The understanding of rainfall-induced landslides on gentle, loose-fill slopes is limited in comparison to steep slopes. Hence, two physical model tests were conducted on silty sand slopes under continuous rainfall: on...The understanding of rainfall-induced landslides on gentle, loose-fill slopes is limited in comparison to steep slopes. Hence, two physical model tests were conducted on silty sand slopes under continuous rainfall: one on a bare slope and the other on a slope planted with ryegrass. The slope angle of 25° is much lower than the internal friction angle of slope material (34.3°), which makes the model test fall well into the category of gentle slope. For the initially unsaturated bare slope, a rainfall event with return period of 18 years could trigger a rapid and retrogressive global sliding, which differs from previous findings that gentle slopes would only experience shallow failure. A sudden increase in pore-water pressure was simultaneously observed, which might be generated by the wetting-induced collapse of unsaturated loose soil. On the other hand, the stability of the slope with grass plantation was significantly enhanced, and it was able to withstand rainfall event more severe than those with a return period of 100 years, with only minimal deformation. The results suggest that the gain in shear strength due to ryegrass roots surpasses the additional sliding force caused by the increased water retention capability. Additionally, it is found that the abrupt change in pore pressure was no longer indicative of slope failure in the case of the grass-reinforced slope.展开更多
The effects of slope surface material, slope gradient, block shape, and block mass conditions on rockfall rolling velocity were estimated with orthogonal test approach. Visual analysis shows that the importance of the...The effects of slope surface material, slope gradient, block shape, and block mass conditions on rockfall rolling velocity were estimated with orthogonal test approach. Visual analysis shows that the importance of the factors is slope surface material > slope gradient > block shape > block mass. All the factors except block mass have the F value greater than the critical value, suggesting that these three factors are the key factors affecting the rockfall rolling velocity. Factor interaction analysis shows that the effect of the slope gradient relies largely on the slope surface conditions, and the block shape has little influence if the slope gradient is larger than a critical value. An empirical model considering the three key factors is proposed to estimate the rolling velocity, of which the error is limited to 5% of the testing value. This model is validated by 73 field tests, and the prediction shows excellent correlation with the site test. Thus, this analysis can be used as a tool in the rockfall behavior analysis.展开更多
Potential tsunami generated in the Okinawa Trench or the Manila Trench may attack the southeast coast of China. The continental shelves with extremely gentle slope in the China Seas affect the evolvement of tsunami wa...Potential tsunami generated in the Okinawa Trench or the Manila Trench may attack the southeast coast of China. The continental shelves with extremely gentle slope in the China Seas affect the evolvement of tsunami waves. In this paper, we carry out the simulation of tsunami propagation based on the fully nonlinear and highly dispersive Boussinesq model, which could describe the nonlinearity and dispersion of water waves quite well. So the undulation characters could be well presented. In terms of the real topographies of the East China Sea and the South China Sea, we take some typical profiles to simulate the hypothetical tsunamis generated in the Okinawa Trench and the Manila Trench. Different waveforms in the near shore regions are obtained. The N-shape tsunami waves will evolve into long wave trains, undular bores or solitons near the coastal area. The numerical results of the near shore waveform provide essential conditions for the further studies of tsunami runup and inundation.展开更多
Regular wave deformation and breaking on very gentle slopes is calculated by Mixed-Eulerian-Lagrangian procedure. The velocity potentials and their normal derivatives on the boundary are calculated through the mixed 0...Regular wave deformation and breaking on very gentle slopes is calculated by Mixed-Eulerian-Lagrangian procedure. The velocity potentials and their normal derivatives on the boundary are calculated through the mixed 0-1 boundary element method. The wave elevation and the potentials of Lime-stepping integration are determined by the 2nd-order Taylor expansion at the nodes of free surface boundary elements. During calculation the x-coordinates of the free surface element nodes are supposed to remain unchanged, i.e. the partial derivatives of wave elevation and potentials with respect to x are considered as zero. The numerical results of asymmetric parameters of breaking waves are verified by experimental study. It is shown that when the wave asymmetry is weak, the maximum horizontal velocity of water particales occurs at the wave peak and, the average ratio of this maximum velocity to wave celerity is 0.96. However, when the wave asymmetry is strong, the maximum horizontal velocity of water particles occurs just before the wave crest, and the average ratio of the maximum velocity to wave celerity is about 0.98. The numerical results also show that the asymmetry of wave profiles affects the value of the wave breaking index (H/d) (b), that is, when the asymmetric characteristics are weak, the value of wave breaking index coincides with that given by Goda; on the contrary, when the asymmetry of wave profiles is notable, the value of wave breaking index is close to Nelson's result. The experimental study gives the same conclusions.展开更多
