 《Journal of Mountain Science》 SCIE CSCD 2014年第6期1560-1570,共11页
How to accurately simulate the distribution of forest species based upon their biological attributes has been a traditional biogeographical issue.Forest gap models are very useful tools for examining the dynamics of f... How to accurately simulate the distribution of forest species based upon their biological attributes has been a traditional biogeographical issue.Forest gap models are very useful tools for examining the dynamics of forest succession and revealing the species structure of vegetation.In the present study,the GFSM(Gongga Forest Succession Model) was developed and applied to simulate the distribution,composition and succession process of forests in 100 m elevation intervals.The results indicate that the simulated results of the tree species,quantities of the different types of trees,tree age and differences in DBH(diameter at breast height) composition were in line with the actual situation from 1400 to 3700 MASL(meters above sea level) on the eastern slope of Mt.Gongga.Moreover,the dominant species in the simulated results were the same as those in the surveyed database.Thus,the GFSM model can best simulate the features of forest dynamics and structure in the natural conditions of Mt.Gongga.The work provides a new approach to studying the structure and distribution characteristics of mountain ecosystems in varied elevations.Moreover,the results of this study suggest that the biogeochemistry mechanism model should be combined with the forestsuccession model to facilitate the ecological model in simulating the physical and chemical processes involved. 展开更多
关键词 subalpine forests Altitudinal belts Succession processes forest gap model
下载PDF
Population structure and regeneration patterns of tree species in climate-sensitive subalpine forests of Indian western Himalaya 被引量:1
10
作者 Sanjay Gairola R. S. Rawal +1 位作者 N. P. Todaria Arvind Bhatt 《Journal of Forestry Research》 SCIE CAS CSCD 2014年第2期343-349,共7页
The population structure of tree species has been explored in order to elucidate regeneration potential of the subalpine forests of Indian western Himalaya. For this study, the subalpine forest area was divided into t... The population structure of tree species has been explored in order to elucidate regeneration potential of the subalpine forests of Indian western Himalaya. For this study, the subalpine forest area was divided into three strata, i.e., lower altitude (〈3000 m); mid-altitude (3000-3200 m); and high altitude (〉3200m). Considering the major compositional attributes, an increase in altitude came with a significant decline in tree density and the total basal area for all the sites. However, no such clear trends were observed for recruits (i.e., seedlings and saplings). Seedling density did not exhibit uniform patterns for sites and altitude strata. In general, overall seedling density was greater at the Pindari site compared to the Lata and Tungnath sites. By comparison, significant variation in seedling density along the altitude strata was recorded for the Tungnath and Pindari sites only. Likewise, sapling density patterns varied across the sites and altitude strata, and significant variation in sapling density along the altitude strata was recorded only for the Lata site. At the Pin- daft site, the continuous increase in sapling density along with increasing altitude was revealing. The Pindari forests of exhibited expanding population structure. In contrast, greater accumulation of individuals in the sapling class and sharp decline toward both higher tree classes and lower seedling classes was generally apparent for the Lata and Tungnath sites. This indicates that the replacement in tree size classes from sapling stage is not proportional and the population may decline in the long-term. Considerable variation in patterns of forest and dominant species popula- tion structure were evident across altitude strata. But in all cases irrespective of sites, we found growth at the high-altitude stratum, in the form of entire forests or dominant species. This trend deserves further investigation to explore its relevance under changing climate scenarios. 展开更多
关键词 population structure REGENERATION subalpine forest ALTITUDE
下载PDF
Streamwater chemistry and flow dynamics along vegetation-soil gradient in a subalpine Abies fabri forest watershed, China
11
作者 SHANBao-qing WANGWei-dong YINCheng-qing 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第5期722-729,共8页
Streamwater chemistry and spatial flow dynamics from a subalpine Abies fabri forest in an experimental watershed located in the east slope of Gongga Mountain were analyzed to gain insights into the gradient effect of ... Streamwater chemistry and spatial flow dynamics from a subalpine Abies fabri forest in an experimental watershed located in the east slope of Gongga Mountain were analyzed to gain insights into the gradient effect of primary community succession on the stream biogeochemical process. Results showed that high sand content(exceeding 80%) and porosity in the soil(exceeding 20% in A horizon and 35% in B horizon), as well as a thick humus layer on the soil surface, made the water exchange quickly in the Huangbengliu(HBL) watershed. Consequently, no surface runoff was observed, and the stream discharge changed rapidly with the daily precipitation. The flow trends of base ions in the stream water were influenced by the Abies fabri succession gradient. Ca 2+ , HCO - 3 and SO 2- 4 were the dominant anions in the streamwater in this region. A significant difference of Ca 2+ , HCO - 3 and SO 2- 4 concentration exported between the succession stages in the watershed can be found. But they had the similar temporal change in the stream flow. Ca 2+ , HCO - 3 and SO 2- 4 showed significantly negative correlations with the daily precipitation and the stream discharge. \;Concentrations of Cl -, Na +, K +, and Mg 2+ were low in all streamwaters monitored and we observed no differences along the Abies fabri succession gradient. Low ratios of Na:(Na+Ca) (range from 0.1 to 0.2) implied cations were from bedrock weathering(internal source process in the soil system) in this region. But, a variance analysis showed there were almost no differences between rainwater and streamwaters for Mg 2+ , Na +, K +, and Cl - concentrations. This indicated that they might be come from rainfall inputs(external source). The highly mobile capacity, rapid water exchange between precipitation and discharge, and long-term export lead to this observed pattern were suggested. 展开更多
关键词 water chemistry SUCCESSION subalpine coniferous forest Abies fabri WATERSHED Gongga Mt.
