The front of the Zoulang Nanshan Caledonian volcanic island arc zone in the northern Qilian Mountains is a forearc accretionary terrane, composed of multiple accretionary volcanic island arcs, flysch accretionary wedg...The front of the Zoulang Nanshan Caledonian volcanic island arc zone in the northern Qilian Mountains is a forearc accretionary terrane, composed of multiple accretionary volcanic island arcs, flysch accretionary wedges,high-pressure metamorphosed detachment zones and remnants of ophiolites. It resulted from the northeastward subduction of the Early Palaeozoic Qilan oceanic crust beneath the Alxa block. High-pressure metamorphism, which occurred during the subduction, progressed through three stages: the initial stage of medium T-high P,the main stage of temperature decrease and pressure increase, and the lag stage of pressure decrease and temperature increase. Finally the paper presents a retrotrench subduction dynamic model indicative of northward subduction of the central Qilian block and southward accretion of the Alxa block during the period of 450-500 Ma.展开更多
Mineral chemistry, whole-rock major oxide, and trace element compositions have been determined for the Tuerkubantao mafic-ultramafic intrusion, in order to understand the early Paleozoic tectonic evolution of the West...Mineral chemistry, whole-rock major oxide, and trace element compositions have been determined for the Tuerkubantao mafic-ultramafic intrusion, in order to understand the early Paleozoic tectonic evolution of the West Junggar orogenic belt at the southern margin of the Central Asian orogenic belt. The Tuerkubantao mafic-ultramafic intrusion is a well-differentiated complex comprising peridotite, olivine pyroxenite, gabbro, and diorite. The ultramafic rocks are mostly seen in the central part of the intrusion and surrounded by mafic rocks. The Tuerkubantao intrusive rocks are characterized by enrichment of large ion lithophile elements and depleted high field strength elements relative to N-MORB. In addition, the Tuerkubantao intrusion displays relatively low Th/U and Nb/U (1.13-2.98 and 2.53-7.02, respectively) and high La/Nb and Ba/Nb (1.15 4.19 and 37.7-79.82, respectively). These features indicate that the primary magma of the intrusion was derived from partial melting of a previously metasomatized mantle source in a subduction setting. The trace element patterns of peridotites, gabbros, and diorite in the Tuerkubantao intrusion have sub-parallel trends, suggesting that the different rock types are related to each other by differentiation of the same primary magma. The intrusive contact between peridotite and gabbro clearly suggest that the Tuerkubantao is not a fragment of an ophiolite. However, the Tuerkubantao intrusion displays many similarities with Alaskan-type mafic-ultramafic intrusions along major sutures of Phanerozoic orogenic belts. Common features include their geodynamic setting, internal lithological zoning, and geochemistry. The striking similarities indicate that the middle Devonian Tuerkubantao intrusion likely formed in a subduction-related setting similar to that of the Alaskan-type intrusions. In combination with the Devonian magmatism and porphyry mineralization, we propose that subduction of the oceanic slab has widely existed in the expansive oceans during the Devonian around the Junggar block.展开更多
基金This research is a project (No. 4870127)supported by the National Natural Science Foundation of China
文摘The front of the Zoulang Nanshan Caledonian volcanic island arc zone in the northern Qilian Mountains is a forearc accretionary terrane, composed of multiple accretionary volcanic island arcs, flysch accretionary wedges,high-pressure metamorphosed detachment zones and remnants of ophiolites. It resulted from the northeastward subduction of the Early Palaeozoic Qilan oceanic crust beneath the Alxa block. High-pressure metamorphism, which occurred during the subduction, progressed through three stages: the initial stage of medium T-high P,the main stage of temperature decrease and pressure increase, and the lag stage of pressure decrease and temperature increase. Finally the paper presents a retrotrench subduction dynamic model indicative of northward subduction of the central Qilian block and southward accretion of the Alxa block during the period of 450-500 Ma.
基金financially supported by the Chinese National Science and Technology Program during the 12th Five-year Plan Period(2011BAB06B01)the Program for New Century Excellent Talents in University(Grant No.NCET-10-0324)+2 种基金NSFC research grants(41303031,41172090,41040025)the Fundamental Research Funds for the Central Universities(2013bhzx0015)Open Funds from the State Key Laboratory of Ore Deposit Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences(201102)
文摘Mineral chemistry, whole-rock major oxide, and trace element compositions have been determined for the Tuerkubantao mafic-ultramafic intrusion, in order to understand the early Paleozoic tectonic evolution of the West Junggar orogenic belt at the southern margin of the Central Asian orogenic belt. The Tuerkubantao mafic-ultramafic intrusion is a well-differentiated complex comprising peridotite, olivine pyroxenite, gabbro, and diorite. The ultramafic rocks are mostly seen in the central part of the intrusion and surrounded by mafic rocks. The Tuerkubantao intrusive rocks are characterized by enrichment of large ion lithophile elements and depleted high field strength elements relative to N-MORB. In addition, the Tuerkubantao intrusion displays relatively low Th/U and Nb/U (1.13-2.98 and 2.53-7.02, respectively) and high La/Nb and Ba/Nb (1.15 4.19 and 37.7-79.82, respectively). These features indicate that the primary magma of the intrusion was derived from partial melting of a previously metasomatized mantle source in a subduction setting. The trace element patterns of peridotites, gabbros, and diorite in the Tuerkubantao intrusion have sub-parallel trends, suggesting that the different rock types are related to each other by differentiation of the same primary magma. The intrusive contact between peridotite and gabbro clearly suggest that the Tuerkubantao is not a fragment of an ophiolite. However, the Tuerkubantao intrusion displays many similarities with Alaskan-type mafic-ultramafic intrusions along major sutures of Phanerozoic orogenic belts. Common features include their geodynamic setting, internal lithological zoning, and geochemistry. The striking similarities indicate that the middle Devonian Tuerkubantao intrusion likely formed in a subduction-related setting similar to that of the Alaskan-type intrusions. In combination with the Devonian magmatism and porphyry mineralization, we propose that subduction of the oceanic slab has widely existed in the expansive oceans during the Devonian around the Junggar block.