An experimental study of regular wave and irregular wave breaking is performed on a gentle slope of 1:200, In the experiment, asymmetry of wave profile is analyzed to determine its effect on wave breaker indices and t...An experimental study of regular wave and irregular wave breaking is performed on a gentle slope of 1:200, In the experiment, asymmetry of wave profile is analyzed to determine its effect on wave breaker indices and to explain the difference between Goda and Nelson about the breaker indices of regular waves on very mild slopes. The study shows that the breaker index of irregular waves is under less influence of bottom slope l, relative water depth d/ L-0 and the asymmetry of wave profile than that of regular waves. The breaker index of regular waves from Goda may be used in the case of irregular waves, while the coefficient A should be 0.15. The ratio of irregular wavelength to the length calculated by linear wave theory is 0.74. Analysis is also made on the waveheight damping coefficient of regular waves after breaking and on the breaking probability of large irregular waves.展开更多
Analyzing the formation and sediment characteristics of gentle slope, the authors elaborate formation mechanism of organic reef and characteristics of reservoir in gentle slope of rift basin. Using the forward model o...Analyzing the formation and sediment characteristics of gentle slope, the authors elaborate formation mechanism of organic reef and characteristics of reservoir in gentle slope of rift basin. Using the forward model of seismic exploration, the study provides the objective judgment for the exploration of organic reef reservoir in gentle slope of rift basin.展开更多
Tectonic movements in the North Slope of Biyang Depression are comparatively mild and stable, thus generating two categories of deltas. Elementary reasons for the coexistence of deltas are the existence of the palaeod...Tectonic movements in the North Slope of Biyang Depression are comparatively mild and stable, thus generating two categories of deltas. Elementary reasons for the coexistence of deltas are the existence of the palaeodrainage pattern and the effect of palaeotopography. The sedimentary facies is the most elementary factor controlling the physical property of reservoirs. The layout and spatial combination model of the sand body and faults are the major influential factors on the occurrence of hydrocarbons. Comparative study on Houzhang and Yanglou Braided Deltas as well as Zhangchang and Gucheng Meandering Deltas suggests that the hydrocarbons distribute primarily in the mouth bar subfacies and secondarily in the distal bar subfacies of the braided delta, while the oil-water and aqueous layers are mainly found in the subaquatic distributary channel. Although the sand body of the meandering delta has excellent stratification and high porosity, the thickness is far less than that of the braided delta. Therefore, the yield of hydrocarbon is relatively low. The mudstone of the delta front subfacies is a kind of source rock with a high content of organic matter. The conducting system for oil/gas migration in the North Slope is a composite one comprising faults and sand- stone reservoirs. A large amount of oil/gas from the deep depression first migrated towards the slope along the sand body which stretches and connects with the source rocks, and then redistributed along the faults in the slope. After the movement reached a standstill, the faults formed the occlusion in the up-dip direction of the sand body, generating a great quantity of fault block hydrocarbon reservoirs in the Noah Slope.展开更多
Seismic sedimentology is a new frontier inter-discipline subject, and shows good prospect and potentiality in reservoir deposition research with seismic data and geophysics technologies. We made seismic sedimentology ...Seismic sedimentology is a new frontier inter-discipline subject, and shows good prospect and potentiality in reservoir deposition research with seismic data and geophysics technologies. We made seismic sedimentology research of shallow sea area, gentle slope belt of Chengning (埕宁) uplift, Bohalwan (渤海湾) basin. In shallow sea area with sparse well coverage, it was difficult to characterize the reservoir architecture with the traditional method based on wells. A new method to resolve the above problems is built: (1) information on plane and in section is inter-ealibrated with each other; (2) recognize the isochronic surfaces by frequency decomposition and interpret the depositional character with technology of stratal slicing; (3) make a comprehensive research with the stratal slice interpreta- tion and the dissection of well group. The depositional model of this area is built and used in the architecture analysis of area without wells. The architecture description reveals that the sedimentary character of pan-connection sand bodies in braided rivers is the reason for high water cut of the new horizontal wells. .展开更多
基金National Key R&D Program of China(2021YFC3001000)the National Natural Science Foundation of China(52239008,52108311,and 52025094)the Shenzhen Science and Technology Program(KQTD20210811090112003 and GXWD20231130125225001)for financial supports.