下载PDF
CO2Emissions from Soils in Subalpine Dark Coniferous Forest Region of Gongga Mountain
12
作者 Wei LI Ji LUO +2 位作者 Guoqing JIA Danli YANG Yongmei HE 《Agricultural Biotechnology》 CAS 2019年第5期76-78,85,共4页
A field experiment was carried out to examine the soil respiration rate in Abies fabri forests in Gongga Mountain National Nature Reserve using LI-6400-09 portable soil respiration chamber.The results showed that the ... A field experiment was carried out to examine the soil respiration rate in Abies fabri forests in Gongga Mountain National Nature Reserve using LI-6400-09 portable soil respiration chamber.The results showed that the soil respiration rate and soil temperature of mature and middle-aged A.fabri forests were different in each month.The soil CO2 emission rates of the two stands had obvious seasonal variation characteristics,which were arranged: summer > autumn > spring > winter;the monthly average soil CO2 emission rate of the mature aged forest ranged from 0.82 to 5.88 μmol/(s·m^2),with the coefficient of seasonal variation of 50.6%;and the average monthly soil respiration rate of middle-aged forest was in the range of 0.52-3.52 μmol/(s·m^2),with the coefficient of seasonal variation of 48.5%.The seasonal variation of soil CO2 emission rate was positively correlated with the 5 cm soil temperature.And the Q10 values of the soil CO2 emission rates in the mature and middle-aged A.fabri forests were 3.2 and 2.6,respectively,and the sensitivity index of CO2 emission to temperature in the mature A.fabri forest was higher than that in the middle-aged forest. 展开更多
关键词 ABIES fabri forest CO2 emission COEFFICIENT of variation Q10 subalpine
下载PDF
Gap edge canopy buffering of throughfall deposition in a subalpine natural forest
13
作者 Siyi Tan Qing Dong +3 位作者 Xiangyin Ni Kai Yue Shu Liao Fuzhong Wu 《Forest Ecosystems》 SCIE CSCD 2022年第4期503-510,共8页
Base cation loads are rarely considered in forest gap edge canopies,but they can play critical roles in capturing or buffering atmospheric deposition in forests with frequent gap disturbances,such as subalpine forests... Base cation loads are rarely considered in forest gap edge canopies,but they can play critical roles in capturing or buffering atmospheric deposition in forests with frequent gap disturbances,such as subalpine forests.We selected an expanded gap edge canopy and a closed canopy in a subalpine natural forest on the eastern Tibetan Plateau.The throughfall deposition and canopy exchange processes of common base cations(K^(+),Ca^(2+),Na^(+),and Mg^(2+))were continuously studied over two years.The results showed that the enrichment ratio and fluxes had lower levels of base cations in the gap-edge canopy than in the closed canopy,which indicated that base cations were concentrated more in the closed canopy than in the gap-edge canopy.Although Ca^(2+)in the gap-edge canopy showed a higher net throughfall flux,the annual net throughfall fluxes of K^(+),Na^(+) and Mg^(2+) within the gap-edge canopy were 1.83,6.75 and 2.95 times lower than those in the closed canopy,respectively.Moreover,dry deposition fluxes of base cations significantly decreased in the gap edge canopy compared to those in the closed canopy,and the decreasing tendency was more significant during the snowy season than during the rainy season.Overall,these results suggest that the amount of base cations in subalpine natural forest ecosystems may be overestimated when the throughfall deposition of ions in gap edge canopies is ignored. 展开更多
关键词 Canopy exchange Dry deposition THROUGHFALL subalpine forest Precipitation deposition
下载PDF
Geoecological analysis of the Korea alpine and subalpine plants and landscapes
14
作者 KONG Woo seok Department of Geography, KyungHee University, Seoul, 130 701, Korea. E mail: wskong@nms.kyunghee. ac.kr 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 1999年第2期116-119,共4页
Present work aims to designate the alpine and subalpine plants and landscapes, and also to analyse the species composition, physiognomy, attitudinal ranges as well as formation processes of Korean alpine and subalpine... Present work aims to designate the alpine and subalpine plants and landscapes, and also to analyse the species composition, physiognomy, attitudinal ranges as well as formation processes of Korean alpine and subalpine belts and their geoecology. The alpine and subalpine floras of Korean mountains are evidently descended from immigrants from NE Asia during the epochs of the Ice Age. These plants, which are very intolerant of competition in warm and mild climates, have been able to persist in alpine and subalpine belts thanks to their harsh climatic conditions, sterile soil, rugged topography and cryoturbation. Continuing works on the palaeoenvironment and thermal amplitude of alpine and subalpine elements on Korea high mountains may be enabled to understand better on the geoecology and natural history of the Korean Peninsula, as well as the structures, functions, mechanism and dynamics of alpine and subalpine plants and landscapes. 展开更多
