In this paper, both general and exponential bounds of the distance between a uniform Catmull-Clark surface and its control polyhedron are derived. The exponential bound is independent of the process of subdivision and...In this paper, both general and exponential bounds of the distance between a uniform Catmull-Clark surface and its control polyhedron are derived. The exponential bound is independent of the process of subdivision and can be evaluated without recursive subdivision. Based on the exponential bound, we can predict the depth of subdivision within a user-specified error tolerance. This is quite useful and important for pre-computing the subdivision depth of subdivision surfaces in many engineering applications such as surface/surface intersection, mesh generation, numerical control machining and surface rendering.展开更多
We estimate error bounds between ternary subdivision curves/surfaces and their control polygons after k-fold subdivision in terms of the maximal differences of the initial control point sequences and constants that de...We estimate error bounds between ternary subdivision curves/surfaces and their control polygons after k-fold subdivision in terms of the maximal differences of the initial control point sequences and constants that depend on the subdivision mask. The bound is independent of the process of subdivision and can be evaluated without recursive subdivision. Our technique is independent of parametrization therefore it can be easily and efficiently implemented. This is useful and important for pre-computing the error bounds of subdivision curves/surfaces in advance in many engineering applications such as surface/surface intersection, mesh generation, NC machining, surface rendering and so on.展开更多
文摘In this paper, both general and exponential bounds of the distance between a uniform Catmull-Clark surface and its control polyhedron are derived. The exponential bound is independent of the process of subdivision and can be evaluated without recursive subdivision. Based on the exponential bound, we can predict the depth of subdivision within a user-specified error tolerance. This is quite useful and important for pre-computing the subdivision depth of subdivision surfaces in many engineering applications such as surface/surface intersection, mesh generation, numerical control machining and surface rendering.
基金This work was supported in part by NSF of China(No. 10201030)the TRAPOYT in Higher Education Institute of MOE of chinathe Doctoral Program of MOE of china(No. 20010358003)
文摘We estimate error bounds between ternary subdivision curves/surfaces and their control polygons after k-fold subdivision in terms of the maximal differences of the initial control point sequences and constants that depend on the subdivision mask. The bound is independent of the process of subdivision and can be evaluated without recursive subdivision. Our technique is independent of parametrization therefore it can be easily and efficiently implemented. This is useful and important for pre-computing the error bounds of subdivision curves/surfaces in advance in many engineering applications such as surface/surface intersection, mesh generation, NC machining, surface rendering and so on.