文摘The understanding of rainfall-induced landslides on gentle, loose-fill slopes is limited in comparison to steep slopes. Hence, two physical model tests were conducted on silty sand slopes under continuous rainfall: one on a bare slope and the other on a slope planted with ryegrass. The slope angle of 25° is much lower than the internal friction angle of slope material (34.3°), which makes the model test fall well into the category of gentle slope. For the initially unsaturated bare slope, a rainfall event with return period of 18 years could trigger a rapid and retrogressive global sliding, which differs from previous findings that gentle slopes would only experience shallow failure. A sudden increase in pore-water pressure was simultaneously observed, which might be generated by the wetting-induced collapse of unsaturated loose soil. On the other hand, the stability of the slope with grass plantation was significantly enhanced, and it was able to withstand rainfall event more severe than those with a return period of 100 years, with only minimal deformation. The results suggest that the gain in shear strength due to ryegrass roots surpasses the additional sliding force caused by the increased water retention capability. Additionally, it is found that the abrupt change in pore pressure was no longer indicative of slope failure in the case of the grass-reinforced slope.
基金supported by the National Science Foundation of China (Grant No. 41572302)the Funds for Creative Research Groups of China (Grant No. 41521002)
文摘The effects of slope surface material, slope gradient, block shape, and block mass conditions on rockfall rolling velocity were estimated with orthogonal test approach. Visual analysis shows that the importance of the factors is slope surface material > slope gradient > block shape > block mass. All the factors except block mass have the F value greater than the critical value, suggesting that these three factors are the key factors affecting the rockfall rolling velocity. Factor interaction analysis shows that the effect of the slope gradient relies largely on the slope surface conditions, and the block shape has little influence if the slope gradient is larger than a critical value. An empirical model considering the three key factors is proposed to estimate the rolling velocity, of which the error is limited to 5% of the testing value. This model is validated by 73 field tests, and the prediction shows excellent correlation with the site test. Thus, this analysis can be used as a tool in the rockfall behavior analysis.
基金supported by the National Natural Science Foundation of China (11202130 )the Doctoral Program Foundation of Higher Education (20060248046)
文摘Potential tsunami generated in the Okinawa Trench or the Manila Trench may attack the southeast coast of China. The continental shelves with extremely gentle slope in the China Seas affect the evolvement of tsunami waves. In this paper, we carry out the simulation of tsunami propagation based on the fully nonlinear and highly dispersive Boussinesq model, which could describe the nonlinearity and dispersion of water waves quite well. So the undulation characters could be well presented. In terms of the real topographies of the East China Sea and the South China Sea, we take some typical profiles to simulate the hypothetical tsunamis generated in the Okinawa Trench and the Manila Trench. Different waveforms in the near shore regions are obtained. The N-shape tsunami waves will evolve into long wave trains, undular bores or solitons near the coastal area. The numerical results of the near shore waveform provide essential conditions for the further studies of tsunami runup and inundation.
基金This project was supported financially by National Natural Science Foundation of China(Grant No.49876026)
文摘Regular wave deformation and breaking on very gentle slopes is calculated by Mixed-Eulerian-Lagrangian procedure. The velocity potentials and their normal derivatives on the boundary are calculated through the mixed 0-1 boundary element method. The wave elevation and the potentials of Lime-stepping integration are determined by the 2nd-order Taylor expansion at the nodes of free surface boundary elements. During calculation the x-coordinates of the free surface element nodes are supposed to remain unchanged, i.e. the partial derivatives of wave elevation and potentials with respect to x are considered as zero. The numerical results of asymmetric parameters of breaking waves are verified by experimental study. It is shown that when the wave asymmetry is weak, the maximum horizontal velocity of water particales occurs at the wave peak and, the average ratio of this maximum velocity to wave celerity is 0.96. However, when the wave asymmetry is strong, the maximum horizontal velocity of water particles occurs just before the wave crest, and the average ratio of the maximum velocity to wave celerity is about 0.98. The numerical results also show that the asymmetry of wave profiles affects the value of the wave breaking index (H/d) (b), that is, when the asymmetric characteristics are weak, the value of wave breaking index coincides with that given by Goda; on the contrary, when the asymmetry of wave profiles is notable, the value of wave breaking index is close to Nelson's result. The experimental study gives the same conclusions.