关键词 geoecology alpine and subalpine PLANTS landscapes Korea.
下载PDF
Host-environment mismatches associated with subalpine fir decline in Colorado
15
作者 Robin M. Reich John E. Lundquist Kristina Hughes 《Journal of Forestry Research》 SCIE CAS CSCD 2016年第5期1177-1189,共13页
Subalpine fir decline (SFD) has killed more trees in Colorado's high elevation forests than any other insect or disease problem. The widespread nature of this disorder suggests that the cause involves climatic fact... Subalpine fir decline (SFD) has killed more trees in Colorado's high elevation forests than any other insect or disease problem. The widespread nature of this disorder suggests that the cause involves climatic factors. We examined the influence of varying combinations of average annual temperature and precipitation on the incidence and distribution of SFD. Climatic transition matrices generated in this study indicate that most healthy trees are found in climatic zones with moderate to low temperatures and high precipitation; whereas, SFD occurs mostly in zones of moderate temperatures and moderate precipitation. The contrasting distributions define an environmental mismatch. Forests matched with favorable climatic conditions thrive; those that are mismatched can become vulnerable to decline disease. 展开更多
关键词 Abiotic disorder Climate stress High elevation forests forest disease - subalpine fir
下载PDF
Once upon a time biomass burning in the western Alps: Nesting effects of climate and local drivers on long-term subalpine fires
16
作者 Christopher Carcaillet Benjamin Boulley Frederique Carcaillet 《Forest Ecosystems》 SCIE CSCD 2022年第2期257-266,共10页
Background:The present article questions the relative importance of local-and large-scale processes on the long-term dynamics of fire in the subalpine belt in the western Alps.The study is based on soil charcoal datin... Background:The present article questions the relative importance of local-and large-scale processes on the long-term dynamics of fire in the subalpine belt in the western Alps.The study is based on soil charcoal dating and identification,several study sites in contrasting environmental conditions,and sampling of soil charcoal along the elevation gradient of each site.Based on local differences in biomass combustion,we hypothesize that local-scale or landscape-scale processes have driven the fire history,while combustion homogeneity supports the hypothesis of the importance of large-scale or macro-ecological processes,especially climate.Results:Biomass burning during the Holocene resulted from the nesting effects of climate,land use,and altitude,but was little influenced by slope exposure(north versus south),soil(dryness,pH,depth),and vegetation.The mid-Holocene(6500–2700 cal BP)was an important period for climate-driven biomass burning in the subalpine ecosystems of the western Alps,while fires over the last 2500 years appear much more episodic,prompting us to speculate that human activity has played a vital role in their occurrence.Conclusion:Our working hypothesis that the strength of local drivers should offset the effects of regional climate is not validated.The homogeneity of the fire regime between sites thus underscores that climate was the main driver during the Holocene of the western Alps.Long-term subalpine fires are controlled by climate at the millennial scale.Local conditions matter for little in determining variability at the century scale.The mid-Holocene was a chief period for climatic biomass burning in the subalpine zone,while fires during the late Holocene appear much more episodic,suggesting that social drivers has exercised key function on their control. 展开更多
关键词 Biomass burning subalpine forest CLIMATE LANDSCAPE Pedoanthracology Radiocarbon dating Pyrogenic carbon
下载PDF
Distribution characteristics and succession regulation of the forests in alpine and canyon region of western Sichuan Province, P.R.China 被引量:1
17
作者 向成华 杨玉坡 《Journal of Forestry Research》 SCIE CAS CSCD 2002年第4期327-330,338,共4页
Since 1950, 700 plots were established in the alpine and canyon region of western Sichuan. The distribution charac-teristics and the relationships between forest succession and environmental gradients were studied. Th... Since 1950, 700 plots were established in the alpine and canyon region of western Sichuan. The distribution charac-teristics and the relationships between forest succession and environmental gradients were studied. The results showed that the main tree species were Picea and Abies in this region, and there were more than 90 forest types. Abies forests mainly dis-tributed in the middle and upper reaches of rivers and their branches, and Picea forests mainly distributed in wide valleys and on half-shaded and half-sunny slopes. The natural regeneration was poor under primitive spruce and fir forest canopy, but was good in the spruce and fire forest gap. The relationship between forest succession and vertical gradient was closely related to the relationship between forest succession procession and plant synusia under primary forests. Human activities could promote and postpone succession process. The results of expanding regeneration were often influenced by topography, vegetation and wind direction. 展开更多
关键词 alpine and canyon region forest succession Environmental gradients forest gap Regeneration
下载PDF
Short-term effects of nitrogen deposition on soil respiration components in two alpine coniferous forests, southeastern Tibetan Plateau 被引量:9
18
作者 Jian Wang Genxu Wang +2 位作者 Yu Fu Xiaopeng Chen Xiaoyan Song 《Journal of Forestry Research》 SCIE CAS CSCD 2019年第3期1029-1041,共13页
Nitrogen (N) deposition to alpine forest ecosystems is increasing gradually, yet previous studies have seldom reported the effects of N inputs on soil CO2 flux in these ecosystems. Evaluating the effects of soil respi... Nitrogen (N) deposition to alpine forest ecosystems is increasing gradually, yet previous studies have seldom reported the effects of N inputs on soil CO2 flux in these ecosystems. Evaluating the effects of soil respiration on N addition is of great significance for understanding soil carbon (C) budgets along N gradients in forest ecosystems. In this study, four levels of N (0, 50, 100, 150 kg N ha^-1 a^-1) were added to soil in a Picea baifouriana and an Abies georgei natural forest on the Tibetan Plateau to investigate the effect of the N inputs on soil respiration. N addition stimulated total soil respiration (Rt) and its components including heterotrophic respiration (Rh) and autotrophic respiration (Ra);however, the promoted effects declined with an increase in N application in two coniferous forests. Soil respiration rate was a little greater in the spruce forest (1.05 μmol CO2 m^-2 s^-1) than that in the fir forest (0.97 μmol CO2 m^-2 s^-1). A repeated measures ANOVA indicated that N fertilization had significant effects on Rt and its components in the spruce forest and Rt in the fir forest, but had no obvious effect on Rh or Ra in the fir forest. Rt and its components had significant exponential relationships with soil temperature in both forests. N addition also increased temperature sensitivity (Q10) of Rt and its components in the two coniferous forests, but the promotion declined as N in put increased. Important, soil moisture had great effects on Rt and its components in the spruce forest (P<0.05), but no obvious impacts were observed in the fir forest (P>0.05). Following N fertilization, Ra was significantly and positively related to fine root biomass, while Rh was related to soil enzymatic activities in both forests. The mechanisms underlying the effect of simulated N deposition on soil respiration and its components in this study may help in forecasting C cycling in alpine forests under future levels of reactive N deposition. 展开更多
关键词 N addition HETEROTROPHIC SOIL RESPIRATION AUTOTROPHIC SOIL RESPIRATION Q10 alpine forest ECOSYSTEM
下载PDF
Understanding and simulating of three-dimensional subsurface hydrological partitioning in an alpine mountainous area, China
19
作者 ZHANG Lanhui TU Jiahao +3 位作者 AN Qi LIU Yu XU Jiaxin ZHANG Haixin 《Journal of Arid Land》 SCIE CSCD 2024年第11期1463-1483,共21页