基金National Natural Science Foundation of China(Grant No.49876026) Research Foundation for Development of Engineering Technical Code of Ministry of Communication
文摘An experimental study of regular wave and irregular wave breaking is performed on a gentle slope of 1:200, In the experiment, asymmetry of wave profile is analyzed to determine its effect on wave breaker indices and to explain the difference between Goda and Nelson about the breaker indices of regular waves on very mild slopes. The study shows that the breaker index of irregular waves is under less influence of bottom slope l, relative water depth d/ L-0 and the asymmetry of wave profile than that of regular waves. The breaker index of regular waves from Goda may be used in the case of irregular waves, while the coefficient A should be 0.15. The ratio of irregular wavelength to the length calculated by linear wave theory is 0.74. Analysis is also made on the waveheight damping coefficient of regular waves after breaking and on the breaking probability of large irregular waves.
文摘Analyzing the formation and sediment characteristics of gentle slope, the authors elaborate formation mechanism of organic reef and characteristics of reservoir in gentle slope of rift basin. Using the forward model of seismic exploration, the study provides the objective judgment for the exploration of organic reef reservoir in gentle slope of rift basin.
文摘Tectonic movements in the North Slope of Biyang Depression are comparatively mild and stable, thus generating two categories of deltas. Elementary reasons for the coexistence of deltas are the existence of the palaeodrainage pattern and the effect of palaeotopography. The sedimentary facies is the most elementary factor controlling the physical property of reservoirs. The layout and spatial combination model of the sand body and faults are the major influential factors on the occurrence of hydrocarbons. Comparative study on Houzhang and Yanglou Braided Deltas as well as Zhangchang and Gucheng Meandering Deltas suggests that the hydrocarbons distribute primarily in the mouth bar subfacies and secondarily in the distal bar subfacies of the braided delta, while the oil-water and aqueous layers are mainly found in the subaquatic distributary channel. Although the sand body of the meandering delta has excellent stratification and high porosity, the thickness is far less than that of the braided delta. Therefore, the yield of hydrocarbon is relatively low. The mudstone of the delta front subfacies is a kind of source rock with a high content of organic matter. The conducting system for oil/gas migration in the North Slope is a composite one comprising faults and sand- stone reservoirs. A large amount of oil/gas from the deep depression first migrated towards the slope along the sand body which stretches and connects with the source rocks, and then redistributed along the faults in the slope. After the movement reached a standstill, the faults formed the occlusion in the up-dip direction of the sand body, generating a great quantity of fault block hydrocarbon reservoirs in the Noah Slope.
基金supported by the National Natural Science Foundation of China (No. 40872094)the Natural Science Foundation of Shandong Province (No. Z2008E01)
文摘Seismic sedimentology is a new frontier inter-discipline subject, and shows good prospect and potentiality in reservoir deposition research with seismic data and geophysics technologies. We made seismic sedimentology research of shallow sea area, gentle slope belt of Chengning (埕宁) uplift, Bohalwan (渤海湾) basin. In shallow sea area with sparse well coverage, it was difficult to characterize the reservoir architecture with the traditional method based on wells. A new method to resolve the above problems is built: (1) information on plane and in section is inter-ealibrated with each other; (2) recognize the isochronic surfaces by frequency decomposition and interpret the depositional character with technology of stratal slicing; (3) make a comprehensive research with the stratal slice interpreta- tion and the dissection of well group. The depositional model of this area is built and used in the architecture analysis of area without wells. The architecture description reveals that the sedimentary character of pan-connection sand bodies in braided rivers is the reason for high water cut of the new horizontal wells. .