Critical zone(CZ)plays a vital role in sustaining biodiversity and humanity.However,flux quantification within CZ,particularly in terms of subsurface hydrological partitioning,remains a significant challenge.This stud... Critical zone(CZ)plays a vital role in sustaining biodiversity and humanity.However,flux quantification within CZ,particularly in terms of subsurface hydrological partitioning,remains a significant challenge.This study focused on quantifying subsurface hydrological partitioning,specifically in an alpine mountainous area,and highlighted the important role of lateral flow during this process.Precipitation was usually classified as two parts into the soil:increased soil water content(SWC)and lateral flow out of the soil pit.It was found that 65%–88%precipitation contributed to lateral flow.The second common partitioning class showed an increase in SWC caused by both precipitation and lateral flow into the soil pit.In this case,lateral flow contributed to the SWC increase ranging from 43%to 74%,which was notably larger than the SWC increase caused by precipitation.On alpine meadows,lateral flow from the soil pit occurred when the shallow soil was wetter than the field capacity.This result highlighted the need for three-dimensional simulation between soil layers in Earth system models(ESMs).During evapotranspiration process,significant differences were observed in the classification of subsurface hydrological partitioning among different vegetation types.Due to tangled and aggregated fine roots in the surface soil on alpine meadows,the majority of subsurface responses involved lateral flow,which provided 98%–100%of evapotranspiration(ET).On grassland,there was a high probability(0.87),which ET was entirely provided by lateral flow.The main reason for underestimating transpiration through soil water dynamics in previous research was the neglect of lateral root water uptake.Furthermore,there was a probability of 0.12,which ET was entirely provided by SWC decrease on grassland.In this case,there was a high probability(0.98)that soil water responses only occurred at layer 2(10–20 cm),because grass roots mainly distributed in this soil layer,and grasses often used their deep roots for water uptake during ET.To improve the estimation of soil water dynamics and ET,we established a random forest(RF)model to simulate lateral flow and then corrected the community land model(CLM).RF model demonstrated good performance and led to significant improvements in CLM simulation.These findings enhance our understanding of subsurface hydrological partitioning and emphasize the importance of considering lateral flow in ESMs and hydrological research. 展开更多
关键词 subsurface hydrological partitioning lateral flow random forest model community land model(CLM) alpine mountainous area
下载PDF
How do nitrogen-limited alpine coniferous forests acquire nitrogen?A rhizosphere perspective 被引量:1
20
作者 Huajun Yin Bartosz Adamczyk +5 位作者 Qitong Wang Biao Zhu Wanji Guo Xiaomin Zhu Qing Liu Ziliang Zhang 《Forest Ecosystems》 SCIE CSCD 2022年第6期745-754,共10页
Background:Alpine coniferous forest ecosystems dominated by ectomycorrhizal(ECM)tree species are generally characterized by low soil nitrogen(N)availability but stabilized plant productivity.Thus,elucidating potential... Background:Alpine coniferous forest ecosystems dominated by ectomycorrhizal(ECM)tree species are generally characterized by low soil nitrogen(N)availability but stabilized plant productivity.Thus,elucidating potential mechanisms by which plants maintain efficient N acquisition is crucial for formulating optimized management practices in these ecosystems.Methods:We summarize empirical studies conducted at a long-term field monitoring station in the alpine coniferous forests on the eastern Tibetan Plateau,China.We propose a root-soil interaction-based framework encompassing key components including soil N supply,microbial N transformation,and root N uptake in the rhizosphere.Results:We highlight that,(i)a considerable size of soil dissolved organic N pool mitigates plant dependence on inorganic N supply;(ii)ectomycorrhizal roots regulate soil N transformations through both rhizosphere and hyphosphere effects,providing a driving force for scavenging soil N;(iii)a complementary pattern of plant uptake of different soil N forms via root-and mycorrhizal mycelium-pathways enables efficient N acquisitions in response to changing soil N availability.Conclusions:Multiple rhizosphere processes abovementioned collaboratively contribute to efficient plant N acquisition in alpine coniferous forests.Finally,we identify several research outlooks and directions to improve the understanding and prediction of ecosystem functions in alpine coniferous forests under on-going global changes. 展开更多
关键词 Plant nitrogen acquisition Root-soil interaction alpine coniferous forests Nitrogen limitation RHIZOSPHERE
下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部